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The three-dimensional flow field and the flow pathlines within a Tesla disc turbine have been investi-
gated analytically and computationally. The description of the flow field includes the three-dimensional
variation of the radial velocity, tangential velocity and pressure of the fluid in the flow passages within
the rotating discs. A detailed comparison between the results obtained from the analytical theory and
computational fluid dynamic (CFD) solutions of Navier–Stokes equations is presented in order to estab-
lish the reliability of the simplified mathematical model. The present work reveals the dependence of the
shape, size and orientation of the pathlines on various operating parameters (such as tangential speed
ratio, radial pressure drop, inlet nozzle angle, and position of the exit) and local balance of various forces
(viz. inertial, viscous, centrifugal and Coriolis). The relative merits of two possible ways of representing
the pathlines in the absolute and relative frame of reference are discussed that provide physical under-
standing of subtle flow features.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction fluid dynamics as well as analytically by the application of a math-
The study of detecting and analysing fluid path is important in
various fields of fluid dynamics, such as in atmospheric science and
oceanography. The direction of wind flow and ocean current is seri-
ously affected by the rotation of the earth. When fluid travels over
a relative rotational frame of reference it acquires extra compo-
nents of inertia force, viz. centrifugal and Coriolis force which can-
not be realised in the inertial frame of reference. The role of
centrifugal force is to push the fluid in a radially outward direction,
whereas the role of Coriolis force is to bend the fluid in a particular
direction depending on the direction of fluid velocity and sense of
rotation of the reference frame. American meteorologist Ferrel [1]
had shown how fluid flow both in the Northern and Southern
Hemisphere is deflected due to the effect of Coriolis force. Such
deflections and many other flow physics can be captured by the
flow visualisation technique. In fluid dynamics, the pattern of flow
can be visualised in various ways such as streamline, pathline,
streakline, timeline etc. Presently, the visualisation of fluid flow
in turbomachinery (see [2–5], etc.) is an active area of research.
In this paper, fluid flow pattern within a special type of turboma-
chinery, viz. Tesla turbine [6], invented by the famous scientist
Nikola Tesla has been investigated. With this aim, the three-
dimensional fluid flow field within the Tesla turbine has been com-
puted here both numerically by the application of computational
ematical theory developed in [7]. In this context, a brief description
about Tesla turbine is provided below for the convenience of
understanding of the readers.

Tesla turbine is a bladeless turbo-machinery in which the rotor
is constructed by a series of co-axial, parallel flat discs. The discs
are attached to a central shaft maintaining a small gap among
one another. The combination of discs and shaft is placed inside
a cylindrical casing with a small radial and axial clearance. The
working fluid is injected nearly tangentially to the rotor by means
of one or more inlet nozzle. There are exit ports near the shaft at
the centre of each disc.

Tesla turbine can generate power for variety of working media
like Newtonian fluids, non-Newtonian fluids, mixed fluids, particle
laden two-phase flows [8] (many aspects of two-phase flow may
be found in Refs. [9,10]). This turbine has self-cleaning nature
due the centrifugal force field. This makes it possible to operate
the turbine in case of nonconventional fuels like biomass which
produce solid particles.

Currently the field of micro-turbine is an active research area;
the bladeless Tesla turbine because of its simplicity and robustness
of structure, low cost and comparatively better operation at high
rpm may become a very suitable candidate for this application.
For this to happen the efficiency of the Tesla turbine, however has
to be improved. Researchers are attempting to achieve this by mod-
ification of the configuration of the conventional Tesla turbines [8].

The fluid flow in contact with a rotating disc has been the sub-
ject-matter of many previous studies, both theoretical and experi-
mental. The problem has attracted some of the greatest minds in
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Nomenclature

b gap between the two discs
p pressure
P modified pressure =p � qgzz
p0 non dimensional pressure = p�p2

qX2r2
2r radial coordinate

R radius ratio ¼ r
r2

U absolute velocity of fluid
V relative velocity of fluid
z z-coordinate
an nozzle angle ¼ tan�1ðUr2=Uh2Þ
Dpic pressure drop between inlet and exit of the rotor
/2 � Vr2

Xr2

c tangential speed ratio ¼ Uh2
Xr2

l viscosity of the working fluid
m kinematic viscosity of working fluid (here the fluid is

air)
h azimuthal direction in cylindrical co-ordinate system
q density of the working fluid

O rotational speed of the disc
n non dimensional average relative radial velocity ¼ VrðrÞ

Vr2

f non dimensional average relative tangential velocity
¼ VhðrÞ

Vh2

fm modified f

Subscripts
r component along the r direction
z component along the z direction
h component along the h direction
1 exit of the rotor
2 at rotor inlet

Overbar
ðÞ z-averaged (z varies from 0 to b) flow variables

Fig. 1. Schematic diagram of the domain for the mathematical solution. (The gap
within the two discs, in relation to the radius, is exaggerated in the sketch for
clarity.)
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fluid dynamics such as von Kármán [11], Batchelor [12] and Ste-
wartson [13], new investigations are still being reported. Dijkstra
and Van Heijst [14] investigated both numerically and experimen-
tally the flow between two finite size rotating discs enclosed by a
cylinder. Zhou et al. [15] investigated both numerically (using Flu-
ent software) and experimentally (PIV measurements) the laminar
flow induced by an enclosed rotating disc. Sandilya et al. [16] stud-
ied numerically the effect of discs rotation on gas flow and mass
transfer between two coaxially rotating discs. Andersson and
Rousselet [17] investigated slip flow over a lubricated rotating disc.
Heat transfer between two rotating discs was studied by Arora and
Stokes [18], Jiji and Ganatos [19] etc. However, the flow within the
small gap between two co-rotating discs is quite different from the
flow in an infinite or large expanse of fluid. Additionally, the much
explored subject usually concerns the development of fluid flow as
a result of externally-driven disc rotation, whereas in a Tesla tur-
bine the disc rotates (and delivers shaft power output) as a result
of the action of fluid flow (usually in the form of a nearly-tangen-
tial jet at the periphery). A detailed description about the related-
ness and difference between the study of flow due to rotating discs
(as available in the literature) and flow within a Tesla turbine is
available in Guha and Sengupta [20].

After the success of Whittle and von Ohain, the gas turbine be-
came the centrepoint of research and development and the under-
standing of its performance and optimization has reached quite a
mature stage ([21,22]). The understanding of the performance of
Tesla turbines is not nearly as thorough. Rice [23] in his article
had described the advances (up to 1991) in the field of Tesla turbo-
machinery (pump, fan and turbine). At present, both experimental
and theoretical studies are going on in this particular research area.
Detailed experimental work on Tesla disc turbine can be found in
Refs. [8,24,25]. A simple but very effective method for measuring
the net power output and overall loss (the bearing and other
losses), called the ‘‘angular acceleration method’’, has been devel-
oped and fully described by Hoya and Guha [25]. This proved to
be a successful method for overcoming many difficulties associated
with the determination of very low torque at very high angular
speed. The reference gives detailed measurements and operational
experience for Tesla disc turbines. Guha and Smiley [8] have devel-
oped an improved design of the nozzle, greatly improving the effi-
ciency and achieving uniformity in the velocity profile of the jet.
(The loss in the nozzle is generally recognised [23,26] as a major
source of loss in a conventional Tesla turbine.) Recent theoretical
development in the field of Tesla disc turbine can be found in Refs.
[7,20,27–29]. Deam et al. [27] attempted to develop a simple ana-
lytical model of Tesla turbine considering incompressible and one
dimensional flow. A limitation of their theory is the absence of the
radial flow feature. Carey [28] found the efficiency of a disc turbine
by a one-dimensional idealised momentum transfer model but did
not solve the r - momentum equation. Romanin and Carey [29]
attempted to develop a perturbation model to solve simplified
Navier–Stokes equations. Sengupta and Guha [7] have developed
closed form analytical solution for three dimensional flow fields in-
side the narrow disc-gap of a Tesla disc turbine (considering cylin-
drical co-ordinate system in a relative rotational frame of
reference). The domain for mathematical solutions is represented
in Fig. 1. The working fluid travels from the inlet up to the exit
due the difference of pressure between the periphery and the exit,
and the component of inward radial velocity. Guha and Sengupta
[20] have shown how the dynamics of fluid flow between the
two discs of a Tesla turbine is governed by the centrifugal, Coriolis,
viscous and inertial components of force.

The purpose of the present study is fivefold:

(1) To provide results of a three dimensional CFD simulation
which captures some of the important flow physics occur-
ring inside the narrow disc-gap of a Tesla disc turbine.

(2) To compare the results of the simplified analytical model
with the results obtained from computation of full
Navier–Stokes equations.
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(3) To provide a clear physical picture how the shape (including
complex non-spiral form), length and orientation of path-
lines inside the narrow disc gap of a Tesla disc turbine
depend on various operating parameters.

(4) To reveal the dependency of the shape of the pathlines on
the local balance of various components of forces.

(5) To identify the benefit of relative description over absolute
description of pathline in light of determining subtle fluid
dynamics occurring in a Tesla disc turbine.

2. Mathematical formulation

In this section, a mathematical model is outlined, from which
the velocity and pressure fields can be calculated. Once the velocity
field is known the pathlines can be calculated numerically. The
dependency of the shape, length and orientation of pathlines on
various operating parameters, and the physical interpretation of
the pathlines will be clearer in the subsequent analysis and
discussion.

The continuity equation, the momentum equations and bound-
ary conditions are written in terms of relative velocities. For this
purpose the following relations between the absolute and relative
velocities are used: Ur = Vr; Uz = Vz; Uh = (Vh + Xr). Based on a few
assumptions and an order of magnitude analysis (described fully
in [7], the conservation equations can be consistently simplified
to take the following form.

Continuity equation
@Vr

@r
þ Vr

r
¼ 0 ð1Þ

h�Momentum equation Vr
@Vh

@r
þ VrVh

r
þ 2XVr ¼ m

@2Vh

@z2 ð2Þ

r �Momentum equation Vr
@Vr

@r
�X2r � 2XVh �

V2
h

r

¼ � 1
q

dp
dr
þ m

@2Vr

@z2 ð3Þ

z�Momentum equation
@P
@z
¼ 0 ð4Þ

Boundary conditions at r ¼ r2 Vr ¼ Vr2 Vh ¼ Vh2 ð5Þ
at z ¼ 0; b Vr ¼ 0 Vh ¼ 0 ð6Þ

at z ¼ b=2
@Vr

@z
¼ @Vh

@z
¼ 0 ð7Þ

Eqs. (1)–(3) represent the generalised governing equations devel-
oped by the present authors to describe the rotating flow within a
Tesla disc turbine, but further simplifications may be possible for
specific geometries. Within the boundary layer developed on the
flat solid discs, the relative tangential and radial velocities at any ra-
dius between r1 and r2 can be modelled as

Vhðr; zÞ ¼ Vh2fðRÞGðzÞ ð8Þ
Vrðr; zÞ ¼ Vr2nðRÞHðzÞ ð9Þ

where
R ¼ r

r2
; fðRÞ ¼ VhðrÞ

Vh2
; nðRÞ ¼ Vr ðrÞ

Vr2
; GðzÞ ¼ Vhðr;zÞ

VhðrÞ
and HðzÞ ¼ Vr ðr;zÞ

Vr ðrÞ
.

G and H are respectively the z-variation of tangential and radial
velocities within the boundary layers. Here we assume that the
velocity profile is parabolic in nature. The reasons behind the
above assumptions are clearly described in [7].

Accordingly, G and H are as expressed as,

G ¼ 6
z
b

1� z
b

� �
; ð10Þ

H ¼ 6
z
b

1� z
b

� �
; ð11Þ

n(R) is calculated by the integration of continuity equation:
nðRÞ ¼ VrðrÞ
Vr2

¼ r2

r
ð12Þ

Lemma et al. [24] measured this variation in Vr2 and found that, for
a particular pressure drop between the rotor inlet and the exit, Vr2 is
maximum when the rotor is stationary and its magnitude decreases
linearly (up to 0.7 bar pressure drop) with X as given by:

�Vr2 ¼ A� BX: ð13Þ

In Eq. (13), A is the maximum inlet radial velocity for stationary ro-
tor, and B is the slope to be determined by the ratio of the maximum
inlet radial velocity for stationary rotor (A) to the rotational speed of
rotor for which no flow condition is arrived (X0).

We introduce the following three non-dimensional variables for
further theoretical development:

p0 ¼ p� p2

qX2r2
2

; u2 ¼
Vr2

Xr2
; c ¼ Uh2

Xr2
ð14Þ

The h-momentum Eq. (2) is integrated partially with respect to z
over the domain (0, b/2), giving:

df
dR
¼ � 1

R
þ 10

m
Xb2

� �
R
u2

� �
f� 10

6ðc� 1Þ ð15Þ

To avoid singularity of the solution of f at c = 1 a new variable fm is
introduced, where fm = f(c � 1)

dfm

dR
¼ � 1

R
þ 10

m
Xb2

� �
R
u2

� �
fm �

10
6

ð16Þ

The r-momentum Eq. (3) is integrated partially with respect to z
over the domain (0, b/2), resulting in:

dp0

dR
¼ Rþ 2fm þ

6
5

f2
m

R
þ 6

5
u2

2

R3 � 12
m

Xb2

� �
u2

R
ð17Þ

Eq. (13) is substituted in the Eqs. (16) and (17) and these two ODEs
are solved for the initial conditions given below

At R ¼ 1 : fm ¼ c� 1 ð18Þ
At R ¼ 1 : p0 ¼ 0 ð19Þ

The solutions of the above two Eqs. (16) and (17) will give fm and p
0
.

Eqs. (16) and (17) can be integrated simultaneously by numerical
means. A simple iterative scheme may be adopted as follows. As-
sume a value of c for which the steady state solution is sought. Start
with a trial value of X. Eqs. (16) and (17) are then numerically inte-
grated from the rotor inlet to the exit. The computed value of the
pressure drop will not, in general, agree with the imposed value
of Dpic. The value of X is then systematically varied until the itera-
tion converges to the given value of Dpic. The same procedure is re-
peated for various values of c. It can be seen for various steady state
of the rotor that c decreases monotonically with increase of X.

The full derivation of the mathematical model is given by Seng-
upta and Guha [7] which also provide experimental verification of
the mathematical theory.

3. Computation of path line in the relative frame

Absolute and relative pathlines are two possible ways of repre-
senting the fluid motion inside the narrow disc-gap of a Tesla disc
turbine. The first one, i.e. absolute pathline can be observed by a
stationary observer standing outside the rotational frame of refer-
ence. On the other hand, relative pathlines can only be observed if
the observer is moving at the same angular velocity as that of the
rotor. Relative pathlines can be calculated from the present analyt-
ical theory since it gives the three-dimensional variation of Vh and
Vr within a Tesla disc turbine. A code written by finite difference



Fig. 2b. Relative pathline from inlet (R = 1) to exit (R = 0.528) computed at c = 10
(represented by solid line) and c = 50 (represented by dotted line) when
Dpic = 0.113 bar: arrow represents direction of rotation of the disc.
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method is utilised to calculate a single path line from inlet to exit
for any particular rotational speed of the rotor. For computation of
the relative pathlines a plane is chosen where the tangential and
radial velocities at any radial location are equal to the z-averaged
tangential and radial velocities (or in other words, Vh ¼ Vh and
Vr ¼ Vr). The time taken by the working fluid to reach from inlet
to exit is divided into small steps. At each instant of time, Vh and
Vr can be calculated from the present theory since the (r,h) co-ordi-
nate of the fluid particle is known from the numerical integration
at the previous time step. As Vr is known, the radial distance trav-
elled by the fluid during a time step can be calculated and the
change in the value of h can be computed numerically from
tan�1ðVr=VhÞ. Successive application of this procedure enables
one to trace the pathline (in the relative frame) completely from
the inlet to the outlet.

4. Effect of various parameters on the relative pathline

The shape, size and orientation of the pathlines are dependent
on the velocity field which, in turn, depends on the geometry
and various operating parameters. The following sections explore
the nature of such dependence. Unless otherwise stated at the
respective places, the following parameters are adopted from the
experimental study of Lemma et al. [24] for all example analytical
results given here: r2 = 25 mm, r1 = 13.2 mm, b = 0.46 mm, Dpic =
0.113 bar. Air is considered as the working fluid.

4.1. Effect of tangential speed ratio (c)

The definition of tangential speed ratio c has been introduced in
the Eq. (14) of Section 2. The working fluid enters nearly tangen-
tially through the narrow disc-gap of the rotor. For particular val-
ues of c and Dpic, the steady state corresponds to particular values
of X (rotational speed of the discs) and Uh2 (the average absolute
tangential velocity of the fluid at the rotor inlet). Generally, the
peripheral velocity of the rotor (Xr2) is not same with the value
of Uh2 and c can be greater, less or equal to one. Figs. 2a and 2b,
and Fig. 3 show the variation of the relative pathlines with c, while
the geometry of the turbine and Dpic are kept constant. Fig. 2a
shows that, for c P 1, the fluid moves spirally in the direction of
Fig. 2a. Effect of various tangential speed ratio (considering cases when c P 1) on
relative pathline computed from inlet (R = 1) to exit (R = 0.528): prediction of the
present theory. C1: Relative pathline for c = 1, C2: Relative pathline for c = 1.5, C3:
Relative pathline for c = 3, C4: Relative pathline for c = 10. [Arrow represents
direction of rotation of the disc. For all calculations Dpic = 0.113 bar.]

Fig. 3. Effect of various tangential speed ratio (considering cases when c < 1) on
relative pathline computed from inlet (R = 1) to exit (R = 0.528): prediction of the
present theory. C1: Relative pathline for c = 0.9, C2: Relative pathline for c = 0.8, C3:
Relative pathline for c = 0.7, C4: Relative pathline for c = 0.64. [Arrow represents
direction of rotation of the disc. All curves show flow reversal. For all calculations
Dpic = 0.113 bar.]
the disc rotation (anticlockwise in the present example). As the va-
lue of c increases, the length of the relative pathline increases,
though the increase is modest even when c is changed by a large
factor. A general expectation could be that such trend is main-
tained until the value of X becomes zero. [In this context, for the
clarity of understanding, it may be remembered that the steady
state value of X decreases monotonically with the increase of c
(as discussed Section 2)]. However, Fig. 2b shows that the length,
shape and orientation of the pathlines become insensitive to
changes in c when c is adequately large. There are two main rea-
sons for which the length of the pathline (calculated in the relative
frame of reference) increases with the increase of c. First of all, Vh2

increases with the increase of c.
Secondly, Vr2 decreases with the increase of c (see, Eq. (13)).
Fig. 3 shows that for each c < 1, a fluid particle first (i.e. in the

inlet region) moves opposite to the direction of disc rotation, then



Fig. 4b. Effect of various Dpic on relative pathline computed from inlet (R = 1) to
exit (R = 0.528): prediction of the present theory. C1: Relative pathline for
Dpic = 0.03 bar, C2: Relative pathline for Dpic = 0.113 bar, C3: Relative pathline for
Dpic = 0.313 bar. [Direction of rotation of the disc is considered to be anticlockwise.
For all calculations c = 0.8.]
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(near outlet region) it moves in the same sense as the disc rotation.
This interesting shape of the pathline in the relative frame occurs
due to the occurrence of flow reversal. In the region between the
rotor inlet (at point 2) and the point of flow reversal, the rotor disc
would absorb power, instead of delivering. However, the disc
would develop positive power in the region between the point of
flow reversal and the rotor outlet (R1). If the positive power is more
than the negative power, then the rotor disc would produce a net
power output and the Tesla turbine would remain functional.
Hence, it is very much possible that a Tesla turbine remains
working even at c < 1. The flow transition in the relative frame is
possible only due to the effect of Coriolis acceleration. It can be
shown that starting from an initial negative value, Vh would always
remain negative due the individual effect of either viscous force or
the conservation of angular momentum. The subtle role of Coriolis
force for flow reversal had been discussed extensively in [20].
Another important feature revealed from Fig. 3 is that the
reversal point shifts towards the exit radius (R1) as the value of c
decreases. The flow physics described in this paragraph indicates
that a no-torque condition would appear at a particular value of
c. This limiting value of c can be calculated from the analytical
formula

½c�no torque ¼ 1� 10
6

C1
ð1�R2

1Þ
2 þ 1� exp C1

2 ð1� R2
1Þ

h in o

C1f1� exp C1
2 ð1� R2

1Þ
h i

g

2
64

3
75 ð20Þ

where; C1 ¼ 10m
/2Xb2

� �
.

4.2. Effect of the pressure difference between inlet and exit of the rotor
(Dpic)

Figs. 4a and 4b show how the characteristics of relative path-
lines depend on the pressure drop (Dpic) between the inlet and
the exit of the rotor, for particular values of c and an, and for a spe-
cific geometry of Tesla turbine. Figs. 4a and 4b reveal the fact that
the effect of increasing Dpic up to a certain extent leads to the in-
crease of the length of relative pathlines. However, any further in-
crease of Dpic shortens the length of the relative pathline. The
physical reasons for this behaviour can be explained as follows.
Fig. 4a. Effect of various Dpic on relative pathline computed from inlet (R = 1) to
exit (R = 0.528): prediction of the present theory. C1: Relative pathline for
Dpic = 0.03 bar, C2: Relative pathline for Dpic = 0.113 bar, C3: Relative pathline for
Dpic = 0.313 bar. [Arrow represents direction of rotation of the disc. For all
calculations c = 10 .]
Suppose, atmospheric pressure is maintained at the exit plane
and Dpic is increased by increasing the inlet pressure of the rotor.
As a consequence, the absolute velocity at inlet will also increase.
Generally, the length of the relative pathlines (for this flow do-
main) increases due to the increase of relative tangential velocity,
whereas it decreases due to the increase of the magnitude of radial
velocity. If the effect of increase of radial velocity overtakes the ef-
fect of increase of relative tangential velocity the length of the
pathlines decreases.

Fig. 4a shows pathlines calculated for a specific value of c which
is greater than one and Fig. 4b shows pathlines calculated for a spe-
cific value of c which is less than one (when flow reversal occurs).
It can be seen that the trend of change in length of the pathlines
(with the change in Dpic) remains the same for c greater or less
than one. Fig. 4b exhibits an additional feature that the point of
reversal shifts towards the exit with the increase of pressure drop.
An interesting point to note here is that, as the radial pressure drop
increases, the point of reversal shifts monotonically towards the
centre of the disc whereas the length of the relative pathlines ini-
tially increases but subsequently decreases with further increase in
pressure drop (for the reasons explained previously).
4.3. Effect of nozzle angle (an) and exit radius

The working fluid is injected in a nearly tangential path by one
or more inlet nozzle through the periphery of the rotor of a Tesla
disc turbine. In the present analysis, uniform flow rate throughout
the periphery is considered. The average tangential and radial com-
ponent of velocity of the working fluid before entering into the rel-
ative rotational frame of reference are Ur2 and Uh2 respectively.
Therefore, the working fluid enters at an angle of tan�1ðUr2=Uh2Þ
from the inlet nozzle through the periphery of the rotor. After
entering into the disc-gap at an angle an the working fluid ap-
proaches in spiral path (if c > 1) or complex non-spiral path (if
c < 1) to the exit. The dependence of the characteristics of relative
pathlines on the nozzle angle (an) and the exit radius (radius ratio)
is investigated in this section.

In the analysis presented so far, Eq. (13) is applied for the calcu-
lation of Vr2 because the disc geometry and nozzle arrangement



Fig. 5a. Effect of various nozzle angle (an) on relative pathline computed from inlet
(R = 1) to exit (R = 0.528): prediction of the present theory. C1: Relative pathline
calculated at an = 10�, C2: Relative pathline calculated at an = 5�, C3: Relative
pathline calculated at an = 2�. [Arrow represents direction of rotation of the disc. For
all calculations Dpic = 0.113 bar; and c = 1.5.]

Fig. 5b. Effect of various nozzle angle (an) on relative pathline computed from inlet
(R = 1) to exit (R = 0.528): prediction of the present theory. C1: Relative pathline
calculated at an = 10�, C2: Relative pathline calculated at an = 5�, C3: Relative
pathline calculated at an = 2�. [Arrow represents direction of rotation of the disc. For
all calculations Dpic = 0.113 bar and c = 0.8.]

Fig. 6. Effect of varying position of exit on relative pathline computed for
Dpic = 0.113 bar, c = 1.5 and an = 5�: prediction of the present theory. C1: Relative
pathline calculated from inlet (R = 1) to exit E1 (R = 0.2) [both C1 and E1 are
represented by-�-�-�-�-], C2: Relative pathline calculated from inlet (R = 1) to exit E2
(R = 0.528) [both C2 and E2 are represented by —], C3: Relative pathline calculated
from inlet (R = 1) to exit E3 (R = 0.65) [both C3 and E3 are represented by————].
[Arrow represents direction of rotation of the disc.]
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are the same as that used in the experimental measurements by
Lemma et al. [24]. However, Eq. (13) cannot be used if the nozzle
angle or the disc geometry is altered. Then Eqs. (16) and (17) need
to be expressed in terms of nozzle angle an as follows:

dfm

dR
¼ � 1

R
þ 10

mr2

b2

� �
R

Uh2 tan an

� 	
fm �

10
6

ð21Þ

dp0

dR
¼ Rþ 2fm þ

6
5

f2
m

R
þ 6

5
c2 tan2 an

R3 � 12
mr2

b2

� �
c2 tan an

Uh2R
ð22Þ

The numerical procedure for solving Eqs. (21) and (22) with bound-
ary conditions (18) and (19) is similar to that described in Section 2;
the only difference here is that, for a particular value of an, one
needs to iteratively find the particular value of Uh2 that gives the re-
quired pressure drop between the inlet and the exit of the rotor.

Figs. 5a and 5b show how the relative pathlines are dependent
on the nozzle angle. The sample calculations are done by varying
an from 2� to 10� (while rotor geometry, Dpic and c are kept fixed).
It can be seen from both Figs. 5a and 5b that the length of the path-
lines decreases with the increase in inlet angle. The reason for this
is that with the increase of nozzle angle the radial velocity in-
creases and tangential velocity decreases.

Fig. 6 shows that the shape, size and orientation of the relative
pathline depend significantly on the radius of exit. The extent of
the movement of the working fluid between the narrow disc
spaces is governed by the position of the exit (in the present study
the position is varied only by changing the outlet radius). Fig. 6
shows that for a particular value of Dpic, c, an and r2, the length
of relative pathline increases with the decrease of the radius of
the exit. With the decrease of radius of the exit, the absolute tan-
gential velocity1 at rotor-inlet has to be decreased to maintain a
constant Dpic. In order to keep the nozzle angle fixed, the radial
velocity at rotor-inlet is also changed correspondingly. A reduced ra-
dial speed would tend to increase the residence time of a fluid par-
ticle and hence increase the length of the relative pathline. Similarly,
1 Remembering that the length of pathline decreases with decrease of Uh2.
an increased radial extent (r2 � r1) tends to increase the relative
pathline. However, the relative tangential velocity at inlet decreases
(alongwith Uh2) and this has the opposite effect on the length of the
relative pathline. Overall, the length of relative pathline increases
with a decrease of the radius of the outlet. It is to be noted that
the three pathlines shown in Fig. 6 are different not only in their
length but also in their orientation over the common flow domain
even though the inlet nozzle angle is maintained at a constant value
for all three cases. The local angle depends on the relative magni-
tudes of the various forces acting on a fluid particle at a particular
location, and the relative magnitudes change as the outlet radius is
altered.



Table 1
Grid independence test for X = 1000 rad/s.

Grid
distribution

Number of grids in r,
h and z directions

Total
number of
grids

Area averaged static
pressure at inlet (Pascal)

Coarse (50 � 190 � 60) 570,000 5234.145
(100 � 95 � 60) 570,000 5243.292
(100 � 190 � 30) 570,000 5237.147

Standard (100 � 190 � 60) 1,140,000 5245.192

Fine (200 � 190 � 60) 2,280,000 5246.114
(100 � 380 � 60) 2,280,000 5245.478
(100 � 190 � 120) 2,280,000 5246.847
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5. Absolute versus relative pathline

In this section, a comparative study of the pathlines computed
in absolute and relative frames of reference are provided. Fig. 7
shows absolute and relative pathlines of the working fluid from
inlet to the exit of the rotor calculated for the same operating con-
ditions and geometric arrangements. The figure shows that the
length of the absolute pathline is greater than the length of the
relative pathline. Computations for many combinations of geomet-
rical data and input boundary conditions also revealed that the
relative pathline reaches the exit plane usually within one
complete revolution whereas the absolute pathlines may continue
for several revolutions before reaching the exit plane. These obser-
vations can be explained from the following three facts:

1. The relations provided in Section 2 show that the absolute and
relative radial velocities are same, whereas the relative tangen-
tial velocity is always less than the absolute tangential velocity.

2. As the working fluid approaches from inlet to the exit of the
rotor, the radial velocity gradually increases due to the gradual
decrease of the flow area. On the other hand, the relative
tangential velocity may either increase or decrease depending
on the value of tangential speed ratio and local balance of the
various components of force [20].

3. Under efficient operating conditions, the rotational speed of the
rotor is considerably high and therefore the relative tangential
component of velocity is usually of the same order of the radial
velocity.

It can also be observed from Fig. 7 that the orientation of the
relative pathline is different from that of the absolute pathline. It
is so because the orientation of the relative pathline is governed
by the angle tan�1ðVr=VhÞ, whereas the orientation of the absolute
pathline is controlled by the angle tan�1ðUr=UhÞ. Even though the
length of a fluid pathline is shorter in the relative frame, the time
taken by a fluid particle to travel from the inlet to the exit is exactly
the same in both absolute and relative frames since the radial
velocity does not depend on the rotation. Hence, at the same in-
stant of time, both pathlines reach the same radial coordinate
but different tangential positions. This tangential movement can
be interpreted as the contribution of the Coriolis force in a rota-
tional frame of reference.
Fig. 7. Absolute and relative pathline from inlet (R = 1) to exit (R = 0.528) computed
for Dpic = 0.113 bar, c = 1.5 and an = 2� [ absolute pathline, relative
pathline; arrow represents direction of rotation of the disc].
It may seem that the absolute and relative pathlines are merely
two different ways of visualising the same flow. Nevertheless,
certain subtle flow physics, such as flow reversal and the role of
Coriolis force in establishing complex flow features, can only be
appreciated when the relative pathlines are analysed.
6. Computational fluid dynamic simulation of the three-
dimensional flow-field

The fluid flow field within the rotating discs have also been
studied by the application of computational fluid dynamics
(CFD). A commercially available CFD software, Fluent 6.3.26, is
utilised for the present computation. Three dimensional, double
precision, pressure based, steady and implicit solver is used. Veloc-
ity formulation is in the absolute frame of reference and flow is
considered to be laminar. The SIMPLE algorithm, with first order
upwind scheme for momentum and ‘Standard’ scheme for discret-
izing the pressure equation, is utilised. Under-relaxation factors for
momentum, pressure, density, and body force are chosen respec-
tively 0.7, 0.3, 1 and 1. The convergence criterion for all residuals
is set as 10�11.

The geometry of the model is created by a commercially avail-
able software, GAMBIT 2.4.6. Each disc has an outer radius of
25 mm and the inner radius of 13.2 mm, with 0.1 mm inter-disc
Fig. 8. Comparison of prediction of present theory and CFD simulation in
determining absolute pathlines from inlet (r = 25 mm) to exit (r = 13.2 mm) for
various values of X. [ — prediction of present analytical model, ——— Fluent first
order upwind scheme, + + + + Fluent second order upwind scheme. C1: for
X = 1000 rad/s, c = >4.57 and an = 5.75; C2: for X = 2500 rad/s, c = 2.03
and an = 5.18; C3: for X = 4950 rad/s, c = 1.18 and an = 4.47. Arrow represents
direction of rotation of the disc.]
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spacing. Numerical simulations are carried out for three different
rotational speeds (1000, 2500 and 4950 rad/s) of the disc. At inlet,
the maximum tangential velocity Uh (of the parabolic distribution)
is specified as 159 m/s and the maximum radial velocity (of the
parabolic distribution) is �17.25 m/s. Air with constant density
(1.225 kg/m3) is chosen as the working fluid.

Incompressible flow has been considered for both analytical
and CFD calculations, though the maximum value of the parabolic
velocity profile at inlet (the centreline Mach number being 0.46) is
slightly above the conventional limit of incompressible flow anal-
ysis. There are several reasons for this simplification. With strong
Tangent
velocity

Pressure

1

2

3

(a)

Fig. 10. (Colour online) Absolute pathlines, pressure and velocity field in the computatio
inlet to exit (a), Plane 2: Pressure distribution in z-direction between the two discs (a), Pla
velocity from inlet to exit between the two discs (b).

Fig. 9. Comparison of prediction of present theory and CFD simulation in
determining radial pressure distribution from inlet (r = 25 mm) to exit
(r = 13.2 mm) for various values of X. [ — prediction of present analytical model,
——— Fluent first order upwind scheme, + ++ + Fluent second order upwind scheme.
C1: for X = 1000 rad/s, c = 4.57 and an = 5.75; C2: for X = 2500 rad/s, c = 2.03
and an = 5.18; C3: for X = 4950 rad/s, c = 1.18 and an = 4.47.]
non-uniformity in the z-direction, it turns out that z-averaged Uh

is within the incompressibility limit. Secondly, the numerical solu-
tions show that, for small inter-disc spacing, the value of tangential
velocity decreases substantially within a short radial distance (see
Fig. 10). Thirdly, the analytical formulation is in terms of relative
tangential velocity which is smaller than the absolute tangential
velocity.

The outlet boundary condition at the exit radius is modelled as
pressure outlet with zero gauge pressure. No slip boundary condi-
tion is set on the disc walls. A grid-independence test for
X = 1000 rad/s (see Table 1) has been carried out, and based on this
study, a total of 1,140,000 mapped, hexahedral computational cells
are used for the results presented below (meshing is done in GAM-
BIT 2.4.6).

Fig. 8 shows the absolute pathlines in the mid-plane of the flow
domain for the three rotational speeds of the discs and the partic-
ular inlet and outlet conditions as described above. It can be seen
from this figure that the pathlines obtained from the numerical
simulation are almost coinciding with the pathlines obtained from
the mathematical model. Fig. 9 shows that the radial distributions
of pressure (gauge pressure) calculated from the mathematical
model and the numerical simulation match well. A comparison be-
tween the first and second order upwind schemes has been given
in Figs. 8 and 9. The comparison shows that, for the adopted grid,
the first order upwind scheme is adequate.

Results of CFD simulation within a Tesla disc turbine are repre-
sented by Fig. 10 which includes absolute pathlines, contours of
pressure, radial velocity and tangential velocity (considering
1000 rad/s rotational speed of the discs and an inter-disc spacing
of 100 lm). It can be observed from this figure that

1. Pressure continuously drops in the r-direction from inlet to out-
let (see plane 1 in Fig. 10a).

2. Pressure does not vary in the z-direction (see plane 2 in
Fig. 10a); this verifies Eq. (4).

3. In the r-direction, the tangential velocity decreases substan-
tially near the inlet (see plane 3 in Fig. 10a).
ial
 

Radial 
velocity

Pressure4 

(b)

nal domain obtained from CFD analysis. Plane 1: Radial pressure distribution from
ne 3: Tangential velocity from inlet to exit between the two discs (a), Plane 4: Radial
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4. Tangential velocity at the disc surfaces equals the disc velocity
(no slip condition) and it gradually increases to a maximum
value at the middle of the disc spacing (see plane 3 in Fig. 10a).

5. Radial velocity progressively increases in the r-direction
towards the exit (see plane 4 in Fig. 10b).

6. Radial velocity is zero on the surface of both discs and gradually
increases to a maximum value at the middle of the disc spacing
(see plane 4 in Fig. 10b).

7. Absolute pathlines starting from various z-locations move
towards the exit in a nearly spiral path. Close to the disc wall,
the length of the pathlines is larger due to lower values of radial
velocity.

The above observations highlighted from the CFD simulations
justify some of the assumptions used for the mathematical theory.
It is to be realised that both CFD solutions and analytical solutions
are subject to various assumptions; only the additional assump-
tions made in the analytical formulation can be verified by com-
paring the analytical results with CFD solutions. Thus, for
example, the assumptions of laminar flow or no slip boundary con-
dition – which are common to both CFD and analytical formula-
tions – cannot be verified merely by comparing the two results.
On the other hand, axisymmetric condition (i.e. no variation of flow
variables in the h-direction) is applied for the mathematical theory,
whereas the flow variables are allowed to vary in the h-direction in
the CFD simulation. Therefore, the CFD solution given in Fig. 10
demonstrates the appropriateness of the axisymmetry assumption
in the mathematical theory. Similarly, the pressure is allowed to
vary in the z-direction in the CFD simulation. Hence, the near-con-
stancy of pressure in the z-direction shown in the numerical sim-
ulations of Fig. 10 demonstrates the validity of Eq. (4) used in the
mathematical theory. Uz is neglected in the mathematical theory:
the fact that Uz is negligible as compared to Ur and Uh can be ver-
ified from the orientations of the pathlines (Fig. 10) which are al-
most parallel to each other. Detailed quantitative analysis of the
velocity profiles produced by the CFD simulation also justifies
the assumption of parabolic profiles, embodied in Eqs. (10) and
(11), in the mathematical theory.

In this paper, the CFD simulations are presented only for an in-
ter-disc spacing of 100 lm. Further work is currently in progress;
preliminary results suggest that the mathematical theory would
be able to predict the torque up to larger disc spacings, though
deviations may develop in the three-dimensional flow field.
7. Conclusion

The three-dimensional flow field and the flow pathlines within
a Tesla disc turbine have been investigated analytically and com-
putationally. For small values of inter-disc spacing, the predictions
of the mathematical theory agree well with the results of detailed
three-dimensional CFD simulations. It can be concluded from the
results of CFD simulation that pressure does not vary in the
z-direction (thus justifying Eq. (4)), whereas it decreases in the r-
direction continuously from inlet to outlet. The radial velocity
progressively increases in the r-direction towards the exit. At a
particular radial location, both radial velocity and relative tangen-
tial velocity are functions of z-coordinate, are zero on the surface of
both discs and gradually increase to a maximum value at the
middle of the disc spacing. Absolute pathlines starting from vari-
ous z-locations between two rotating discs move towards the exit
in a nearly spiral path. Close to the disc wall, the length of these
pathlines is larger due to lower values of radial velocity. The above
observations highlighted from the CFD simulations justify some of
the assumptions made previously for developing the mathematical
theory and verifies some of the predictions of the theory.
The details of trajectories of fluid particles as a function of var-
ious flow parameters and turbine geometrical parameters have
been thoroughly studied. The conclusions from such studies – for
example, how the length, shape and orientation of pathlines
depend on the values of tangential speed ratio c, nozzle angle an,
radial pressure drop Dpic or radius of exit r1 – are given in the
respective sections. One striking finding of the present study is that
the length, shape and orientation of the relative pathlines change
by modest amounts even when c is changed by a large factor when
c > 1, and, these characteristics of relative pathlines become almost
insensitive to changes in c when c is very large (say, for c > 10). The
changes in the length, shape and orientation of the relative path-
lines with a change in the value of c are, however, significant for
c < 1.

Fluid particle trajectories in both absolute and relative frames of
reference have been considered. It is established here that,
although it may seem that the absolute and relative pathlines are
merely two different ways of visualising the same flow, several
subtle flow physics, such as flow reversal and the role of Coriolis
force in establishing complex flow features, can only be appreci-
ated when the relative pathlines are analysed.
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