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A theory of Tesla disc turbines

Sayantan Sengupta and Abhijit Guha

Abstract

In the present article, a mathematical theory for the flow field within a Tesla disc turbine has been formulated in the

appropriate cylindrical co-ordinate system. The basis of the theory is the Navier–Stokes equations simplified by a

systematic order of magnitude analysis. The presented theory can compute three-dimensional variation of the radial

velocity, tangential velocity and pressure of the fluid in the flow passages within the rotating discs. Differential equations

as well as closed-form analytical relations are derived. The present mathematical theory can predict torque, power

output and efficiency over a wide range of rotational speed of the rotor, in good agreement with recently published

experimental data. The performance of the turbine is characterized by conceptualizing the variation of load through the

non-dimensional ratio of the absolute tangential velocity of the jet and the peripheral speed of the rotor. The mathem-

atical model developed here is a simple but effective method of predicting the performance of a Tesla disc turbine along

with the three-dimensional flowfield within its range of applicability. A hypothesis is also presented that it may be possible

to exploit the effects of intelligently designed and manufactured surface roughness elements to enhance the performance

of a Tesla disc turbine.
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Introduction

Tesla turbine, a bladeless turbine, was patented by the
famous scientist Nikola Tesla (1856–1943) in 1913.1 Up
to now, a major stumbling block in its commercial use
has been its low efficiency and certain other operational
difficulties.2 However, there has been a resurgence of
research interest in this type of turbines3 because they
have several advantages (as explained below) and hence
may be appropriately developed and used in certain
niche application areas. In this article, an analytical
theory has been developed for predicting the perform-
ance of Tesla turbines, which agree well with experi-
mental results.

The Tesla turbine is also known as disc turbine
because the rotor of this turbine is formed by a series
of flat, parallel, co-rotating discs, which are closely
spaced and attached to a central shaft.2 The working
fluid is injected nearly tangentially to the rotor by
means of inlet nozzle. The injected fluid, which passes
through the narrow gaps between the discs, approaches
spirally towards the exhaust port located at the centre
of each disc. The viscous drag force, produced due to
the relative velocity between the rotor and the working
fluid, causes the rotor to rotate. There is a housing

surrounding the rotor, with a small radial and axial
clearance.

Tesla turbine has several important advantages: it
is easy to manufacture, maintain and balance the
turbine, and it has high power to weight ratio, low
cost, significant reduction in emissions and noise level,
a simple configuration which means an inexpensive
motor. Tesla turbine can generate power for a variety
of working media3 like Newtonian fluids, non-
Newtonian fluids, mixed fluids, particle laden two-
phase flows (many aspects of two-phase flow may be
found in Guha4,5). This turbine has self-cleaning nature
due the centrifugal force field. This makes it possible to
operate the turbine in case of non-conventional fuels
like biomass which produce solid particles. It also sug-
gests that this bladeless turbine can be well suited to
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generate power in geothermal power stations.6

Tesla turbo-machinery can also be used as a compres-
sor by modifying the housing and powering the rotor
from an external source. Moreover, it can operate
either in the clockwise or anticlockwise direction.

However, a Tesla disc turbine has not yet been used
commercially due to its low efficiency and other oper-
ational difficulties.2 Further research and modification
of Tesla turbine were temporarily suppressed after the
invention of gas turbine which was much more efficient
than Tesla turbine. From 1950 onwards both theoret-
ical and experimental research on Tesla turbine, Tesla
pump, Tesla fan and Tesla compressor has been regen-
erated.7 Quite a number of analytical models for the
conventional configuration of Tesla turbine have been
developed. Among all these approaches available
in the literature, bulk parameter analysis,8–10 truncated
series substitution methodology,11 integral method,12

and finite difference solutions13,14 are worth mention-
ing. Solutions are mainly available for incompressible
flows although there are some papers containing solu-
tions for compressible flows.15,16

Currently the field of micro-turbine is an active
research area; the bladeless Tesla turbine because of
its simplicity and robustness of structure, low cost
and comparatively better operation at high rpm may
become a suitable candidate for this application. For
this to happen the efficiency of the Tesla turbine, how-
ever, has to be improved. Researchers are attempting to
achieve this by modification of the configuration of the
conventional Tesla turbines (see, for example, Guha
and Smiley3).

After the success of Whittle and von Ohain, the gas
turbine became the centerpoint of research and devel-
opment and the understanding of its performance and
optimization has reached quite a mature stage.17–23 The
understanding of the performance of Tesla turbines is
not nearly as thorough. The present authors would
argue that the development of a reliable and compre-
hensive (and yet simple, if possible, for practical engin-
eering use) mathematical theory is an important step
towards developing the necessary understanding of
the fluid dynamics of the Tesla disc turbine.

The objective of the present work is to formulate
a mathematical theory for a Tesla turbine, developed
in the appropriate cylindrical co-ordinate system. The
geometric and flow configuration for the present study
is chosen to be the same as that given in Lemma et al.24

because they provide data from their recent experi-
ments which can be used to verify the mathematical
model and for the claimed superiority in its perform-
ance. Their experimental results show that this particu-
lar configuration of Tesla turbine has an isentropic
efficiency of about 18–25% which is achieved by
using rotor with only nine discs (diameter 0.05m) and

compressed air as the working fluid. More details about
the configuration are discussed later.

Deam et al.25 have attempted to develop a simple
analytical model for the configuration given in Lemma
et al.,24 considering incompressible and one dimensional
flow. A limitation of their theory is the absence of the
radial flow feature. Moreover, their theory can only pre-
dict the no-loss maximum efficiency of the turbine
(assuming the fluid is flown through a duct with uniform
cross section between a pressure reservoir and the
atmosphere). In their theory25 the no-loss maximum effi-
ciency is attainable when the rotor velocity is equal to the
velocity of the working fluid. This, however, does not
happen in reality because, if there is no relative velocity
between the disc-rotor and the working fluid, the viscous
drag force will be zero and in consequence, there will be
no power output. The scope of the present work is to
develop an analytical model for a more realistic case
considering three-dimensional flow and consequences
of the viscous drag force. The model can compute the
three-dimensional variation of the radial velocity, tan-
gential velocity and pressure of the fluid in the flow pas-
sages within the rotating discs. Differential equations as
well as closed-form analytical relations have been
derived. The present mathematical model can predict
torque, power output and efficiency over a wide range
of rotational speed of the rotor.

Mathematical analysis

In this section, a new mathematical theory for the per-
formance of Tesla turbine is formulated. The flow con-
figuration used for this purpose is the same as that of
Lemma et al.24

Description of the flow path

The domain for the mathematical solution is the three-
dimensional space (Figure 1) between two circular rotor
discs separated axially (i.e. in the z-direction) by a dis-
tance b. The rotor inlet is situated along the periphery
of the discs (i.e. at radius r2). The rotor outlet is at the
centre of the discs (at radius r1). Surrounding the rotor,
there is a plenum chamber, the area of which reduces
such that flow rate is uniform throughout the periph-
ery. This signifies that at the rotor inlet both tangential
and radial components of the velocity are uniform
(i.e. the velocities are not a function of �).

Viscous drag and its consequences

For establishing the mathematical model of the Tesla
turbine the flow physics through the rotor discs should
be well understood. The basic principle is that the vis-
cous drag force between a solid and a fluid acts in the
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direction of the relative velocity of the fluid. Suppose a
solid object is moving at a velocity U through a station-
ary fluid. As the relative velocity of the fluid is –U,
therefore the viscous drag force opposes the motion
of the solid object. Now, consider a case when the
fluid as well as the solid moves at the same velocity
U. The relative velocity of the fluid is zero, hence
there will be no viscous drag force. If the fluid and
the solid move in the same direction, their absolute
velocities being V and U respectively, then the condi-
tion (V – U)> 0 would mean that the relative velocity
of the fluid is positive: the viscous drag force will there-
fore try to enhance the velocity of the solid in this case.
This is what happens in the Tesla disc turbine. As the
turbine starts from stationary condition, the fluid enters
nearly tangentially at a high velocity into the stationary
rotor through the outer periphery of the discs. So the
drag force on the discs of the rotor will act in the dir-
ection of fluid flow. Since there is a relative velocity
between the working fluid and the disc wall there
exists a velocity gradient near the wall. This velocity
gradient is responsible for the generation of shear
stress which in turn develops a torque on the rotor. If
this torque is greater than the frictional torque, the
rotor will start rotating. As the rotor speed increases,
the relative velocity of the fluid with respect to the disc
decreases. This gradually decreases the angular acceler-
ation of the rotor. Ultimately a steady state will arise
when the rotor rotates at a constant speed at which the
frictional torque is just balanced by the torque pro-
duced. If the turbine is loaded, the rotational speed of
the rotor at steady state will be less than the steady
rotational speed at no load for the same inlet condition.
This implies that at steady state the relative tangential
velocity of the working fluid with respect to the discs
will increase when the load on the turbine increases.
This concept has been utilized in this work to calculate

the power output at different steady states, under vari-
ous load conditions.

Assumptions

The working fluid leaving from nozzle has a high linear
momentum. This linear momentum transforms into
angular momentum in the plenum chamber. The fluid
has mainly tangential and radial velocities while it
enters through the narrow gap between the discs.

As the fluid moves towards the center of the discs, its
radial velocity increases due to the gradual decrease of
the flow area. The fluid follows a spiral path from the
inlet up to the central exit. To visualize this process
clearly, the fluid pathlines were computed numerically
by Lagrangian tracking calculations performed by the
commercially available computational fluid dynamics
(CFD) software Fluent 6.3. Figure 2 shows the results
of such computations, where spiral paths lines for
2:77� 104 fluid particles are superposed.

In order to make the complex flow amenable to an
analytical theory, a few assumptions are made: (1) the
fluid is Newtonian with constant properties, (2) the
flow is steady, (3) the flow is axisymmetric, (4) axial
(z-direction) velocity is negligible compared to the
radial and tangential velocities, (5) radial gradients
are smaller than the axial gradients, (6) body forces
along r and � directions are negligible, (7) the flow is
laminar, (8) flow characteristics between any two discs
of the rotor are the same. Hence a theoretical model of
the flow between two discs is developed here. The
torque and power developed by the flow through two
discs can then be calculated. The total torque and
power from the whole rotor assembly are then calcu-
lated by the multiplying these quantities for one inter-
disc gap with the number of inter-disc gaps available.

Since the gap between two consecutive discs is very
small compared to other dimensions of the disc
(Figure 1), the vena-contracta effect at entry has not
been included in the analysis here. The fluid dynamics
of the flow at the exit from the inter-disc gaps is com-
plex – Hoya and Guha2 have given an extensive discus-
sion of this topic. Accurate determination of the loss
due to this complex exit flow is difficult and work is in
progress to develop a quantitative prediction method.
It is also assumed here that the surface of the disc is
smooth. However, there are a large number of recent
experimental and numerical studies which show that
roughness elements can strongly affect the flow through
a micro-channel (the small gap between two adjacent
discs may make the flow domain in a Tesla turbine
a ‘‘micro-channel’’). These references suggest that the
surface roughness elements can reduce the flow transi-
tion Reynolds number, enhance frictional drag,
i.e. wall shear stress (more so than their effect in

Figure 1. Schematic diagram of the domain for the

mathematical solution. (The gap within the two discs, in relation

to the radius, is exaggerated in the sketch for clarity).
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macro-channels), and alter the velocity profile.
Kandilikar et al.,26 for example, extended the conven-
tional Moody diagram to values of relative roughness
greater than 0.05 and showed that flow constriction
effect in micro-channel becomes important when
the relative roughness is greater than 0.05. Other than
the relative roughness which gives a simple average
measure of the height of the roughness elements,
the spectrum of sizes, shapes and orientations of the
roughness elements and their spatial distribution
would affect the detailed fluid dynamics, including the
velocity profile and wall shear stress, of the flow within
the inter-disc gaps of a Tesla turbine. These flow fea-
tures would be included in a more comprehensive the-
oretical treatment in the future. It follows from this
discussion that it may be possible to exploit the effects
of intelligently designed and manufactured surface
roughness elements to enhance the performance of a
Tesla disc turbine.

Mathematical formulation

The analysis begins with the Navier–Stokes equations
in the cylindrical co-ordinate system. The continu-
ity equation, the momentum equations and bound-
ary conditions are written in terms of relative
velocities. For this purpose the following relations
between the absolute and relative velocities are
used. Ur ¼ Vr;Uz ¼ Vz;U� ¼ V� þ� � rð Þ. Using the
assumptions listed above and an order of magnitude
analysis (Appendix 2), the conservation equations take
the following simplified form

Continuity equation
@Vr

@r
þ
Vr

r
¼ 0 ð1Þ

� �Momentum equation Vr
@V�
@r
þ
VrV�
r
þ 2�Vr

¼ �
@2V�
@z2

ð2Þ

r�Momentum equation Vr
@Vr

@r
��2r� 2�V� �

V�
2

r

¼ �
1

�

dp

dr
þ �

@2Vr

@z2
ð3Þ

z�Momentum equation
@P

@z
¼ 0 ð4Þ

Boundary conditions

at r ¼ r2 Vr ¼ Vr2 V� ¼ V�2 ð5Þ

at z ¼ 0 Vr ¼ 0 V� ¼ 0 ð6Þ

at z ¼ b Vr ¼ 0 V� ¼ 0 ð7Þ

at z ¼ b=2
@Vr

@z
¼
@V�
@z
¼ 0 ð8Þ

Within the boundary layer developed on the flat
solid discs, the relative tangential and radial velocities
at any radius between r1 and r2 can be modelled as

V�ðr, zÞ ¼ V�2�ðRÞGðzÞ ð9Þ

Vrðr, zÞ ¼ Vr2�ðRÞHðzÞ ð10Þ

where,

R ¼
r

r2
, �ðRÞ ¼

V�ðrÞ

V�2
, �ðRÞ ¼

VrðrÞ

Vr2

GðzÞ ¼
V�ðr, zÞ

V�ðrÞ
, HðzÞ ¼

Vrðr, zÞ

VrðrÞ

G and H are respectively the z-variation of tangential
and radial velocities within the boundary layers. Here
we assume that the velocity profile of the fully devel-
oped flow is parabolic in nature. Accordingly, G and H
are as expressed as

G ¼ 6 �
z

b
1�

z

b

� �
ð11Þ

H ¼ 6 �
z

b
1�

z

b

� �
ð12Þ

where b is the gap between the two discs. For a
throughflow situation (i.e. when the inlet velocity is in
the radial direction), Matveev and Pustovalov27 and

Figure 2. Fluid path lines computed in Fluent colored by par-

ticle ID in grey scale.
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Boyd and Rice14 had assumed the same relation as
equation (12) for the variation of the radial velocity.

The computed torque and power from the present
theory will depend strongly on the variation of the tan-
gential component of the velocity (hence on G through
equation (11)). Therefore, in order to assess the validity
of equation (11), a numerical simulation of the flow
through two discs is carried out here with the help of
the software Fluent 6.3. The flow geometry for this
numerical simulation is taken to be the same as that
of the experimental set up of Lemma et al.24 For this
numerical simulation, each disc has an outer radius of
25mm and an inner radius of 13.2mm, and a rotational
speed of 1000 rad/s for the two discs is used. At inlet,
the tangential velocity is specified as 106m/s and the
radial velocity is �11.5m/s. Outlet boundary condition
at central exit is modelled as pressure outlet with zero
gauge pressure. No slip boundary condition is set on
the disc walls. A grid-independence test has been car-
ried out by grid adaptation technique. A total of
9,652,417 tetrahedral computational cells are used for
the results presented below.

The tangential velocity computed by Fluent is shown
in Figure 3 at three representative radial locations. The
corresponding values of the tangential velocity as pre-
dicted by the assumed relation (equation (11)) are also
shown in the same figure for a direct comparison. Since
the torque (and hence the power) depends on the axial
gradient of the relative tangential velocity (@V�=@z), the
corresponding quantity from the Fluent simulation
(@U�=@z) is shown in Figure 4. The plot is given in the
close vicinity of the solidwall to examine the details of the
flow features that determine the wall shear stress. It can
be seen from Figure 4 that, at all three radial locations,
the variation of @U�=@z is linear. FromFigures 3 and 4, it
can be concluded that a parabolic variation (equation
(11)) is an adequate representation at the close vicinity
of the wall, which determines the shear stress at the wall.

Integration of the continuity equation

Equations (9) and (10) show that in order to determine
Vr and V� completely, one needs to find out �ðRÞ and
�ðRÞ. Integrating the differential form of the continuity
equation (1), one can get �ðRÞ.

Zh
0

Zr
r2

@ rVrð Þ

@r
�r�z ¼ 0 ð13Þ

Equation (13) leads to

� Rð Þ ¼
VrðrÞ

Vr2

¼
r2
r

ð14Þ

Figure 5 shows the variation of � from inlet to the
rotor up to the central exit. The value of � increases
from the inlet to the central exit since the cross-sectional
area varies inversely with radius. Figure 6 shows the
three dimensional variation of non-dimensional radial
velocity, as predicted by equation (10), in the domain
of the mathematical solution.

Lemma et al.24 produced a set of experimental results
for which they had kept the nozzle inlet pressure
fixed and varied the load so that the rotor attained
the steady state at various values of the rotational
speed �. The pressure drop through the rotor, �pic,
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Figure 3. Verification of one of the assumptions: comparison of

assumed profile of tangential velocity with that predicted by

Fluent.

Keys: at a radius of 23 mm (equation 11), at a radius of

23 mm (from Fluent), at a radius of 17 mm (equation 11),

at a radius of 17 mm (from Fluent), at a radius of 15 mm

(equation 11), at a radius of 15 mm (from Fluent).

Figure 4. Verification of one of the assumptions: @U�ðr, zÞ@z versus

distance from the disc wall, as computed by Fluent.

Keys: gradient calculated at a radius of 23 mm (close to

inlet), gradient calculated at a radius of 17 mm,

gradient calculated at a radius of 15 mm (close to outlet).
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is a function of � as well as the mass flow rate
through the rotor (i.e. Vr2 ). (See the prediction of the
present theory later for a quantitative appreciation of
this fact.) �pic tends to increase with increasing �.
Therefore, the mass flow rate (hence Vr2 ) would have
to decrease correspondingly to keep �pic fixed at a
given value. Lemma et al.24 measured this variation in
Vr2 and found that, for a particular pressure drop
between the rotor inlet and the central exit, Vr2 is max-
imum when the rotor is stationary and its magnitude

decreases linearly (up to 0.7 bar pressure drop) with �
as given by:

�Vr2 ¼ A� B�: ð15Þ

In equation (15), A is the maximum inlet radial
velocity for stationary rotor, and B is the slope to
be determined by the ratio of the maximum inlet
radial velocity for stationary rotor (A) to the rota-
tional speed of rotor for which no flow condition is
arrived (�0).

Integration of the r and � momentum equations

We introduce the following three non-dimensional vari-
ables for further theoretical development

p0 ¼
p� p2

��2r22
, �2 ¼

Vr2

�r2
, 	 ¼

U�2

�r2
ð16Þ

The � -momentum equation (2) is integrated par-
tially (Appendix 3) with respect to z over the domain
(0, b/2), giving

d�

dR
¼ �

1

R
þ 10 �

�

�b2

� �
�
R

�2

� �
� �

10

6 	 � 1ð Þ
ð17Þ

The r-momentum equation (3) is integrated partially
(Appendix 3) with respect to z over the domain (0, b/2),
resulting in

dp0

dR
¼Rþ2 	�1ð Þ�þ

6

5
	�1ð Þ

2�
2

R
þ
6

5

�22
R3
�12

�

�b2

� ��2
R
ð18Þ

Equation (15) is substituted in the equations (17) and
(18) and these two ODEs are solved for the initial con-
ditions given below

At R ¼ 1; � ¼ 1 ð19Þ

At R ¼ 1; p0 ¼ 0 ð20Þ

The solutions of the above two equations (17) and
(18) will give � and p0. Equations (17) and (18) can be
integrated simultaneously by numerical means. A
simple iterative scheme may be adopted as follows.
Assume a value of 	 for which the steady state solution
is sought. Start with a trial value of �. Equations (17)
and (18) are then numerically integrated from the rotor
inlet to the central exit. The computed value of the
pressure drop will not, in general, agree with the

Figure 5. Prediction of the present theory for the variation of

non-dimensional z-averaged relative velocity from inlet (R¼ 1)

to central exit (R¼ 0.528) for various values of tangential

speed ratio 	:
Keys for tangential component �: 	 ¼ 1:5,

	 ¼ 3, 	 ¼ 7; Solid line represents radial component �
for all 	. For all calculations �pic ¼ 0:113 bar.

Figure 6. Prediction of the present theory for the variation

of Vr

Vr2

(non-dimensional relative radial velocity) in the

three-dimensional domain. For all calculations, �pic ¼ 0:113 bar.
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imposed value of �pic. The value of � is then system-
atically varied until the iteration converges to the given
value of �pic. The same procedure is repeated for vari-
ous values of 	.

It is noted that when 	 is prescribed, equations (17)
and (18) can be integrated analytically to find the vari-
ation of V� as well as �pic. Analytical integration of
equation (17) gives

� ¼
C3

R
þ
C4 exp �

C1R
2

2

h i
R

ð21Þ

where

C1¼
10�

�2�b2
,C2¼

�10

6 	�1ð Þ
,C3¼

C2

C1
,C4¼ 1�C3ð Þexp

C1

2

� �

The variation in � from the rotor inlet to the cen-
tral exit, for various values of 	, is shown in Figure 5.
It can be observed from this figure that for lower values
of 	 (such as 1.5) � increases monotonically from inlet
to the central exit; but for higher values of 	 (such as 3,
7), � at first decreases then increases. This happens
because there are two opposing effects that tend
to change the value of � : � tends to decrease due to
the effect of viscous drag (friction) and tends to
increase due to the conservation of angular momentum.
As it is discussed in the ‘Viscous drag and its conse-
quences’ section viscous drag force is proportional
to the relative tangential velocity of the working fluid
(V�). For a high value of 	, the relative tangential
velocity is high, therefore the effect of friction may
supersede the effect of conservation of angular momen-
tum. This is why, when 	 is high, � initially decreases
from the inlet up to a certain value of R at which �
attains its minimum value. At lower values of R, �
increases again as the effect of the angular momentum
conservation starts to dominate. The three-dimensional
variation of the non-dimensional relative tangential vel-
ocity V� is shown in Figures 7 and 8 for 	 ¼ 1:5 and
	 ¼ 7 respectively.

Substituting the expression of � from the equa-
tion (21) into the equation (18), dp0

dR is calculated
from the rotor inlet to the central exit for various
values of 	. Figure 9 shows that the variation in
dp0

dR from R ¼ 1 (rotor inlet) to R ¼ 0:528 (central
exit) at lower value of 	 is less than that at higher
value of 	.

Analytical integration of equation (18) gives

p0 ¼ p0k Rð Þ þ C6I1 þ C8I2 þ C9I3 þ C12 ð22Þ

where

p0k Rð Þ¼
R2

2
þ C5þC11ð ÞlnR�

1

2R2
C7þC10ð Þ

I1¼
1

2
ln
�C1R

2

2

� 	
þ
X1
1

�C1R
2

2

� �nþ1
ðnþ1Þðnþ1Þ!

2
64

3
75

I2¼
C1 expð�C1R

2Þ

�2C1R2
�
C1

2
ln �C1R

2

 �

þ
X1
1

�C1R
2


 �nþ1
ðnþ1Þðnþ1Þ!

" #

I3¼
C1 exp �

C1R
2

2

h i
�2C1R2

�
C1

4
ln
�C1R

2

2

� 	
þ
X1
1

�C1R
2

2

� �nþ1
ðnþ1Þðnþ1Þ!

2
64

3
75

C5 ¼ 2ð	 � 1ÞC3,C6 ¼ 2ð	 � 1ÞC4

C7 ¼
6

5
ð	 � 1Þ2C2

3,C8 ¼
6

5
ð	 � 1Þ2C2

4

C9 ¼
12

5
	 � 1ð Þ

2C3C4,C10 ¼
6

5
�22,C11 ¼

�12��2
�b2

C12 ¼ � p0kðRÞ þ C6I1 þ C8I2 þ C9I3

 �

R¼R1

It is instructive to note here that at the central exit,
p ¼ p2, therefore p

0 ¼ 0; at inlet, p0 ¼ �pic=ð��2r22Þ. It is
to be remembered that �pic was kept fixed for a given
set of experiments;24 this is how the numerical predic-
tions of the present theory have been presented in vari-
ous figures in order to be compatible with the
experiments.

Figure 7. Prediction of the present theory for the variation

of V�
V�2

(non-dimensional relative tangential velocity) in the

three-dimensional domain. �pic ¼ 0:113 bar and 	 ¼ 1:5.
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Calculation of power output and efficiency

�(R) is known from equation (21), hence V�ðr, zÞ can be
found out from equation (9). (This is how the variation
in V�ðr, zÞ has been plotted in Figures 7 and 8.) From
the known distribution in tangential velocity, the total
torque and power output of the rotor can be calculated
by the following steps.

Wall shear stress on one side of a single disc is
given by


wðrÞ ¼ �
@V�ðr, zÞ

@z

� �
at z¼0

¼ �
@ V�2�ðRÞGðzÞ
� 

@z

� �
at z¼0

¼
6�V�2�ðRÞ

b
ð23Þ

Consider an elemental circular strip of thickness dr
at a radius r. The torque about the rotor axis of the
shear force acting on this elemental area is equal to

wð2�rdrÞðrÞ. The torque on one side of a single disc
can be calculated by integrating the elemental torque,
and is given by

= ¼

Zr2
r1


w 2�rð Þrdr ¼

Zr2
r1

6�V�2�ðRÞ

b
2�rð Þrdr

¼
12��V�2r

3
2

b

� 	 ZR2

R1

R2�ðRÞdR

¼
12��V�2r

3
2

b

� 	
C3ðR

2
2 � R2

1Þ �
C4

C1

�

� exp �
C1R

2
2

2

� 	
� exp �

C1R
2
1

2

� 	� ��
ð24Þ

The total torque produced by the complete rotor
consisting of nd discs is then calculated by

=tot ¼ 2 nd � 1ð Þ= ð25Þ

The theoretical ideal power output is then given by

W
�

th ¼ =tot �� ð26Þ

As already explained after equation (20), � at any
steady state is determined for a particular value of 	
and a constant pressure drop �pic. In the present
theory, the variation of the load is conceptualized
through 	 – the non-dimensional ratio of the absolute
tangential velocity of the jet and the peripheral speed of
the rotor. If the load varies, 	 at steady state will also
vary. Therefore the power output changes with the
change of load.

Theoretical power output with loss can be calculated
by subtracting the loss from W

�

th given by equation (26)

W
�

act ¼W
�

th �W
�

loss ð27Þ

where W
�

loss is the overall loss in power output. A Tesla
disc turbine suffers from various kinds of losses; for
example bearing loss, leakage loss, windage loss,
losses due to irreversibility of nozzles, losses due to
uncontrolled diffusion in the exhaust process, losses
due to partial admission.28 Leakage loss occurs due to
the leakage flow through the bearing, seals and the
clearance gaps between the rotor and the housing.
Windage loss is due to the first and last disc rotating
within a nearly stagnant fluid. Loss due to partial
admission is caused because of finite thickness of the

Figure 9. Prediction of the present theory for the variation of
dp0

dR
from inlet (R¼1) to central exit (R¼0.528) for various values

of tangential speed ratio 	. For all calculations �pic ¼ 0:113 bar

Keys: 	 ¼ 1:5, 	 ¼ 3, 	 ¼ 7.

Figure 8. Prediction of the present theory for the variation

of V�
V�2

(non-dimensional relative tangential velocity) in the

three-dimensional domain. �pic ¼ 0:113 bar and 	 ¼ 7.
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discs and the interference of the edges of the discs. It is
difficult to theoretically estimate the magnitude of each
of these components of losses separately. In this work,
therefore, an experimentally determined correlation for
the overall loss is used.

Since the present theory is verified by comparing its
predictions with the experimental measurements
of Lemma et al.,24 the experimental correlation for
the overall loss provided in Lemma et al.,24 i.e.

W
�

loss / �, is used in the example calculations of isen-
tropic efficiency (given later in ‘Results and discussion’
section). However, it should be noted that the experi-
mental data of Lemma et al.24 show a large degree of
scatter and hence the accuracy of the linear correlation
suggested by them is questionable.

A simple but very effective method for measuring the
overall loss (the bearing and other losses), called the
‘‘angular acceleration method’’, has been developed in
Hoya and Guha.2 Their measurements showed that the
frictional torque (for the turbine tested) was a non-
linear function of �, the corresponding loss in power
was therefore also a non-linear function of � (if the
non-linearity in torque is expressed as a polynomial,
the loss in power will then be a polynomial of higher
order).

Efficiency of Tesla turbine. Hoya and Guha2 have shown
that, unlike the universal definition for efficiency of the
turbine in a gas turbine plant, various researchers use
different expressions for calculating the efficiency of
Tesla turbines. One therefore needs to be careful in
interpreting quoted values of efficiency of a Tesla tur-
bine. Since the prediction of the present theory will be
compared with the experiments of Lemma et al.,24 their
definition of the efficiency is adopted here

 ¼
W
�

act

W
�

isentropic

ð28Þ

The same expression forW
�

isentropic as used in Lemma
et al.24 is applied in equation (28) in the numerical
example calculations given later. It is shown below
that the definition used in Lemma et al.24 for isentropic
work is identical with what is used for a conventional
turbomachinery if the change in kinetic energy is neg-
lected. Noting that the inlet is denoted by suffix 2 and
the outlet is denoted by suffix 1, one can then write

W
�

isentropic ¼ _m h2 � h1ð Þ ¼ _mcpðT2 � T1Þ

¼ cp _mT1
T2

T1
� 1

� 	
¼

k

k� 1
p1Q1

p2
p1

� 	k�1
k

�1

" #

ð29Þ

where, Q is the total volume flow rate through all the
inter-disc spaces and can be calculated from

Q ¼ 2�rb nd � 1ð ÞVr ð30Þ

Condition for no torque. The net (integrated) effect of the

jet on the disc becomes zero when
R R2

R1
R2�ðRÞdR ¼ 0; at

this condition the jet produces no torque, and hence no
power. By substituting the expression for � given by
equation (21) into this condition and performing the
integration one can show that the no torque condition
arises at a particular value of 	 given by

	½ �no torque

¼1�
10

6

C1ðR
2
2�R

2
1Þþexp

C1
2

� �
exp �

C1R
2
2

2

� �
�exp �

C1R
2
1

2

� �n o
C1 exp

C1
2

� �
exp �

C1R
2
2

2

� �
�exp �

C1R
2
1

2

� �n o
2
64

3
75

ð31Þ

Results and discussion

General predictions of the present theory have already
been discussed in the sections ‘Integration of the con-
tinuity equation’ and ‘Integration of the r and �
momentum equations’. The two-dimensional and
three-dimensional variation of the three important par-
ameters – Vr, V� and p0 (relating to �pic) – are shown in
Figures 5 to 9.

In order to compare the present theory with experi-
mental measurements, the following geometric and flow
data are taken from Lemma et al.24: r1 ¼ 13.2mm, r2 ¼
25mm, nd¼9. For �pic¼ 0.113 bar, overall loss in Watt
¼ 0.0001635 * rpm, and the value of constants A, B in
equation (15) required to calculate Vr2 are 13.32 and
0.0014, respectively.

For a particular pressure drop �pic between the
inlet and the central exit, if the load increases then
the steady state rotational speed of rotor decreases
from its highest value at no load condition. It has
been explained in the ‘Integration of the r and �
momentum equations’ section how the steady state
� is determined iteratively for given values of �pic
and 	. It has been described in the section
‘Calculation of power output and efficiency’, how
the theoretical power output curve versus rotational
speed can be constructed. Such prediction of theoret-
ical power output is shown in Figure 10 for
�pic ¼ 0:113 bar, where both the theoretical power
outputs with and without loss are included. Each com-
puted point in Figure 10 represents a steady state solu-
tion. In the same figure the experimental results of
Lemma et al.24 are also shown so that a direct com-
parison is possible. Considering the facts that there is
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considerable experimental uncertainty and that the
magnitude of the bearing and other losses is a very
substantial fraction of the power output (Figure 10), it
can be said that the simple theory developed here has
worked well.

From simple theoretical considerations, Hoya and
Guha2 have shown that = � =0 � c�, where =0 and c
are constants, and therefore the theoretical power
output is W

�

th ¼ =� ¼ =0�� c�2. This explains why
the power versus rotational speed curves in Figure 10
show the general shape of inverted buckets and the
power output produces a maxima. It can be seen that
the rotational speed at which the maxima occurs is dif-
ferent for the two theoretical power output curves – the
one which includes the loss and the other which does
not. Equation (27), using the linear correlation for
overall loss suggested by Lemma et al.,24 therefore
shows that W

�

act ¼ =0�� c�2 � d�, where d is another
constant. Hence the maxima for W

�

act occurs at a lower
rotational speed as compared to the maxima forW

�

th. In
this connection one should consider the discussion,
regarding the validity of the linear correlation for over-
all loss, given in the ‘Mathematical analysis’ section. In
particular, it may be noted that a simple but very effect-
ive method for measuring the overall loss (the bearing
and other losses), called the ‘‘angular acceleration
method’’, has been developed in Hoya and Guha.2

Their measurements showed that the frictional torque
(for the turbine tested) was a non-linear function of �,
the corresponding loss in power was therefore also a
non-linear function of � (if the non-linearity in torque
is expressed as a polynomial, the loss in power will then
be a polynomial of higher order).

Figure 10 shows that (for �pic ¼ 0:113 bar), the the-
oretical power output W

�

th is zero at 5592 rad/s. This
occurs when 	 ¼ 0:631, (this corresponds to the condi-
tion when there is no torque because of the action of the
fluid jet on the disc). �no torque ¼ 5592 rad=s thus cor-
responds to the steady-state condition under no load.
When the bearing and other parasitic losses are absent,
the no torque condition, the no load condition and the
no power condition all occur at the same steady rota-
tional speed of the rotor. However, when bearing and
other parasitic losses are present, an external agency
will actually have to supply the power (that is equal
to the losses) for the disc to rotate at the steady rota-
tional speed of 5592 rad/s. This is shown as the negative
power output in Figure 10. The power output with
losses becomes zero at 4950 rad/s, but at this point
the torque produced by the jet is non-zero.

Figure 11 shows the variation of the theoretical effi-
ciency of the Tesla disc turbine over a range of rota-
tional speed of the disc rotor. Like Figure 10, each
computed point in Figure 11 represents a steady state
solution. The maximum theoretical efficiency of the
nine discs rotor at �pic ¼ 0:113 bar is 21%. A study
of Figures 10 and 11 together shows that the point of
maximum efficiency occurs at a slightly different rota-
tional speed as compared to the point of maximum
power: this is so because the denominator used in the
particular definition of efficiency (equation (28)) also
depends on the rotational speed (as revealed by a con-
sideration of equations (29), (30) and (15)). In the same
Figure 11, the experimental values from Lemma et al.24

are superposed so that a direct comparison of the pre-
diction of the present theory with experiments is pos-
sible. In the context described in the third paragraph of
the ‘Results and discussion’ section, the present theory
compares well with experiments.

Figure 10. Comparison of the present theory with experi-

ment: variation of the power output of Tesla turbine with rota-

tional speed.

Keys: Theoretical ideal power output, Theoretical

power output with loss, m Experimental power output.24 Each

bullet represents a steady state. For all calculations and experi-

ments �pic ¼ 0:113 bar.

Figure 11. Comparison of the present theory with experi-

ment: variation of the efficiency (%) of Tesla turbine with rota-

tional speed.

Keys: Theoretical efficiency with loss as predicted by the

present theory, � � � � Efficiency of Tesla turbine from the

experiment.24 For all calculations and experiments

�pic ¼ 0:113 bar.
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Conclusion

A mathematical theory for the performance of a Tesla
disc turbine has been formulated here. The basis of the
theory is the Navier–Stokes equations simplified by a
systematic order of magnitude analysis resulting in the
present fundamental set of coupled differential equa-
tions (1) to (3) that govern the flow-field within a
Tesla disc turbine. The theoretical model can compute
the three-dimensional variation of the radial velocity,
tangential velocity and pressure of the fluid in the flow
passages within the rotating discs. The partial differen-
tial equations can be converted to ODEs by suitable
assumptions regarding non-dimensional velocity pro-
files; the coupled set of ODEs (equations (17) and
(18)) can be integrated by simple numerical schemes
(section ‘Integration of the r and � momentum equa-
tions’). Explicit, closed-form analytical results have also
been derived, giving Vr, V� and p as functions of two
co-ordinates r and z. The theoretical model can predict
torque, power output and efficiency, and compares well
with experimental results. A hypothesis is proposed
here that it may be possible to exploit the effects of
intelligently designed and manufactured surface rough-
ness elements to enhance the performance of a Tesla
disc turbine.
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Appendix 1

Notation

b gap between two consecutive discs
k isentropic index of fluid
_m mass flow rate
p pressure
P modified pressure¼ p� �gzz
p0 non-dimensional pressure ¼ p�p2

��2r2
2

Q volume flow rate
r radial coordinate
R non-dimensional radius (i.e. radius ratio) ¼ r

r2
U absolute velocity of fluid
V relative velocity of fluid

W
�

th theoretical ideal power output

W
�

loss overall loss in Tesla turbine

W
�

act theoretical power output with loss
z axial coordinate

	 tangential speed ratio ¼
U�2

�r2
�pic pressure drop between inlet and central exit of

the rotor

� non-dimensional average relative tangential

velocity¼ V�ðrÞ

V�2
 efficiency of the turbine
� Azimuthal direction in cylindrical co-ordinate

system
� viscosity of the working fluid
� kinematic viscosity of working fluid (here the

fluid is air)
� non-dimensional average relative radial

velocity ¼ VrðrÞ

Vr2

� density of the working fluid

w wall shear stress on one side of a single disc

�2 	
Vr2

�r2

V rotational speed of the disc
= torque on one side of a single disc
=tot total torque

Subscripts

r component along the r-direction
z component along the z-direction

� component along the �-direction
1 central exit of the rotor
2 at rotor inlet

Overbar

ð Þ z-averaged (z varies from 0 to b) flow variables

Appendix 2

1. Order of magnitude analysis of continuity equation

For steady, laminar, incompressible flow and con-
sidering a relative frame of reference, the continuity
equation in cylindrical co-ordinate system is

r � ~V ¼ 0

1

r

@

@r
rVrð Þ þ

1

r

@V�
@�
þ
@Vz

@z
¼ 0

According to assumption no. (4) enlisted in the
‘Assumptions’ section in the main text, @Vz

@z term is
neglected and considering assumption no. (3),
@V�
@� ¼ 0. Therefore the simplified from of the conti-
nuity equation becomes

1

r

@

@r
rVrð Þ ¼ 0

2. Order of magnitude analysis of � momentum
equation

Neglecting the body force term along the � direction
(with assumption no. (6)), the � momentum equa-
tion for incompressible flow29 is

�
DU�

Dt
þ
UrU�

r

� �
¼�

1

r

@p

@�
þ� r2U��

U�

r2
þ

2

r2
@Ur

@�

� �

where

DU�

Dt
¼
@U�

@t
þUr

@U�

@r
þ
U�

r

@U�

@�
þUz

@U�

@z

According to assumption no. (2), @U�

@t ¼ 0, consider-
ing assumption no. (3) U�

r
@U�

@� ¼ 0 and neglecting the
term Uz

@U�

@z with the help of assumption no. (4)

DU�

Dt
¼ Ur

@U�

@r
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Hence, the L.H.S. of the � momentum equation
becomes

� Ur
@U�

@r
þ
UrU�

r

� �

Now, in the R.H.S.

r2U� ¼
@2U�

@r2
þ
1

r

@U�

@r
þ
@2U�

@z2
þ

1

r2
@2U�

@�2

In the expression of r2U�,
@2U�

@r2
þ 1

r
@U�

@r

� �
55 @2U�

@z2

(assumption no. (5)), and 1
r2
@2U�

@�2
¼ 0 (assumption

no. (3)).
Also in the R.H.S., � 2

r2
@Ur

@� ¼ 0, @p@� ¼ 0 (assumption
no. (3)).
According to assumption no. (5), U�

r2
55 @2U�

@z2
.

Taking all of the above considerations into account,
the R.H.S. of the � momentum equation can be
approximated by � @2U�

@z2
:

Substituting the relationship between the absolute
and relative velocity the � momentum equation
becomes

Vr
@V�
@r
þ
VrV�
r
þ 2�Vr ¼ �

@2V�
@z2

3. Order of magnitude analysis of z momentum
equation

Considering assumption no. (4) z momentum equa-
tion becomes

@P

@z
¼ 0 where,P ¼ p� �gzzð Þ

4. Order of magnitude analysis of r momentum
equation

Neglecting the body force term along the r direction
(with assumption no. (6)), the r momentum equa-
tion for incompressible flow29 is

�
DUr

Dt
�
U2
�

r

� �
¼ �

@p

@r
þ � r2Ur �

Ur

r2
�

2

r2
@U�

@�

� �

where

DUr

Dt
¼
@Ur

@t
þUr

@Ur

@r
þ
U�

r

@Ur

@�
þUz

@Ur

@z

According to assumption (2) @Ur

@t ¼ 0, considering
assumption (3) U�

r
@Ur

@� ¼ 0 and neglecting Uz
@Ur

@z with
the help of assumption no. (4), DUr

Dt ¼ Ur
@Ur

@r .
Hence the L.H.S. of the r momentum equation

becomes �
�
Ur

@Ur

@r �
U2
�

r

�
.

Now, in the R.H.S.

r2Ur ¼
@2Ur

@r2
þ
1

r

@Ur

@r
þ
@2Ur

@z2
þ

1

r2
@2Ur

@�2

In the expression of r2Ur,


@2Ur

@r2
þ 1

r
@Ur

@r

�
55 @2Ur

@z2

(assumption no. (5)), and 1
r2
@2Ur

@�2
¼ 0 (assumption

no. (3)).

Also in the R.H.S., � 2
r2
@U�

@� ¼ 0 (assumption no. (3))

and @p
@r ¼

@P
@r (assumption no. (6)), @P@r ¼

dP
dr (as,

@P
@� ¼ 0

and @P
@z ¼ 0), again, dP

dr ¼
dp
dr (assumption no. (6)).

According to assumption no. (5), Ur

r2
55 @2Ur

@z2
.

Taking all of the above considerations into
account, the R.H.S. of the r momentum equation
can be approximated by � dp

dr þ �
@2Ur

@z2
.

Substituting the relationship between the absolute
and relative velocity the r momentum equation
becomes

Vr
@Vr

@r
��2r� 2�V� �

V�
2

r
¼ �

1

�

dp

dr
þ �

@2Vr

@z2

Appendix 3

1. Derivation of equation (17) from equation (2)

Vr
@V�
@r
þ
VrV�
r
þ 2�Vr ¼ �

@2V�
@z2

The �-momentum equation (2) is integrated par-
tially with respect to z over the domain (0, b/2)

Zb
2

0

Vr
@V�
@r

� 	
�z ¼

Zb
2

0

�
VrV�
r

� 	
�zþ

Zb
2

0

�2�Vrð Þ�z

þ

Zb
2

0

�
@2V�
@z2

� 	
�z
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Substituting the definitions of R, �2 and 	 as
mentioned in the nomenclature, Vr from equation
(10) and V� from equation (9), and integrating the
resulting equation one obtains

d�

dR
¼ �

1

R
þ 10 �

�

�b2

� �
�
R

�2

� �
� �

10

6 	 � 1ð Þ

2. Derivation of equation (18) from equation (3)

Vr
@Vr

@r
��2r�2�V��

V�
2

r
¼�

1

�

dp

dr
þ�

@2Vr

@z2

Or;
1

�

dp

dr
¼�Vr

@Vr

@r
þ�2rþ2�V�þ

V�
2

r
þ�

@2Vr

@z2

The r-momentum equation (3) is integrated par-
tially with respect to z over the domain (0, b/2)

�2r22
r2

Zb
2

0

d p�p2
��2r2

2

� �
d r

r2

� � �z ¼

Zb
2

0

�Vr
@Vr

@r
�zþ

Zb
2

0

�2r�z

þ

Zb
2

0

2�V��zþ

Zb
2

0

V2
�

r
�zþ

Zb
2

0

�
@2Vr

@z2
�z

Substituting the definitions of p0, �2 and 	 as men-
tioned in the nomenclature, Vr from equation (10)
and V� from equation (9), and integrating the result-
ing equation one obtains

dp0

dR
¼Rþ2 	�1ð Þ�þ

6

5
	�1ð Þ

2�
2

R
þ
6

5

�22
R3
�12

�

�b2

� ��2
R
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