
Secondary motion in three-dimensional branching networks
Abhijit Guha and Kaustav Pradhan

Citation: Physics of Fluids 29, 063602 (2017); doi: 10.1063/1.4984919
View online: http://dx.doi.org/10.1063/1.4984919
View Table of Contents: http://aip.scitation.org/toc/phf/29/6
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/522021942/x01/AIP-PT/PoF_ArticleDL_051717/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Guha%2C+Abhijit
http://aip.scitation.org/author/Pradhan%2C+Kaustav
/loi/phf
http://dx.doi.org/10.1063/1.4984919
http://aip.scitation.org/toc/phf/29/6
http://aip.scitation.org/publisher/


PHYSICS OF FLUIDS 29, 063602 (2017)

Secondary motion in three-dimensional branching networks
Abhijit Guhaa) and Kaustav Pradhan
Mechanical Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

(Received 4 March 2017; accepted 21 May 2017; published online 28 June 2017)

A major aim of the present work is to understand and thoroughly document the generation, the three-
dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream
through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and
31 bifurcation modules) are computed in one go; such computational challenges are rarely taken
in the literature. More than 30 × 106 computational elements are employed for high precision of
computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis
non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the
fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared
to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape
and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module,
and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path,
make the present situation more complex. It is shown that the straight portions in the network, in
general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules
generate secondary motion and may alter the number, arrangement, and structure of vortices. A
comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion
is achieved by constructing contours of secondary velocity ��~vS

��, streamwise vorticity ωS , and λ2 iso-
surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane
appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise
vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and
there may even be an odd number of vortices. We have formulated three new parameters (ES /P,
δSF , and δGn) for a quantitative description of the overall features of the secondary flow field. δSF

represents a non-uniformity index of the secondary flow in an individual branch, ES /P represents the
mass-flow-averaged relative kinetic energy of the secondary motion in an individual branch, and δGn

provides a measure of the non-uniformity of the secondary flow between various branches of the
same generation Gn. The repeated enhancement of the secondary kinetic energy in the bifurcation
modules is responsible for the occurrence of significant values of ES /P even in generation G5. For
both configurations, it is found that for any bifurcation module, the value of ES /P is greater in that
daughter branch in which the mass-flow rate is greater. Even though the various contour plots of the
complex secondary flow structure appear visually very different from one another, the values of δSF

are found to lie within a small range (0.37 ≤ δSF ≤ 0.66) for the six-generation networks studied. It is
shown that δGn grows as the generation number Gn increases. It is established that the out-of-plane
configuration, in general, creates more secondary kinetic energy (higher ES /P), a similar level of non-
uniformity in the secondary flow in an individual branch (similar δSF), and a significantly lower level of
non-uniformity in the distribution of secondary motion among various branches of the same generation
(much lower δGn), as compared to the in-plane arrangement of the same branches. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4984919]

I. INTRODUCTION

A recent paper1 presents a detailed description of the
primary flow field in complex three-dimensional internal pas-
sages formed by a dichotomously branching network. The
main objective of this paper is to study and understand the
physics of the secondary motion of a fluid in such a net-
work which is found in several biological systems, the human

a)Author to whom correspondence should be addressed: a.guha@mech.
iitkgp.ernet.in

bronchial tree being an important example. A branching
network may also be used in future engineered small-scale
or micro-systems based on fractal or other geometrical algo-
rithms. (Reference 2 discusses an example of a novel heat
exchanger for a hypersonic engine, its bio-inspired design
being based on the fish-gill morphology.) This paper adopts
a model human bronchial tree for specifying the geome-
try and dimensions of the computational passages in which
the fluid dynamics is studied. The network is constructed
by connecting cylindrical straight tubes through bifurcation
modules.1 The flow passages in the bifurcation module are
three-dimensionally complex,1 and the flow paths are curved
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giving rise to secondary circulation perpendicular to the
primary flow, and hence the overall fluid motion assumes a
helical path. Although the basic nature of the secondary motion
is similar to that in a simple curved pipe,3 three distinctive fea-
tures, viz., the change of shape and size of flow-cross-section,
division of the non-uniform primary flow in a bifurcation mod-
ule, and repeated switchover from clockwise to anticlockwise
curvature and vice versa in the flow path, make the present
situation more complex. Another complexity arises from the
fact that, similar to the previous complementary study,1 here
also we have considered two branching configurations side by
side: the most widely studied in-plane configuration in which
the centrelines of all generations lie on the same plane, and the
90° out-of-plane configuration in which the centreline of each
generation is rotated with respect to its grandmother generation
following a systematic methodology to form a space-filling
three-dimensional structure. Our aim is to understand and
thoroughly document the generation, the three-dimensional
distribution and the evolution of the secondary motion as the
fluid progresses downstream through a branched network. Six
generations of branches (involving 63 straight portions and
31 bifurcation modules) are computed in one go; such com-
putational challenges are rarely taken in the literature. Since
accurate capturing of the fine details of the secondary motion
is more challenging than capturing the primary flow field,
we recomputed the entire flow field through the same three-
dimensional geometry of flow passages given in Ref. 1 using a
much finer mesh here; more than 30 × 106 computational ele-
ments are used in this work for solutions in a six-generation
network.

The fluid flow field in the human bronchial tree determines
the transport and deposition of inhaled particles through inter-
phase transport of momentum (and, in some cases, also of mass
and energy). The secondary flow may affect such transport and
deposition processes by altering the path lines and residence
times of particles. The knowledge of particle transport and
deposition in the bronchial tree is important for understand-
ing (and perhaps controlling) the causation of certain diseases
and for targeted drug delivery. A unified theory for the depo-
sition of particles was formulated by Guha,4 which applies to
various flow regimes and particle sizes (from the nanometer
to millimeter). A lucid but comprehensive description of the
flow of the fluid and particles in the human bronchial tree is
given by Guha.5

Before embarking upon a study of the secondary fluid
motion in branched networks, it is instructive to consider its
development in a simple curved pipe. When the fluid flows
through a curved pipe,6–12 the secondary fluid motion devel-
ops in planes perpendicular to the curved central axis of the
pipe. A transverse pressure gradient develops that balances
the centrifugal force due to the curved trajectory of the fluid,
with the pressure being greatest at the outer wall (i.e., the
wall where radius of curvature is maximum) and smallest at
the inner wall. The axial velocity of the fluid is smaller near
the top and bottom walls as compared to the central region
owing to viscous effects, while the transverse pressure gra-
dient is approximately equal at the peripheral and central
regions (since the contour bands of static pressure appear as
vertical strips). Consequently, the fluid is pushed along the

pressure gradient in the low axial velocity regions near the
top and bottom walls, while the fluid is pushed in the direc-
tion of the centrifugal force in the high axial velocity central
region. Thus, the secondary flow is set up such that the fluid
near the outer wall moves along the top and bottom walls
towards the inner wall of the pipe, and the fluid in the central
region moves outwards. The secondary motion is, therefore,
characterized by two counter-rotating vortices (called Dean
vortices7,8,12), one in each half (top and bottom) of the cross
section. The combination of this secondary flow with the pri-
mary flow results in a double helical motion of the fluid in the
pipe with symmetric flow fields in the top and bottom halves.
It is worth mentioning here that the outer wall in a curved
pipe corresponds to the inner edge of a bifurcation module,
and the inner wall in a curved pipe corresponds to the outer
edge of a bifurcation module.1 Henceforth, in this paper, we
refer to the inner and outer edges of the bifurcation modules
only.

The magnitude of the secondary flow velocity and the
nature of the secondary flow structures developed on a cross-
sectional plane depend on the flow Reynolds number and the
curvature of the flow path. In his pioneering work, Dean3

found that the flow in curved pipes is governed by an impor-
tant parameter (now known as the Dean number) given by
combining the local Reynolds number with the radius of cur-
vature of the pipe. In a later work,13 he observed that there
exists a critical value of the Dean number (De) beyond which
secondary flow is generated. Horlock6 studied the secondary
flow characteristics in a pipe having a sinusoidal centreline. He
found that although the secondary flow intensity is reduced by
the presence of two consecutive opposite bends, the flow field
cannot be restored. Barua14 studied the flow in curved tubes
at large values of the Dean number. Talbot and Gong15 per-
formed experiments on the entry flow in a curved pipe, and
reported that the secondary boundary layers formed along the
top and bottom walls merge near the inner wall leading to
separation.

Experiments have also been performed in simple branched
geometries. Zhao and Lieber16,17 performed experiments on
the flow in a single symmetric bifurcation using Laser Doppler
Velocimetry (LDV) techniques. They reported the presence
of a pair of Dean vortices in the daughter branches for an
inspiratory flow16 and four vortices in an expiratory flow.17

Evegren et al.18 gave a detailed description of the unsteady
secondary flow in a daughter branch after a 90° bifurcation.
Leong et al.19 performed an experimental study of the sec-
ondary flow in double bifurcation geometry. Fresconi and
Prasad20 conducted experiments on four generations of a sym-
metric planar model of the human lung under steady and
oscillatory flow conditions. They presented the secondary
flow field as a function of flow direction, Reynolds num-
ber, and position in the network. However, all these stud-
ies pertaining to the secondary flow in branched networks
are limited to planar models comprising up to four gen-
erations of branches. It is to be noted that, in a dichoto-
mously branching network, the number of branches increases
with the increasing generation number (n) as 2n

� 1. Non-
planar geometry creates additional challenges in a systematic
study.
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The present work is aimed at developing a comprehen-
sive understanding of the secondary flow, consisting of both
vortical structures and shearing regions, in both in-plane and
out-of-plane configurations of branched networks comprising
six generations of branches. The effect of the inlet Reynolds
number (Re) on the secondary fluid motion is also captured
through simulations at various values of Re with represen-
tative results being shown at three values, viz., Re = 400,
Re = 1000, and Re = 1600. The changes in the secondary
flow field across bifurcation modules and straight portions are
illustrated through vector plots superposed on the contours of
the secondary velocity magnitude. It is shown that streamwise
vorticity captures best the fine details of the secondary fluid
motion on a cross-sectional plane. The λ2 criterion (based on
the existence of a pressure minimum where two eigenvalues
of the inverse of the pressure Hessian are negative) has been
used as a supplemental method for locating the cores of the
vortices, and the iso-surfaces of λ2 have been used to depict the
evolution of the vortices in the three-dimensional flow field.
Moreover, we have formulated three new scalar parameters
for a quantitative description of the overall features of the sec-
ondary flow field and its evolution down the generations. It is
found that other than the Dean vortices, which are also found
in simple curved pipes, there may exist anti-Dean vortices in
a branched network. In a Dean vortex, the fluid in the cen-
tral region of a cross-sectional plane moves from the outer
edge to the inner edge of a bifurcation, whereas the opposite
movement happens in an anti-Dean vortex. Both Dean and
anti-Dean vortices may have clockwise or counter-clockwise
rotation.

II. GEOMETRY OF BRANCHING NETWORK

A three-dimensional model of the bronchial tree network
is constructed by successively connecting cylindrical sections
representing the bronchial airways of a particular generation
with those of the next generation through bifurcation modules.
A particular generation in the network is referred here by the
symbol Gn, where the index n denotes the generation number
and progressively takes the integer values 0, 1, 2, etc. The six-
generation network considered here therefore consists of gen-
erations G0 to G5. The dimensions of the branches considered
in this study are shown in Table I. The bifurcation angle (angle
between two daughter branches emanating from the same
mother branch) is set to 70° for all generations here. Based
on the configurationally different arrangement of branches in

TABLE I. Dimensions of the first six generations of the human bronchial tree
according to Weibel.21

Generation number Diameter (mm) Length (mm)

G0 (trachea) 18.00 120.00
G1 12.20 47.60
G2 8.30 19.00
G3 5.60 7.60
G4 4.50 12.70
G5 3.50 10.70

FIG. 1. Six generations (G0-G5) of a symmetric model of the human
bronchial tree; in-plane configuration.

space, two types of networks are considered: in-plane and
out-of-plane.

Figure 1 shows a three-dimensional view of the in-plane
configuration of a branching network comprising six gen-
erations of branches. For the in-plane configuration of the
branches, the centrelines of all the bifurcation modules and
the cylindrical sections of all generations lie on a single plane
(which is denoted by the term “meridional plane”). All the
branches are denoted by four characters “GnBk,” where “Gn”
denotes the generation to which the branch belongs while
“Bk” denotes the branch number in a particular generation.
Since the present study is concerned with the description of the
secondary flow field, the nomenclature of the cross-sectional
planes on which the secondary flow field may be described
needs to be systematized. The end plane of the branch “GnBk”
is denoted by “GnPk.” As an example, the end plane of branch

FIG. 2. Six generations (G0-G5) of a symmetric model of the human
bronchial tree; out-of-plane configuration.
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G1B1 is denoted by G1P1 (this plane has been highlighted in
Fig. 1).

A three-dimensional branching network comprising six
generations of branches arranged in the out-of-plane config-
uration is shown in Fig. 2. Although the dimensions of the
branches and the bifurcation angles for this network are the
same as those in the in-plane configuration, the planes con-
taining the centrelines of branches of a generation are rotated
through 90°with respect to the plane containing the centrelines
of their mother and grandmother branches. For a complete
description of the three-dimensional arrangement, the reader
may refer to Ref. 1. The same nomenclature is used for the
branches and cross-sectional planes in the out-of-plane config-
uration as in the in-plane configuration. However, the complex
three-dimensional arrangement of branches makes it difficult
to describe how branches belonging to the same generation
are numbered. Figure 2 provides a pictorial guide to the sys-
tem followed for naming the branches in the out-of-plane
configuration.

III. MATHEMATICAL FORMULATION

The present study pertains to a steady, laminar flow of a
viscous and incompressible fluid through six generations of a
dichotomous branching network. The conservation equations
for mass and momentum are given as follows:

∇ ·~v = 0, (1)

ρ(~v · ∇)~v = −∇p + µ∇2~v, (2)

where ~v represents the velocity vector of the fluid, ρ is the
fluid density, p is the static pressure, and µ is the dynamic
viscosity of the fluid. In the present set of simulations, ρ
and µ are taken as 1.225 kg/m3 and 1.7894 × 10�5 kg/(ms),
respectively.

In the present study, a uniform velocity is assumed at the
inlet to the branching network, the no slip boundary condi-
tion is applied on the branch walls, and a pressure boundary
condition is used at the ends of the branches of generation
G5. The flow in branching networks with curved bifurcation
modules, in analogy with the flow in simple curved pipes, is
also expected to be governed by the Dean number. However,
the complex fashion in which the shape of the cross section
changes in the bifurcation modules (thus changing the local
curvature) makes it difficult to calculate the local Dean number
from the local Reynolds number. In the present study, we there-
fore consider the parametric variation of the inlet Reynolds
number defined as Re = 2ρURG0/µ, where RG0 is the radius
of the branch G0B1.

IV. COMPUTATIONAL METHOD

The branching geometry is built in SolidWorks,22 and
the meshing and numerical simulation are performed on
the ANSYS Workbench23 using ANSYS Meshing (AM)
and FLUENT, respectively. All computations are per-
formed on a Dell Optiplex 9010 computer with an i5-3470
processor.

A. Mesh generation

The three-dimensional branching network comprising six
generations is characterised by gradually decreasing diame-
ters (from 18 mm in the first generation to 3.5 mm in the last
generation). A multi-block meshing scheme is adopted here
in order to keep the relative size of the computational cells
with respect to the branch dimensions approximately constant.
ANSYS Meshing (AM) is used for generating the mesh in
the three-dimensional bifurcating branches. An unstructured
mesh with a sufficiently large number of tetrahedral elements24

is used in the present study. Boundary layer type meshing
(O-grid) is used near the solid walls of the bronchial tubes
with sufficiently small thickness of the first layer to accurately
capture the gradients near the wall. The number of layers of
the boundary layer type mesh is selected such that the height
of the last layer is comparable to the size of the neighbouring
triangular mesh.

The most critical portion of the geometry from a meshing
point of view is the bifurcation module where complex cross-
sectional changes take place as the single circular tube trans-
forms into two separate circular tubes.1 Previous researchers
have used both structured and unstructured meshes to obtain
the flow field in the 3D branched networks. Studies implement-
ing structured meshes25 have usually not used any boundary
layer type meshing (inflation layers) adjacent to solid walls.
Studies using unstructured meshes,26 on the other hand, have
incorporated inflation layers but they suffer from intersection
of these inflation layers in the central regions of the bifurcation
module. This intersection may be attributed to the fact that the
bifurcation module is usually constructed by combining two
separate but overlapping narrowing tubes (each connecting the
mother branch to one of the daughter branches), and the infla-
tion layers are separately applied to the two narrowing tubes.
In the present work, an innovative measure is taken while
constructing the geometry so as to ensure that the inflation
layers, included to capture the boundary layers, closely fol-
low the shape of the bifurcating walls without any intersection
anywhere.

B. Numerical simulation

The governing equations ((1) and (2)) are solved numeri-
cally with the help of the commercial CFD package FLUENT
that uses a finite volume technique. The available pressure-
based solver is used here. The diffusion terms are discretized
using a central difference scheme. A second order upwind
scheme is used to discretize the advection terms in the unstruc-
tured three-dimensional mesh, so as to reduce the numerical
diffusion.27 A segregated implicit28 solver is used to solve the
resulting system of equations. The solver uses a time-marching
technique29,30 to achieve a steady state solution as the limiting
process of an unsteady simulation. The SIMPLE algorithm is
used to couple the velocity and pressure for solving the gov-
erning equations. Appropriate values of the under-relaxation
factors are used such that numerical instabilities are avoided.
A convergence criterion of 10�8 is used for all the simulations
reported in the present work.

The uniform velocity at the inlet to the branching net-
work is specified by using the “Velocity Inlet” boundary



063602-5 A. Guha and K. Pradhan Phys. Fluids 29, 063602 (2017)

condition feature in FLUENT. Since there is a dearth of
knowledge regarding the pressure conditions at the end of the
branches of generation G5 in the human bronchial tree, previ-
ous researchers31–33 have resorted to a pressure condition at the
end of the branches of the last generation considered. Taking
cue from such studies, a pressure boundary condition has been
used in the present study using the “Pressure Outlet” bound-
ary condition feature of FLUENT. This feature requires the
specification of the gauge static pressure at the outlet bound-
ary, which is then used as a reference to calculate the pressure
throughout the computational domain. The gauge static pres-
sure at the outlets is set to zero in the present set of simulations.
The CFD simulations determine the change in the static pres-
sure between the inlet and outlet of the network (∆pio). It is
assumed that, for incompressible flow, ∆pio does not vary with
the absolute value of static pressure specified at the outlet.
Thus, once the pressure difference between the inlet and any
location in the network is determined from the CFD simula-
tion, the absolute value of static pressure at that location can
be calculated from the known value of static pressure at the
inlet.

C. Calculation of velocity and vorticity components

The velocity at any point in the flow domain may be
resolved into two mutually perpendicular components: one
along the normal to any cross-sectional plane of the branches
(primary flow) and the other along the cross-sectional plane
(secondary flow). Since all simulation results in FLUENT are
generated with respect to a global Cartesian coordinate system
(XYZ), and the cross-sectional planes are mostly non-aligned
with these axes, the determination of the primary (~vP) and
secondary (~vS) velocity components is non-trivial. The algo-
rithm used for the determination of the primary and secondary
velocity components is summarized below.

Let the unit normal to a cross-sectional plane pointing in
the direction of the primary flow be given by

~n = nX î + nY ĵ + nZ k̂, (3)

where î, ĵ, and k̂ represent the unit vectors along the X, Y, and
Z directions, respectively. The unit normal ~n points into the
cylindrical (straight) portion of a branch at its start-plane and
out of the cylindrical portion at its end-plane. Let the velocity
vector at that point be given by

~v = uî + vĵ + wk̂. (4)

The magnitude of the primary velocity is denoted by VP and
is calculated by taking the component of~v along the direction
of ~n,

VP = ~v · ~n = unX + vnY + wnZ . (5)

The primary velocity vector is therefore given by

~vP = VP~n = VPnX î + VPnY ĵ + VPnZ k̂. (6)

The secondary velocity is then calculated by the vectorial sub-
traction of ~vP from ~v. The secondary velocity vector ~vS is
therefore given by

~vS = (u − VPnX )î + (v − VPnY )ĵ + (w − VPnZ )k̂. (7)

The magnitude of the secondary velocity is given by

��~vS
�� =

√
(u − VPnX )2 + (v − VPnY )2 + (w − VPnZ )2. (8)

Two interesting corollaries can be deduced from the
above formulation. We note that ��~vS

��2 = ��~v��2 − ��~vP
��2 − 2~vS · ~vP

= ��~v��2 − ��~vP
��2 since~vS ·~vP = 0 (the two vectors being mutually

orthogonal). Second, the condition~vS ·~vP = 0 implies that the
six components of the primary and secondary velocity vectors
cannot all be positive (or negative) simultaneously (numeri-
cal simulations given later are found to satisfy this theoretical
constraint).

The secondary fluid motion on a cross-sectional plane may
be attributed to a component of vorticity normal to that plane
(i.e., in the streamwise direction). Hence, in the present work,
an attempt is made to explain the secondary flow patterns on
a cross section using the streamwise vorticity parameter, ωS ,
calculated from the following expression:

ωS = ~ω · ~n, (9)

where ~n is the unit normal to that particular plane and ~ω is the
vorticity vector.

D. Grid independence study

A comprehensive grid independence study has been per-
formed following the methodology suggested by Roache.34

A relative error is evaluated according to the following
expression:

ε =
�����
ϕi, coarse − ϕi, fine

ϕi, fine

�����
, (10)

where ϕ represents any flow variable. Here, the secondary
velocity magnitude ��~vS

�� is considered for calculating the rel-
ative error. The root-mean-square value of the relative error
(εrms) is calculated over a sufficiently large number of points.
For this purpose, about 1000 points are considered on each of
the five selected cross-sectional planes. Of these five selected
planes, three are end planes of branches G0B1, G1B1 and
G2B2, and the remaining two planes are taken within the bifur-
cation modules connecting G0-G1 and G1-G2 branches. On
each plane, about 1000 points are chosen along two mutually
perpendicular diameters (one lying on the meridional plane
and the other containing the trace of the downstream bifurca-
tion ridge). Thus the calculation of the root-mean-square value
of the relative error (εrms) is based on about 5000 points. This
εrms is used to provide a scalar measure of grid convergence.
Since grid halving (i.e., decreasing the grid size by a factor
of 2) is not a trivial task in a three dimensional computational
domain, a grid convergence index (GCI) was introduced in
Ref. 34, which is defined for the refined mesh by the following
expression:

GCIfine = Fs
εrms

rq
grid − 1

. (11)

Here, q is the order of discretization of all terms in space, Fs

is the factor of safety, and rgrid is the grid refinement factor
defined as rgrid = (Nfine/Ncoarse)1/3, where N is the number of
elements in the mesh. The value of Fs is set to 3, such that
the GCI value represents a scaled version of εrms for values
of rgrid , 2. The two values each of εrms and rgrid , for the
two sets of three meshes (coarse, medium, and fine; medium,
fine, and very fine) used for establishing grid independence,
are used to iteratively find a value of q. The closer the value
of q comes to its original value (i.e., q = 2 for the adopted
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TABLE II. Details of the grid independence study for the in-plane config-
uration of branching network comprising generations G0-G5 performed at
Re = 1000.

Number of elements in mesh rgrid εrms GCI

542 115 (coarse)-1 838 556 (medium) 1.502 0.045 0.107
1 838 556 (medium)-6 384 237 (fine) 1.514 0.018 0.041
6 384 237 (fine)-30 942 837 (very fine) 1.692 0.017 0.027

second-order spatial discretization), the better is the grid
independence.

The details of the meshes with results of the grid inde-
pendence test for the in-plane configuration of the symmetric
bronchial tree model are tabulated in Table II. The value of q is
calculated to be 1.91 for the two sets of three meshes (coarse,
medium, and fine; medium, fine, and very fine). Considering
the grid independence data presented in Table II, the fine mesh
would give an acceptable result. However, for increased pre-
cision of the CFD results and for increased smoothness, with
finer details, of the various contours presented later in Sec. V,
we have used the “very fine” mesh with 30 942 837 computa-
tional elements for all subsequent simulations for the in-plane
configuration.

The details of the similar procedure followed for establish-
ing the grid independence of the solutions for the out-of-plane
configuration are given in Table III. The value of q is cal-
culated to be 2.08 for the two sets of three meshes (coarse,
medium, and fine; medium, fine, and very fine). Although
the “fine” mesh would have been considered adequate on the
basis of the grid independence data alone (Table III), the “very
fine” mesh with 31 229 470 computational elements is used
for all subsequent simulations for the out-of-plane configu-
ration, for the above-mentioned reasons of improved preci-
sion of computed results and quality of the flow visualization
diagrams.

E. Validation of computational results

The present numerical method has been validated by com-
paring the results obtained by the present method with the
experimental results of Fresconi and Prasad.20 They performed
experiments to determine the secondary flow field in a symmet-
ric in-plane configuration of branching network comprising
four generations. They presented the average value of the
steady-state secondary velocity normalized by the average pri-
mary velocity as a function of the local Reynolds number and
distance downstream of a bifurcation ridge. In our numeri-
cal work, we replicated their geometry in which the diameter
of the G0 branch is 1.28 cm, the diameter reduction ratio is
0.78, the length to diameter ratio is 3.5, and the bifurcation

TABLE III. Details of the grid independence study for the out-of-plane con-
figuration of branching network comprising generations G0-G5 performed at
Re = 1000.

Number of elements in mesh rgrid εrms GCI

578 895 (coarse)-1 838 753 (medium) 1.470 0.047 0.121
1 838 753 (medium)-6 325677 (fine) 1.510 0.021 0.048
6 325 677 (fine)-31 229 470 (very fine) 1.703 0.020 0.031

FIG. 3. Comparison of the present numerical results with previous exper-
imental results for a symmetric four generation in-plane branching
network.

angle is 70°. Figure 3 shows a comparison of the average sec-
ondary velocity (normalized by the average primary velocity)
obtained by the present numerical method with the experimen-
tal results of Ref. 20. The secondary velocities are compared
in branches G1B1, G2B1, and G2B2 at cross-sectional planes
that are located at a distance equal to one diameter (of that
branch) downstream of the point of intersection of its cen-
treline with that of its mother branch and sister branch. The
good agreement of the present results with the experimental
results lends confidence in the results reported in the present
paper pertaining to networks comprising six generations of
branches.

V. RESULTS AND DISCUSSION

The flow in symmetric dichotomous branching networks
is characterized by asymmetric mass-flow distribution1 and
complex secondary flows. The secondary flow in the daugh-
ter branches in a two-generation network (comprising a sin-
gle bifurcation module) shows features similar to that in a
curved pipe,3 with two counter-rotating vortices in the cross
section. In the present work, we investigate the generation,
the three-dimensional distribution, and the evolution of sec-
ondary motion as the fluid progresses downstream through
a branched network comprising six generations of branches.
By considering both the in-plane and out-of-plane configu-
rations, we establish the effect of the configurationally dif-
ferent arrangement of the branches on the secondary flow
field.

It was established in Ref. 1 that in spite of the asymmetry in
the flow field developed in a symmetric branching network (as
used here) due to the effects of inertia and flow path curvature,
there exists a certain systematic order that makes it possible to
ascertain the flow field in all branches of a particular generation
by determining the flow field in some systematically selected
branches of that generation. Subsequently, it was shown that
it is necessary and sufficient to determine the flow field in
the branches lying on one side of the longitudinal symmetry
plane for the in-plane configuration. Similarly, it is necessary
and sufficient to determine the flow field in branches lying
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in one quarter of the network for the out-of-plane configura-
tion. In the course of the present work, it is found that exactly
the same conclusion holds true also regarding the secondary
velocity field. Hence, this paper discusses the secondary flow
field in half of the network for the in-plane configuration
and that in a quarter of the network for the out-of-plane
configuration.

A. Analysis of secondary motion
for in-plane configuration

It is to be realised that although the centrelines of all
branches lie on a single plane in the in-plane configuration,
the internal flow passages are three-dimensional and vary in
a complex manner in the flow direction. This gives rise to
complex secondary flow fields in the branches of the G0-G5
network. In Sec. V A 1, the general features of the secondary
flow field are illustrated through vectors of secondary velocity
superposed on the contours of secondary velocity magnitude
��~vS

�� at the start-planes and end-planes of selected branches.
Section V A 2 shows the three-dimensional modification of
the secondary flow field in the complex internal passages of a
bifurcation module. In Sec. V A 3, the secondary flow patterns
on a cross-sectional plane are correlated to a scalar parameter.
The evolution of the secondary flow field in the G0-G5 net-
work is demonstrated in Sec. V A 4 through contour plots and
newly defined scalar parameters.

1. General features of the secondary flow field

The development of a secondary motion perpendicular
to the main flow due to a curved flow path was explained
in Sec. I. In a branching network, the curvature of the flow
path in the bifurcation module gives rise to a similar sec-
ondary flow field. However, there are additional complexities
associated with the secondary flow in a branching network.
First of these is the complex fashion in which the cross sec-
tion changes from a circle of diameter equal to that of the
mother branch to two separate circles with diameters equal
to that of the daughter branches.1 Second, a secondary fluid
motion towards the outer edges of the bifurcation is gener-
ated by the presence of the bifurcation ridge and flow division
into the daughter branches. Third, the non-uniform velocity
distribution at the inlet plane of a bifurcation module down-
stream of generation G1 leads to different secondary flow
structures in the two daughter branches. Finally, the repeated
switchover from clockwise to anticlockwise curvature and vice
versa in the flow path considerably affect the secondary flow
field.

In Fig. 4, we present the vectors of secondary velocity
superposed on the contours of secondary velocity magnitude
��~vS

�� at selected cross-sectional planes for Re = 400. The selec-
tion of the cross-sectional planes is such that the changes
in the secondary flow field across a bifurcation module and
that across the straight portion of a branch may be sepa-
rately established. Stations (a) and (b) in Fig. 4 correspond
to the start-plane and end-plane of branch G1B1, stations (c)
and (d) correspond to the start-plane and end-plane of branch
G2B1, and stations (e) and (f) correspond to the start-plane
and end-plane of branch G2B2. The representational conven-
tion is selected such that the primary flow is towards the reader

FIG. 4. Secondary velocity vectors superposed on the contours of secondary
velocity magnitude on the start-planes and end-planes of branches G1B1,
G2B1, and G2B2 for Re = 400; in-plane configuration. (The length of the
vectors on any cross-sectional plane indicates the secondary velocity scaled
by the respective maximum secondary velocity on that plane. Contour plots
are represented in circular areas of equal size to keep clarity in the flow features
in branches of smaller diameters.)

with the trace of the bifurcation ridge indicating its actual
position and orientation with respect to the cross-sectional
planes shown in the figure. Figure 4 shows that the secondary
flow field is symmetric about a horizontal line in the diagram
(representing the “meridional plane”); this feature is analo-
gous to the same symmetry established for the primary flow
in Ref. 1.

With the fluid having traversed a single bifurcation module
up to the start-plane of G1B1, the secondary flow pattern at
station (a) is similar to that in a simple curved pipe.3 As the
fluid travels along the straight portion of branch G1B1, the
magnitude of the secondary velocity decreases considerably
and the locations of the maximum secondary velocity tend to
shift from a central region to near the top and bottom walls.
The cores of the Dean vortices,12 on the other hand, tend to
shift from the peripheral regions on the start-plane to more
central regions on the end-plane of branch G1B1 [station (b)].
Similar changes in the secondary flow pattern are also found to
occur across the straight portions of branches G2B1 [stations
(c) and (d)] and G2B2 [stations (e) and (f)]. In spite of these
changes, the basic flow structure (i.e., number of vortices and
sense of rotation in the vortices) remains unaltered across the
straight portion of a branch. For example, the Dean type flow
developed at stations (c) and (e) are retained, respectively, at
stations (d) and (f) for Re = 400 (Fig. 4).
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Figure 4 also establishes the changes in the secondary flow
pattern that occur across a bifurcation module. While station
(b) corresponds to the start of the bifurcation module connect-
ing G1B1, G2B1, and G2B2, stations (c) and (e) correspond to
the end of the same module. Three changes in the secondary
flow that are observed to occur across the bifurcation mod-
ule are as follows: (i) a significant increase in the maximum
value of the secondary velocity, (ii) a shift of this maximum
towards the central regions of the cross sections of the daugh-
ter branches, and (iii) a shift of the Dean vortices towards the
top and bottom walls. While the introduction of a fresh sec-
ondary motion in the curved bifurcation module is responsible
for the increased secondary velocity, the shifting of the vor-
tices may be attributed to the changing cross-sectional shape
and size in the bifurcation module. The secondary flow pat-
tern at station (e) shows the same qualitative features as those
at station (c). However, the sense of rotation of the fluid in
the top half of the cross section at station (e) is opposite to
that at station (c). This may be attributed to the opposite cur-
vatures along the flow paths leading to stations (c) and (e).
Thus, it is inferred that the effect of local curvature of the flow
path dominates over the effect of upstream flow history. A
comparison of the contours of secondary velocity magnitude
at stations (c) and (e) shows that the maximum (and aver-
age) value of the secondary velocity is greater at station (e)
than that at station (c). This is in line with the conclusion
regarding mass-flow distribution in the branches of generation
G2.1

The general features of the secondary flow described in
Fig. 4 are found to hold good throughout the branching net-
work for Re = 400. However, computations at various higher
values of inlet Reynolds number showed that for Re ≥ 1000,
deviations from these general features occur at certain loca-
tions. A representative flow solution of this class is shown
in Fig. 5 at Re = 1000. The stations (a)-(f) in Fig. 5 are the
same as those in Fig. 4. A second pair of vortices develops
in the central region near the inner edge of the bifurcation
module at station (c) for the higher Re flow giving rise to a
four-vortex system. The sense of rotation of the fluid in these
newly formed vortices is opposite to that in a typical Dean
vortex.11 Hence, these are referred to as anti-Dean vortices.
The formation of the anti-Dean vortices was attributed to the
double-peaked (M-shaped) velocity profile (about the diameter
which contains the trace of the bifurcation ridge) in the pre-
ceding mother branch.19 The development of the second pair
of vortices can also be thought of as a result of the interaction
of two secondary flow streams: (i) a stream of fluid travelling
towards the inner edge of the bifurcation due to centrifugal
effects and (ii) a stream travelling toward the outer edge of the
bifurcation generated due to the presence of the bifurcation
ridge.

The changes in the secondary flow field across the straight
portion of a branch that was observed in Fig. 4 (i.e., atten-
uation of secondary velocity and a shift in the position of
vortices) also holds good for Re = 1000 (Fig. 5). It is to
be noted that although the four-vortex system becomes more
clearly visible at the end-planes of the branches [stations (d)
and (f) in Fig. 5], the magnitude of the secondary velocity is
considerably smaller on the end-planes as compared to that

FIG. 5. Secondary velocity vectors superposed on the contours of secondary
velocity magnitude on the start-planes and end-planes of branches G1B1,
G2B1, and G2B2 for Re = 1000; in-plane configuration. (The length of the
vectors on any cross-sectional plane indicates the secondary velocity scaled
by the respective maximum secondary velocity on that plane.)

on the start-planes of G2B1 and G2B2 [stations (c) and (e)
respectively].

A comparison of Figs. 4 and 5 shows that the secondary
velocity magnitude on any of the cross-sectional planes shown
in the figures increases with an increase in the inlet Reynolds
number from 400 to 1000 (this trend is also seen to exist for
computations performed up to Re = 1600). A general obser-
vation that can be made from Figs. 4 and 5 is that the centres
of all the vortices (Dean or anti-Dean) usually correspond to
regions of low secondary velocity. Since it is known that the
flow field is symmetric about a horizontal line in the diagram,
only those regions of low secondary velocity (surrounded by
higher secondary velocities) correspond to vortices, which
occur symmetrically in both the top and bottom halves of the
cross section. However, it is difficult to correlate the com-
plete secondary flow structures with the contours of secondary
velocity magnitude.

2. Three-dimensional modification of the secondary
flow field in the complex internal passages
of a bifurcation module

For dichotomous branching, a bifurcation module con-
nects the end of a cylindrical section (representing the
“mother” branch for this module) to the beginning of two
cylindrical sections (representing the “daughter” branches).
The cross-sectional shape of the bifurcation module is circular
at the beginning at station (a) (Fig. 6) so that it can seamlessly
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merge with the cylindrical section of the preceding (mother)
branch. Then the shape changes in a complex fashion,1 as
shown in the figure at stations (b)–(d), finally being circular
again at stations (e) and (f) in order to seamlessly merge with
the two cylindrical sections of the next generation (daughter
branches). Thus, even for the in-plane configuration where the
centrelines of all cylindrical sections and bifurcation modules
lie on a single plane (the “meridional plane”), the internal flow
passages are three-dimensional and vary in a complex manner
in the flow direction. There is no analogue of this complex-
ity in the usual description of the secondary motion in curved
pipes.

An important criterion for capturing the secondary motion
properly is that the planes ought to be constructed such that
there is no component of the primary motion along that plane
(a few previous studies, e.g., Refs. 25 and 35, of the secondary
motion in bifurcating geometries suffer from non-compliance
of this critical principle). The orientations of the appropri-
ate cross sections would change along the pathline and may
even be non-planar (i.e., curved surfaces) if the local curva-
tures of the bounding walls are different at different points (the
exact values of which are not digitally known from the solid
modelling software used to create the bifurcating geometry).
We therefore have developed a simple method of construct-
ing appropriate planes that is practically implementable and
gives results with sufficient accuracy. The method is described
next.

Figure 6 shows how the complex internal passages of
a bifurcation module modify the secondary flow field. The
bifurcation module connecting the branches G0B1, G1B1,
and G1B2 is selected for the above purpose. Station (a) cor-
responds to the end-plane of G0B1 (i.e., the start-plane of
the bifurcation module). Station (c) corresponds to the cross-
sectional plane passing through the point of intersection of

the centrelines of G0B1, G1B1, and G1B2 and with normal
along the centreline of G0B1. Station (b) is located midway
between stations (a) and (c). Stations (e) and (f) correspond
to the start-planes of G1B1 and G1B2, respectively. The fluid
stream is divided in the bifurcation module and each of the
two newly formed streams is diverted through an angle of
35° (half of the bifurcation angle) with respect to the cen-
treline of G0B1, across the bifurcation module. It is assumed
here that this diversion of the flow path is restricted to the
region between stations (c) and (e) [or (f)] and that the diver-
sion angle varies linearly with distance from station (c) (along
the centreline of G0B1). Accordingly, station (d) is defined at
that location where the flow path has been diverted through
17.5° with respect to the centreline of G0B1. The cross sec-
tion at station (d) consists of two planes (which subtend an
angle of 145° on the upstream side) intersecting along a line
which coincides with the trace of the bifurcation ridge at
station (d).

It is observed in Fig. 6 that the secondary velocity mag-
nitude ��~vS

�� at stations (a) and (b) is small, with the secondary
motion directing the fluid from peripheral regions towards the
centre of the cross section. At station (c), the magnitude of
the secondary velocity is much greater than that at the pre-
vious station, and the secondary flow vectors show a distinct
motion of fluid towards the outer edge of the bifurcation. This
motion of the fluid may be attributed to the combined effects
of the gradual flattening of the cross section in the bifurca-
tion module and the presence of the downstream bifurcation
ridge. At station (d), there is a reversal in the direction of the
secondary fluid motion, and the vectors show that the fluid
is driven towards the centreline. This indicates that the cen-
trifugal effects due to the curvature of the flow path dominate
over the other effects governing the secondary fluid motion.
Moreover, the magnitude of the secondary velocity at station

FIG. 6. Changes in the secondary flow
field in the complex internal passage
in the bifurcation module connecting
G0 and G1 branches for Re = 1000;
in-plane configuration. (The represen-
tational convention is selected such that
the trace of the bifurcation ridge appears
as a vertical line in the diagram and the
primary flow is towards the reader.)
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(d) is also greater than that at station (c). The secondary flow
patterns at stations (e) and (f) are similar to that observed for
a simple curved pipe (i.e., Dean type flow). The shift in the
position of the maximum secondary velocity away from the
inner edges of the bifurcation at these stations as compared
to station (d) may be attributed to the region of low velocities
developed in the vicinity of the bifurcation ridge due to viscous
effects.

The bifurcation module is therefore responsible for a sig-
nificant increase in secondary velocities [comparing the veloc-
ities at stations (a), (e), and (f)], as well as the development
of new secondary flow structures (Dean vortices formed at
the end of the bifurcation module that were absent at its inlet
plane). However, the same bifurcation module preserves cer-
tain symmetry present at its inlet plane. The secondary flow
at station (a) is symmetric about a horizontal line (meridional
plane) as well as about a vertical line (trace of the bifurcation
ridge). The preservation of symmetry about the horizontal line
is observed in the secondary velocity contours at stations (e)
and (f). The symmetry about the vertical line manifests itself in
the development of identical (mirror images) secondary flow
structures in the two daughter branches [stations (e) and (f)].

3. Finding which other flow variable correlates
with secondary flow pattern

A study is undertaken to determine whether the secondary
flow structures on a cross-sectional plane can be correlated
with any flow variable. Superposition of the secondary veloc-
ity vectors on contours of primary velocity magnitude (��~vP

��)
and total pressure showed that there exists no definite correla-
tion between the secondary flow pattern and these variables
(those diagrams have not been included here for brevity).
The secondary velocity vectors superposed on the contours
of secondary velocity magnitude ��~vS

�� (see Figs. 4–6) show that
the vortex cores correspond to the regions of low secondary
velocities which are surrounded by the regions of greater
secondary velocities. However, the complete secondary flow
pattern including the direction of rotation of the fluid in the vor-
tices and other flow features (such as the secondary boundary
layer11) could not be captured by the contours of ��~vS

��.

Since the secondary fluid motion on a cross-sectional
plane may be attributed to a component of vorticity normal
to that plane, it was anticipated that the streamwise vortic-
ity parameter ωS [defined in Eq. (9)] may correlate with the
secondary flow structures. Figure 7 shows the secondary veloc-
ity vectors superposed on the contours of ωS (scaled by its
maximum value on that plane) on the end-planes of branches
G1B1 and G2B2. The representational convention adopted in
Fig. 7 is the same as that used in Figs. 4–6. The colour map is
selected such that both blue and red indicate regions of high
streamwise vorticity but of opposite sign; blue represents a
high negative value of ωS associated with a clockwise rota-
tion of the fluid, while red represents a high positive value of
ωS associated with an anti-clockwise rotation of the fluid. The
secondary velocity vectors in Fig. 7 show that the contours
of streamwise vorticity beautifully capture the qualitative fea-
tures of the secondary flow pattern. A vortex is represented by
a region of high ωS in the cross section, separated from the
wall by another region of high ωS (but of opposite sign). The
region of high ωS adjacent to the wall corresponds to a sec-
ondary boundary layer in the cross section.11 It is well known
that the vorticity in a two-dimensional boundary layer varies
from a maximum value at the wall to zero at the edge of the
boundary layer. This variation of the vorticity can be observed
in Fig. 7, whereωS varies from a high value at the walls to zero
at some distance from the wall where the secondary boundary
layer merges with the vortex. Our finding of a direct correspon-
dence between the contours of streamwise vorticity parameter
and the pattern of secondary velocity vectors for flow in bifur-
cating networks is in line with the findings of Hawthorne7 in
the context of the flow in a curved pipe regarding how the
secondary circulation gives rise to a component of vorticity in
the streamwise direction. (It is to be appreciated that the con-
tours of streamwise vorticity are indicative of the pattern of
the secondary velocity vectors and not of the contours of sec-
ondary velocity magnitude; this subtle point will be clearer in
Sec. V A 4.)

It was shown in Fig. 4 that the secondary flow field on
the plane G1P1 is qualitatively similar to that in a curved pipe.
Such a flow field is characterized by the presence of two similar

FIG. 7. Secondary velocity vectors
superposed on the contours of stream-
wise vorticity ωS on planes G1P1 and
G2P2 for Re = 1000; in-plane config-
uration. (ωS is scaled by its maximum
value on that plane. G1P1 and G2P2 are
the end-planes of the branches G1B1
and G2B2 respectively.)
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counter-rotating vortices, one in each half of the cross section
and secondary boundary layers between the vortices and the
walls in the respective halves. The pattern of secondary veloc-
ity vectors on the plane G1P1 in Fig. 7 shows that the fluid
enters this boundary layer (indicated by the blue region near
the top wall) near the inner edge (I.E.) of the bifurcation and
leaves it near the outer edge of the bifurcation (O.E.). The
red coloured region in the top half of the cross section repre-
sents a Dean vortex with anticlockwise fluid rotation. Thus the
overall secondary fluid motion in the top half of G1P1 is such
that fluid moves from O.E. to I.E. along the central regions of
the cross section (due to centrifugal effects) and along the top
and bottom walls towards O.E. (due to pressure gradient). The
symmetry in the secondary flow field about the meridional
plane (horizontal centreline in the diagram) is also captured
by the contours ofωS which show exactly the same secondary
flow structures in the bottom half of G1P1, but of opposite
sense (a blue coloured vortex and a red coloured boundary
layer).

The secondary flow pattern on the plane G2P2 for
Re = 1000 is also shown in Fig. 7. It was observed in Fig. 5
that two pairs of vortices (one pair of Dean type and the other
pair of anti-Dean type) develop on this plane and that the sec-
ondary flow pattern is symmetric about a horizontal centreline
in the diagram. These features are accurately captured by the
contours ofωS shown in Fig. 7. Since a pair of vortices appear
in the top half of G2P2, it is important to correctly identify
the Dean vortex from the anti-Dean vortex. A Dean vortex is
formed by the motion of fluid towards I.E. along the centreline
and towards O.E. along the top and bottom walls. Thus, the
vortex in blue colour in the top half represents the Dean vortex,

and hence the vortex in red colour in the same half of the cross
section represents the anti-Dean vortex (of opposite sense to
that of the Dean vortex). Figure 7 also shows that there occur
two pairs of secondary boundary layers on plane G2P2, each
one associated with one of the four vortices. Moreover, fluid
enters these boundary layers near the top and bottom walls.
This is quite different from the secondary boundary layer flow
observed in the presence of only two vortices (e.g., on plane
G1P1). Figure 7 shows that the streamwise vorticity parameter
ωS not only conveys the sense of rotation in a vortex through
a change of sign, but also captures the secondary boundary
layer.

4. Evolution of secondary flow for in-plane
configuration

In Secs. V A 1–V A 3, we have discussed the general fea-
tures of the secondary flow field in a branched network and
its variation with the inlet Reynolds number. Another impor-
tant aspect that requires investigation is the spatial evolution
of the secondary flow as the fluid travels down the genera-
tions from G0 to G5. Other than providing a comprehensive
picture of the evolution of quantitative flow visualizations of
secondary motion (e.g., contours of ��~vS

��, ωS and λ2), we have
formulated new parameters (ES /P, δSF , and δGn) for a quanti-
tative description of the overall features of the secondary flow
field.

Figure 8 shows the contours of secondary velocity magni-
tude ��~vS

�� on the end-planes of the branches of generations G1 to
G3 at Re = 1000. The stations (a)-(g) at which the contour plots
are presented are shown in the schematic diagram within Fig. 8.
As expected for this configuration, the secondary velocity field

FIG. 8. Contours of secondary velocity
magnitude at the end-planes of branches
of generations G1-G3 for Re = 1000;
in-plane configuration. (The represen-
tational convention is set such that the
downstream bifurcation ridge appears
as a vertical line in the diagram and the
primary flow is towards the reader.)
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is symmetric about a horizontal centreline in the diagram (i.e.,
the trace of the meridional plane).

In the present study, the λ2-criterion36 has been used as
a supplemental method for locating the cores of the vortices
in the flow field (denoted by small circles in Fig. 8, where the
secondary velocity is usually low). According to this criterion,
any point in the flow field, for which λ2 < 0, is part of a vortex.
Here, λ2 refers to the median eigenvalue of the symmetric
tensor S2 +Ω2, where S is the symmetric part andΩ is the anti-
symmetric part of the velocity gradient tensor. It is observed
in Fig. 8 that the secondary flow at plane G1P1 [station (a)] is
characterized by a pair of similar vortices, one in each half of
the cross section. The planes G2P1 and G2P2 [i.e., stations (b)
and (c)] are marked by the presence of two pairs of vortices.
The end-planes of the G3 branches [stations (d)-(g)] are again
characterized by a single pair of vortices.

Next we turn our attention to the magnitude of secondary
velocity displayed in Fig. 8. It is observed that the maximum
(and average) secondary velocity on plane G2P2 is greater than
that on plane G2P1. It was established in Ref. 1 that the mass-
flow rate in branch G2B2 is greater than that in branch G2B1
due to the combined effects of the flow path curvature and
inertia. It is also observed that in generation G3, the average
secondary velocity is maximum on the end-plane of branch
G3B3 [station (f)], the same branch that was found to have the
maximum mass-flow rate among all the G3 branches.1 Thus,
the connection is established here that the secondary velocity
is greater at the end-plane of that branch which has a higher
mass-flow rate.

It was shown in Figs. 4 and 5 that, at the start of the
straight portion of a branch, the maximum secondary velocity
generally occurs at central locations on the cross section and

has the general tendency to shift towards the top and bottom
walls as the flow progresses to the end plane of that branch.
This shifting is complete in planes G1P1, G2P1, and G2P2,
while the shift is partial on the end-planes of the branches of
G3 [stations (d)-(g)], as shown in Fig. 8, for short lengths of
the branches of this generation.

The physical significance of the streamwise vorticity
parameter ωS in the description of secondary motion in
branched networks was demonstrated in Fig. 7. Accordingly,
Fig. 9 shows the spatial evolution of ωS in the branched net-
work for Re = 1000. The schematic diagram within the figure
shows the locations of the cross-sectional planes in genera-
tions G1-G3 [stations (a)-(g)] on which the contours of ωS

are plotted. The contours of ωS , like the contours of ��~vS
��, are

symmetric about a horizontal centreline in the diagram (i.e.,
the trace of the meridional plane). Similar to the colour con-
vention used in Fig. 7, the colour map in Fig. 9 is selected
such that a bluish patch represents a region of high (nega-
tive) value of ωS with fluid rotation in the clockwise direction
and a reddish patch represents a region also of high ωS but
with fluid rotation in the anti-clockwise direction (positive
value).

The secondary flow field on plane G1P1 [station (a) in
Fig. 9] consists of two similar counter-rotating vortices, one
in each half of the cross section. Both are Dean vortices:
the one in the top half is anti-clockwise while that in the
bottom half is clockwise. The principle of distinguishing
a Dean vortex from an anti-Dean vortex (when they occur
together) based on the secondary fluid motion was explained
in Fig. 7. Application of this principle establishes that the
red patch (anti-clockwise) in the upper half of plane G2P1 in
Fig. 9 [station (b)] represents the Dean vortex whereas the

FIG. 9. Contours of streamwise vortic-
ity ωS on the end-planes of branches
of generations G1-G3 for Re = 1000;
in-plane configuration. (The represen-
tational convention is set such that the
downstream bifurcation ridge appears
as a vertical line in the diagram and the
primary flow is towards the reader.)
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blue patch (clockwise) in the same half of plane G2P1 rep-
resents the anti-Dean vortex. It must be noted that due to the
opposite curvature of the flow path, the sense of rotation of
the flow in the Dean vortices on plane G2P2 is opposite to
that on plane G2P1. Therefore, the red patch (anti-clockwise)
in the upper half of plane G2P2 in Fig. 9 [station (c)] repre-
sents the anti-Dean vortex whereas the blue patch (clockwise)
in the same half of plane G2P2 represents the Dean vortex.
The contours of ωS [at stations (d)-(g)] in Fig. 9 show that the
two-vortex system, found in generation G1, is re-established
on the end-planes of all branches of generation G3, instead of
the four-vortex system found in all branches of generation G2.

A comparison of the contours of secondary velocity mag-
nitude (Fig. 8) and streamwise vorticity parameters (Fig. 9)
reveals that a region of small secondary velocity in the interior
of a cross section maps to a region of high value of the stream-
wise vorticity parameter (this region usually corresponds to
the vortex core). However, it is difficult to establish any fur-
ther relations between the contours of ��~vS

�� and ωS . Hence, it is
concluded that, although the pattern of the secondary velocity
vectors is directly indicated by the contours of the streamwise
vorticity parameterωS (as demonstrated in Fig. 7), the contours
of secondary velocity magnitude ��~vS

�� cannot easily be visual-
ized from the contours ofωS . Consequently, we have included
separate figures showing the contours of ��~vS

�� to present this
complementary aspect of secondary motion.

In Figs. 8 and 9, the evolution of the secondary flow field
was shown up to generation G3. Figure 10 shows a λ2 iso-
surface in the in-plane configuration, depicting the vortices
formed in the branches of generations G1-G4 of the G0-G5
network. Since regions with λ2 < 0 indicate the existence of a
vortex, a particular negative value (normalized λ2 of �0.085)
is selected, by trial and error, that gives good flow visualization
simultaneously for all four generations shown in the figure. The
presence of four vortices in the flow field in the branches of
generation G2 is clearly visible by the four strands of the λ2 iso-
surface. The rather short lengths of the branches of generation
G3 result in the lack of well-defined separate strands of λ2

iso-surfaces as found in the G2 branches. However, it was

found that the flow field in all G3 branches consists of two
vortices (Fig. 9). The branches of generation G4 (except G4B8)
are characterized by two well-defined strands depicting the
presence of two vortices. The branch G4B8, to which the flow
reaches after encountering one clockwise turn followed by
three anti-clockwise turns, is characterized by four vortices
(though the additional pair vanishes after a small distance in
the branch). In the course of the present study, it was found that
the flow fields in all the G5 branches show two vortices. Hence
the flow field along the path G1B1-G5B15 (or G5B16) shows
an alternation of two and four vortices (2 vortices in G1B1, 4 in
G2B2, 2 in G3B4, 4 in G4B8, 2 in G5B15 or G5B16). Owing
to the symmetry of the flow field in the in-plane configuration
about the meridional plane, the vortices on any plane appear
in pair (i.e., for each clockwise rotating vortex, there is an
otherwise identical anticlockwise vortex). Another interesting
observation that can be made in Fig. 10 is the persistence of
the vortices up to longer distances in those G4 branches that
are aligned with their grandmothers (this alignment brings in
relatively more mass-flow in these branches1) as compared to
the other G4 branches. Hence, it is inferred that, for the in-
plane configuration, the persistence of the vortex structures
in the branches of a generation broadly correlates with the
mass-flow distribution pattern.

We have used all three parameters ��~vS
��, ωS , and λ2 for a

comprehensive description of the secondary flow field because
each has its own advantages as well as certain shortcomings.
The λ2-criterion is used to locate the core of vortices more
precisely, it does not however provide any information on the
sense of rotation of the flow in a vortex. The streamwise vor-
ticity parameter ωS not only conveys the sense of rotation in a
vortex through a change of sign but also captures the secondary
boundary layer. ωS thus provides more physical insight into
the description of the secondary motion in branched networks
as compared to the λ2-criterion. For either technique (λ2 or
ωS), the identification of fine details of the secondary flow field
may be challenging if there are several vortices present. It is to
be appreciated that the contours ofωS are indicative of the pat-
tern of the secondary velocity vectors and not of the contours

FIG. 10. λ2 iso-surface indicating
three-dimensional evolution of the vor-
tical structures in generations G1-G4
of a G0-G5 network at Re = 1000;
in-plane configuration.
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of secondary velocity magnitude. Consequently, we have also
included information about ��~vS

�� to present this complementary
aspect of secondary motion.

Having built a comprehensive picture of the evolution of
quantitative flow visualizations of secondary motion through
three-dimensional branched networks, here, we formulate new
parameters for a quantitative description of the overall features
of the secondary flow field. These parameters are then used to
assess the strength, non-uniformity, and evolution of secondary
motion.

We first develop a measure for the strength of secondary
motion. A new parameter ES /P is defined as follows:

ES/P =

√√√√√√√√√√√
∫

��~vS
��2 ��~vP

�� dA∫
��~vP

��2 ��~vP
�� dA

, (12)

where dA is an elemental area on the cross-sectional plane
and ~vS and ~vP are, respectively, the secondary and primary
velocities. Equation (12) is formulated such that the parameter
ES /P represents the mass-flow-averaged relative kinetic energy
of the secondary motion in an individual branch. The non-
dimensionalization is performed with respect to the kinetic
energy contained in the primary flow in the same branch.
The quantity ��~vP

�� is used also in the numerator of the RHS
of Eq. (12) because the mass-flow rate (throughflow) through
a small elemental area dA is given by ρ ��~vP

�� dA. The condition
ES /P = 0 indicates that there is no secondary motion in the
cross-sectional plane of the particular branch. The condition

ES /P = 1 signifies that on average the magnitude of secondary
velocity in the plane is comparable to the magnitude of primary
velocity.

It was shown previously (Figs. 4 and 5) that the maximum
secondary velocity at a particular plane increases significantly
as the inlet Reynolds number increases from 400 to 1000 (this
trend is also seen to exist for computations performed up to
Re = 1600). However it is found that the value of ES /P at a
given location does not vary significantly with the variation
of the inlet Reynolds number. We have therefore shown the
evolution of ES /P down the generations at one value of the
inlet Reynolds number (Re = 1000) in Fig. 11. It is observed
that ES /P decreases across the straight portion of a branch
(i.e., from start-plane to end-plane). However, there occurs a
considerable increase in ES /P across a bifurcation module due
to the introduction of fresh secondary motion on to the existing
flow. As an example, ES /P decreases from 0.299 at the start-
plane of G1B1 to 0.078 on its end-plane; then it increases to
0.293 on the start-plane of G2B2, only to decrease to 0.076
at its end-plane. This contribution of the bifurcation modules
in repeated enhancement of the secondary kinetic energy is
responsible for the occurrence of significant values of ES /P

even in generation G5. (It should be remembered that ES /P

represents relative secondary kinetic energy, i.e., the secondary
kinetic energy is normalized by the primary kinetic energy in
the same branch.)

Figure 11 also shows that the increase in ES /P across any
bifurcation module, situated downstream of generation G1, is
different along the two flow paths leading to its two daughter
branches. For example, the value of ES /P is found to increase

FIG. 11. Evolution of the relative sec-
ondary kinetic energy ES /P down the
generations in the G0-G5 network for
Re = 1000; in-plane configuration. (As
a result of symmetry in the in-plane con-
figuration, results are shown only for
one-half of the entire network.)
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from 0.078 at the end-plane of G1B1 to 0.188 at the start-plane
of G2B1 and to 0.293 at the start-plane of G2B2. It was found
in Ref. 1 that the mass-flow rate in G2B2 is greater than that in
G2B1. Thus, the increase of ES /P across a bifurcation module
is greater along that path which has a greater mass-flow rate.
This correlation is true for all the 30 bifurcation modules, sit-
uated downstream of generation G1, in the G0-G5 network. It
is also observed in Fig. 11 that in a particular generation, the
values of ES /P are considerably larger in those branches which
are aligned with their grandmother branches (these branches
also have greater mass-flow rates by virtue of this alignment1),
as compared to the others which are not aligned. For exam-
ple, the value of ES /P at the start plane of G2B2 (which is
aligned with its grandmother G0B1) is considerably greater
than that at the start-plane of G2B1. Out of the 16 branches
of generation G5 shown in Fig. 11, eight (viz., B2, B3, B6,
B7, B10, B11, B14, and B15) are parallel to their own grand-
mothers and the general levels of ES /P in these branches are
greater than that in the remaining eight branches. The align-
ment with the grandmother thus favours the generation of the
secondary flow, but the mechanism is complex because of the
non-uniform primary flow over the inlet cross-sectional area
of a bifurcation module, flow division at the bifurcation ridge,
and complex variations (in the flow direction) of the cross-
sectional area and local curvature. As a result of this complex-
ity, although the distribution of ES /P is broadly in line with
the mass-flow distribution (as observed above about the two
cohorts of eight G5 branches each), an exact 1:1 mapping does
not exist. For example, G5B11 and G5B1 have, respectively,
the highest and lowest mass-flow rates, but G5B2 and G5B9
have, respectively, the highest and lowest values of ES /P in
generation G5.

While ES /P gives a measure of the relative importance of
the secondary motion at a particular cross-sectional plane, it
does not give any direct indication of the non-uniformity in
the secondary velocity field on that plane. Hence, we define a
non-uniformity index δSF for individual branches (at particular
planes) as follows:

δSF =

√∫ (��~vS
�� − v̄s

)2dA

√
πRv̄s

. (13)

v̄S is a measure of the average secondary velocity at that plane
and is defined as follows:

v̄S =

√√√√∫
��~vS

��2dA

πR2
. (14)

Here, R is the radius of the branch in which the cross-sectional
plane is located. One characteristic of this newly defined non-
uniformity index δSF is that for a uniform secondary flow field
δSF = 0. The greater, the value of δSF , the greater is the non-
uniformity of the secondary flow field at the chosen plane of
the particular branch.

The values of δSF at the start planes of the branches of
generations G1-G5 are listed in Table IV for three values of
the inlet Reynolds number. As a result of symmetry in in-
plane configuration, results are shown only for one-half of the
entire network. Even though the various contour plots of the

TABLE IV. Values of the non-uniformity index δSF at the start-planes of the
branches of generations G1-G5 for various inlet Reynolds numbers; in-plane
configuration.

Branch Re = 400 Re = 1000 Re = 1600

G1B1 0.489 0.443 0.423
G2B1 0.514 0.461 0.457
G2B2 0.552 0.483 0.446
G3B1 0.501 0.414 0.377
G3B2 0.514 0.429 0.432
G3B3 0.537 0.444 0.417
G3B4 0.509 0.447 0.437
G4B1 0.466 0.465 0.472
G4B2 0.581 0.508 0.467
G4B3 0.572 0.494 0.454
G4B4 0.477 0.485 0.509
G4B5 0.470 0.514 0.556
G4B6 0.594 0.548 0.518
G4B7 0.583 0.559 0.549
G4B8 0.489 0.520 0.506
G5B1 0.615 0.561 0.498
G5B2 0.661 0.584 0.532
G5B3 0.651 0.546 0.485
G5B4 0.601 0.511 0.490
G5B5 0.600 0.509 0.481
G5B6 0.638 0.573 0.538
G5B7 0.653 0.608 0.566
G5B8 0.603 0.545 0.534
G5B9 0.599 0.523 0.536
G5B10 0.650 0.605 0.569
G5B11 0.638 0.558 0.514
G5B12 0.565 0.536 0.593
G5B13 0.585 0.524 0.554
G5B14 0.644 0.576 0.534
G5B15 0.651 0.604 0.553
G5B16 0.607 0.545 0.554

secondary flow structure appear visually very different from
one another (e.g., the secondary flow field in all branches of
the G0-G5 network is characterized by a two-vortex system at
Re = 400, whereas four-vortex systems develop in some
branches at higher values of inlet Reynolds number), the val-
ues of δSF are found to lie within a small range of 0.37 to 0.66.
Up to generation G3, the values of δSF are found to decrease as
Re increases. In generation G4, the same trend (i.e., decrease
of δSF with increasing Re) exists only in those branches which
are aligned with their grandmothers. The same trend in the
variation of δSF with Re is found to hold true in most of the
branches of generation G5 (except G5B9, G5B12, G5B13, and
G5B16). For all three values of Re listed in Table IV, the max-
imum value of δSF in generation G2 is found to be greater
than that in generation G3; however, beyond G3, the maxi-
mum value of δSF in a generation is found to increase as the
flow travels down the generations.

B. Analysis of secondary motion
for out-of-plane configuration

The dimensions of the branches and the bifurcation angle
in the out-of-plane configuration are identical to those of the in-
plane configuration. However, the centrelines of all branches in
the out-of-plane configuration do not lie on a single plane. The
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planes containing the centrelines of branches of a generation
are rotated through 90° with respect to the plane containing
the centrelines of their mother and grandmother branches.
The complexities associated with such a tortuous flow path
in the out-of-plane configuration may be expected to give
rise to flow fields that are considerably different from those
observed for the in-plane configuration. It was shown in Ref.
1 that it is necessary and sufficient to determine the flow field
in branches lying in one quarter of the network for the out-
of-plane configuration. In the course of the present work, it
is found that exactly the same conclusion holds true for the
secondary flow field. Accordingly, here we present the sec-
ondary flow in a quarter of the network for the out-of-plane
configuration.

1. General features of the secondary flow field

The flow paths in both the configurations are identical up
to the end-planes of the branches of generation G1 (which
is discussed in Sec. V A 1); hence, we begin here with a
study of secondary motion in the next generation. In partic-
ular, we investigate the changes in the secondary flow across
the straight portions of branches of generations G2 and G3
and that across the bifurcation modules connecting them.
Figure 12 shows the secondary velocity vectors superposed
on the contours of ��~vS

�� for Re = 400. Stations (a) and (b)
correspond to the start-plane and end-plane of branch G2B1,
stations (c) and (d) correspond to the start-plane and end-
plane of branch G3B1, and stations (e) and (f) correspond
to the start-plane and end-plane of branch G3B2. The repre-
sentational convention is adopted such that the primary flow
is towards the reader with the trace of the bifurcation ridge
indicating its actual position and orientation with respect to
the cross-sectional planes shown in the figure. An important
feature of the secondary flow field in the out-of-plane config-
uration (Fig. 12) that distinguishes it from that in the in-plane
configuration (Figs. 4 and 5) is the absence of any line of sym-
metry in the flow field at a cross section from generation G2
onwards.

Due to the representational convention adopted for
Fig. 12, the direction of secondary motion on the cross-
sectional planes in branch G2B1 [i.e., stations (a) and (b)]
appear to be rotated through 90° with respect to the nor-
mal Dean-type flow. The secondary motion on these planes
is governed by the curvature of the flow path in bifurcation
module connecting branches G1B1, G2B1, and G2B2. For the
90° out-of-plane configuration, the bifurcation ridge shown in
Fig. 12 is perpendicular to the above-mentioned bifurcation
ridge (whose trace would thus appear as a horizontal line in
the figure). This explains the rotation of the normal Dean-type
flow through 90° at stations (a) and (b).

The change in the secondary flow field across the straight
portion of a branch (from start-plane to end-plane) in gen-
erations G2 and G3 is demonstrated in Fig. 12. Similar to
the observation made for the in-plane configuration, as the
fluid travels along the straight portion of a branch in the out-
of-plane configuration, the strength of the secondary flow
is attenuated but the nature of the velocity field (i.e., num-
ber of vortices and sense of rotation in the vortices) is not

FIG. 12. Secondary velocity vectors superposed on the contours of secondary
velocity magnitude on the start-planes and end-planes of branches G2B1,
G3B1, and G3B2 for Re = 400; out-of-plane configuration. (The length of the
vectors on any cross-sectional plane indicates the secondary velocity scaled
by the respective maximum secondary velocity on that plane.)

altered. There occurs a shift in the location of maximum sec-
ondary velocity from a central region towards the walls across
the straight portion of the branch G2B1. However, due to
the relatively short length of the branches of generation G3,
the above-mentioned shift is only partial for the branches of
generation G3.

Figure 12 also establishes the changes in the secondary
flow pattern which occur across a bifurcation module. While
station (b) corresponds to the start of the bifurcation module
connecting G2B1, G3B1, and G3B2, stations (c) and (e) cor-
respond to the end of the same module. Since the secondary
motion on a cross-sectional plane is primarily governed by
the curvature of flow path in the preceding bifurcation mod-
ule, the direction of the secondary motion at stations (c) and
(e) (which occurs downstream of the bifurcation ridge shown
in Fig. 12) appears to be rotated through 90° with respect to
that at station (b). The changes in the secondary flow that are
observed to occur across the bifurcation module are as fol-
lows: (i) a significant increase in the maximum value of the
secondary velocity, (ii) a shift of this maximum towards the
central regions of the cross sections of the daughter branches,
and (iii) a shift of the vortices towards the walls. The opposite
sense of the secondary fluid motion observed on the start-plane
of G3B2 [station (e)] as compared to that on the start-plane of
G3B1 [station (c)] may be attributed to the opposite curva-
ture along the two flow paths. A comparison of the contours of
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secondary velocity magnitude at stations (c) and (e) shows that
the maximum (and average) value of the secondary velocity
is greater at station (e) than that at station (c). This is in line
with the conclusion regarding mass-flow distribution in the
branches of generation G3.1

Although the general features of the secondary flow shown
in Fig. 12 hold good throughout the branching network for
Re = 400, computations show that for Re ≥ 1000, deviations
from these general features occur at certain locations. A rep-
resentative flow solution of this class is shown in Fig. 13 at
Re = 1000. The stations (a)-(f) in Fig. 13 are the same as those
in Fig. 12. The secondary flow field at stations (a) and (b) in
Fig. 13 are characterized by three vortices as compared to the
two-vortex system shown in Fig. 12, demonstrating the effect
of the inlet Reynolds number on the vortical structure. (A com-
parison of the three vortices in Fig. 13 at Re = 1000 with the
four-vortex system developed at the same locations in the in-
plane configuration of Fig. 5 for the same value of Re demon-
strates the effects of the arrangement of the same individual
branches on the vortical structure developed.) The secondary
flow on the start-planes of G3B1 [station (c)] and G3B2 [sta-
tion (e)] however show the usual two-vortex system similar to
that found in a curved pipe.3 This indicates that although the
bifurcation module adds fresh secondary motion, the effects
of local curvature dominate over the effects of upstream flow
history.

FIG. 13. Secondary velocity vectors superposed on the contours of secondary
velocity magnitude on the start-planes and end-planes of branches G2B1,
G3B1, and G3B2 for Re = 1000; out-of-plane configuration. (The length of
the vectors on any cross-sectional plane indicates the secondary velocity scaled
by the respective maximum secondary velocity on that plane.)

The qualitative change of the secondary motion across
the straight portion of a branch does not depend on the inlet
Reynolds number. The general features consist of an attenua-
tion of the secondary velocity in the flow direction, a shift of the
location of maximum secondary velocity toward the periph-
ery, and a shift of the centre of the vortices toward the centre
of the cross section. As a result of the last feature, the three-
vortex system becomes more clearly visible at the end-plane
of the G2B1 [station (b) in Fig. 13], though the magnitude of
the secondary velocity is considerably smaller there than at
station (a).

Computations in the range 400 ≤ Re ≤ 1600 show that
the magnitudes of the secondary velocity in the out-of-plane
configuration increase significantly with the increase of the
inlet Reynolds number. The absence of any line of symmetry
in the secondary velocity field at a cross section from gen-
eration G2 onward in the out-of-plane configuration allows
the occurrence of an odd number of vortices (three) in the
branches of generation G2. A general observation that can be
made from Figs. 12 and 13 is that the centres of the vortices are
regions of low secondary velocity (as for the in-plane config-
uration). However, it is difficult to correlate the complete sec-
ondary flow structures with the contours of secondary velocity
magnitude.

2. Three-dimensional modification of the secondary
flow field in the complex internal passages
of a bifurcation module

The bifurcation modules connecting the straight portions
of branches of two successive generations in the out-of-plane
configuration are structurally similar to those in the in-plane
configuration. However, the three-dimensional arrangement of
the branches in the 90° out-of-plane configuration is such that
walls of the branch aligned with the inner and outer edges
of the preceding bifurcation module get aligned with the top
and bottom walls of the succeeding bifurcation module. As a
consequence, the direction of action of the centrifugal force
(from outer to inner edge of a bifurcation) at a cross section
gets rotated through 90° after the flow crosses each bifurcation
module.

Figure 14 shows how the internal passages of a bifurcation
module modify the secondary velocity field. The bifurcation
module connecting the branches G1B1, G2B1, and G2B2 is
selected for the above purpose. In order to ensure that the
planes in Fig. 14 capture the secondary motion properly, they
must be constructed such that there is no component of primary
motion along them. The method used to construct the planes
in Fig. 6 is used in Fig. 14 as well. Station (a) corresponds to
the end-plane of G1B1 (i.e., the start-plane of the bifurcation
module). Station (c) corresponds to the cross-sectional plane
passing through the point of intersection of the centrelines of
G1B1, G2B1, and G2B2 and with normal along the centre-
line of G1B1. Station (b) is located midway between stations
(a) and (c). Stations (e) and (f) correspond to the start-planes
of G2B1 and G2B2, respectively. The bifurcation angle for
this configuration is the same as that for the in-plane config-
uration (70°). Hence, as in Fig. 6, station (d) in Fig. 14 is
defined at that location where the flow path has been diverted
through 17.5° with respect to the centreline of G1B1. The
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FIG. 14. Changes in the secondary
flow field across the bifurcation mod-
ule connecting G1B1, G2B1 and
G2B2 branches for Re = 1000; out-of-
plane configuration. (The representa-
tional convention is selected such that
the trace of the bifurcation ridge appears
as a vertical line in the diagram and the
primary flow is towards the reader.)

cross section at station (d) consists of two planes subtending
an angle of 145° on the upstream side, intersecting along a
line which coincides with the trace of the bifurcation ridge at
station (d).

The fluid traverses only one bifurcation module (that join-
ing G0 and G1 branches) before arriving at the inlet plane of
the module shown in Fig. 14. Hence the secondary velocity
field at station (a) is qualitatively similar to the Dean type flow
observed in a curved pipe. The representational convention
is adopted such that the trace of the bifurcation ridge (of the
module shown in Fig. 14) appears as a vertical line in the dia-
gram. Owing to the orthogonality of two successive flow units,
the trace of the preceding bifurcation ridge would appear as a
horizontal line. This results in the rotation of the normal Dean
type flow pattern through 90° at stations (a) and (b). At station
(c), there occurs a distinct secondary motion of fluid towards
the outer edges of the bifurcation. This motion of the fluid
may be attributed to the combined effects of the presence of
the downstream bifurcation ridge and the gradual flattening of
the cross section in the bifurcation module between stations
(b) and (c). Similar to the observation made in Fig. 6 for the
in-plane configuration, Fig. 14 shows that there occurs a rever-
sal of the secondary motion (i.e., from the outer edges of the
bifurcation towards the centre of the cross section) at station (d)
due to the dominance of local curvature effects. The secondary
motion at stations (e) and (f) is characterized by considerably
greater velocities as compared to that at station (d) and the
presence of three vortices, two of which appear near the top
and bottom walls and one appears near the inner edge of the
bifurcation.

A comparison of the magnitudes of the secondary veloc-
ity ��~vS

�� at the inlet plane [station (a)] with that at the outlet
planes [stations (e) and (f)] shows that the bifurcation mod-
ule significantly increases the secondary velocity magnitudes.
At station (a) in Fig. 14, the secondary motion drives fluid

from the top wall towards the bottom wall along the central
region of the cross section, and back along the left and right
walls towards the top wall. At stations (e) and (f), the vec-
tors show that the secondary motion is directed from the outer
edges to the inner edge of the bifurcation along the central
regions, and back along the top and bottom walls towards the
outer edges of the bifurcation. Thus the bifurcation module
in the out-of-plane configuration changes the direction of the
secondary motion, causing a 90° rotation of the secondary
flow structures. Moreover, the selected bifurcation module
alters the number of vortices; a two-vortex system at sta-
tion (a) is converted to a three-vortex system at stations (e)
and (f). However, the same bifurcation module preserves cer-
tain symmetry present at its inlet plane. The symmetry of the
secondary flow about the vertical line is preserved, leading
to the development of identical (mirror images) secondary
flow structures in the two daughter branches [stations (e)
and (f)].

3. Evolution of secondary flow for out-of-plane
configuration

Having discussed the general features of the secondary
flow in the branching network, we now focus on the spatial
evolution of the secondary flow as the fluid travels down the
generations from G0 to G5. We build a comprehensive picture
of the evolution of secondary motion through contours of ��~vS

��,
ωS , and λ2. In addition to this, the new parameters (viz., ES /P,
δSF , and δGn) are used to give a quantitative description of
the overall features of the secondary flow field. As mentioned
previously, the secondary flow field in the out-of-plane config-
uration is such that it is necessary and sufficient to determine
the flow field in a quarter of the network. Accordingly, here
we present the secondary flow details in the branches in one
quarter of the network (i.e., in the branches originating from
G2B1).
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FIG. 15. Contours of secondary veloc-
ity magnitude at the end-planes of
branches of generations G2-G4 for
Re = 1000; out-of-plane configuration.
(The representational convention is set
such that the downstream bifurcation
ridge appears as a vertical line in the dia-
gram and the primary flow is towards the
reader.)

Figure 15 shows the contours of the secondary velocity
magnitude ��~vS

�� on the end-planes of the branches of genera-
tions G2 to G4 for the out-of-plane configuration at Re = 1000.
The stations [(a)-(g)] at which the contour plots are presented
are shown in the schematic diagram within Fig. 15. The con-
tour of ��~vS

�� on the end-plane of G1B1 for this configuration is
similar to that at the same location in the in-plane configuration
[station (a) in Fig. 8] owing to identical flow paths up to that
location for both configurations. Hence, in Fig. 15, we begin
with the contour of ��~vS

�� on the end-plane of G2B1. It is observed
that there exists no line of symmetry for the secondary velocity
field on the end-planes of branches of generations G2-G4 in
the out-of-plane configuration.

The λ2-criterion36 has been used for locating the cores of
the vortices (denoted by small circles in Fig. 15) where the sec-
ondary velocity is usually low. Contrary to the existence of two
pairs of vortices in the in-plane configuration, the end-planes
of the branches of generation G2 in the out-of-plane configura-
tion are marked by three vortices. The secondary flow patterns
on the end-planes of the branches of generations G3 and G4
are again characterized by two dissimilar vortices (due to lack
of any line of symmetry). The vortices in the cross section are
shifted from their expected positions (near the top and bot-
tom walls) as observed in curved pipes or at the end-planes
of G3 branches in the in-plane configuration (Fig. 8). This
apparent shift in the location of the vortices is due to the com-
bined effects of the rotation of successive flow units through
90° in this configuration and the adopted representational
convention.

Having discussed the nature of vortical structures, we now
turn our attention to the magnitudes of secondary velocity.
Figure 15 shows that the maximum (and average) secondary

velocity on plane of G3P2 is greater than that on G3P1. It
was established in Ref. 1 that the mass-flow rate in branch
G3B2 is greater than that in branch G3B1. Moreover, among
the G4 branches, G4B4 [station (g)] shows the greatest value
of the maximum (and average) secondary velocity; the same
branch was found to have the greatest mass-flow rate.1 Thus,
it is established here that the secondary velocity is greater at
the end-plane of that branch which has a higher mass-flow
rate.

It has been established in Figs. 12 and 13 that the maxi-
mum secondary velocity generally occurs at central locations
on the cross section at the start of the straight portion of a
branch, and that it has the general tendency to shift towards
the walls as the flow progresses to the end plane of that
branch. This shifting is complete on the end-planes of branches
of generations G2 and G4, while the shift is partial on the
end-planes of the branches of G3 [stations (b) and (c)], as
shown in Fig. 15, for short lengths of the branches of this
generation.

The correlation between the patterns of secondary veloc-
ity vectors and streamwise vorticity ωS on a cross-sectional
plane that was established in Fig. 7 for the in-plane configura-
tion is found to hold good for the out-of-plane configuration
as well. Figure 16 shows the spatial evolution of ωS in the
branched network for Re = 1000. The schematic diagram
within the figure shows the locations of the cross-sectional
planes in generations G2-G4 [stations (a)-(g)] on which the
contours of ωS are plotted. Similar to the colour convention
used in Figs. 7 and 9, the colour map in Fig. 16 is selected
such that a bluish patch represents a region of high (nega-
tive) value of ωS with fluid rotation in the clockwise direction
and a reddish patch represents a region also of high ωS but
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FIG. 16. Contours of streamwise vor-
ticity ωS at the end-planes of branches
of generations G2-G4 for Re = 1000;
out-of-plane configuration. (The rep-
resentational convention is set such
that the downstream bifurcation ridge
appears as a vertical line in the dia-
gram and the primary flow is towards
the reader.)

with fluid rotation in the anti-clockwise direction (positive
value).

The contours ofωS at station (a) in Fig. 16 shows three vor-
tices (two anti-clockwise vortices indicated by the red patches
and one clockwise vortex indicated by the blue patch on the
right) that were denoted by small circles in Fig. 15. The
contours of ωS on the end-planes of the branches of gener-
ations G3 [stations (b) and (c)] and G4 [stations (d)-(g)] in
Fig. 16 show that the two-vortex system is re-established.
The apparent change in the position of these vortices (the
vortices appear near the left and right walls instead of the
top and bottom walls) is due to the combined effects of the
three-dimensional arrangement of the branches in this con-
figuration and the adopted representational convention, as
explained in the context of Fig. 15. It must be noted that
while the two vortices occurring in a pair at any cross section
in the in-plane configuration are similar and counter-rotating,
those occurring in pairs in a branch downstream of generation
G1 in the out-of-plane configuration, are counter-rotating but
dissimilar.

A comparison of the contours of secondary velocity
magnitude (Fig. 15) and the streamwise vorticity parameter
(Fig. 16) reveals that a region of small secondary velocity
in the interior of a cross section maps to a region of high
value of a the streamwise vorticity parameter (this region usu-
ally corresponds to the vortex core). However, it is difficult
to establish any further relations between the contours of ��~vS

��
and ωS .

Figure 17 shows a λ2 iso-surface in the out-of-plane con-
figuration, depicting the vortices formed in the branches of
generations G1 to G4 of a G0-G5 network (owing to the estab-
lished symmetry in the flow field, only a quarter of the network

is shown here). Since regions with λ2 < 0 indicate the exis-
tence of a vortex, a particular negative value (normalized λ2

of −0.07) is selected, by trial and error, that gives good flow
visualization simultaneously for all four generations shown in
the figure. The presence of three vortices in the flow field in
the branch G2B1 is clearly visible by the three separate strands
of the λ2 iso-surface. Each branch of generation G3 has two
separate strands of λ2 iso-surfaces but the strands are not as
well-defined as they are in generation G2; this is due to rather
short lengths of the branches of generation G3. It was seen in
Fig. 10 (for in-plane configuration) that all vortices in the G4
branches occur in pairs, and the two vortices forming a pair are
similar to each other. This similarity is due to the symmetry
of the flow field about the meridional plane of the in-plane
configuration. However, in the out-of-plane configuration
(Fig. 17), the flow field in the branches originating from any
one of the four G2 branches are all different from one another
and do not possess any plane of symmetry. Consequently, the
order found in the vortex structure for in-plane configuration
is absent here; there are twelve branches of generation G4 for
the out-of-plane configuration which contain two dissimilar
vortices each, and there are four branches (e.g., G4B3) which
contain an odd number (three) of vortices (i.e., the vortices are
not even paired in these branches). An interesting observation
is that, if one follows the path from G1B1 to G5B5 (or G5B6)
at high inlet Reynolds number (e.g., Re = 1000 or Re = 1600),
one would encounter an alternation of two-vortex and three-
vortex systems (2 vortices in G1B1, 3 in G2B1, 2 in G3B2, 3
in G4B3, 2 in G5B5 or G5B6).

It was seen in Fig. 10 that the vortices persisted up to
longer distances in the G4 branches of the in-plane configu-
ration, which are aligned with their grandmothers. However,
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FIG. 17. λ2 iso-surface indicating
three-dimensional evolution of the vor-
tical structures in generations G1-G4
of a G0-G5 network at Re = 1000;
out-of-plane configuration.

Fig. 17 shows that the vortices in all G4 branches (barring
one of the three vortices in G4B3 and its homologues) per-
sist up to similar distances into the branch for the out-of-plane
configuration. This behaviour may be attributed to the smaller
degree of non-uniformity in the mass-flow distribution in this
configuration.1 The fact that one of the three vortices in G4B3
shown in Fig. 17 does not persist up to the end-plane of G4B3 is
reflected in the appearance of only two vortices in the contours
ofωS constructed on the end-plane of G4B3 shown previously
in Figs. 15(f) and 16(f).

The strength of the secondary flow for the out-of-plane
configuration is also quantified by the relative secondary
kinetic energy ES /P defined in Eq. (12). It is shown in
Figs. 12 and 13 that the maximum secondary velocity at a
particular plane increases significantly as the inlet Reynolds
number increases from 400 to 1000 (this trend is also seen to
exist for computations performed up to Re = 1600). However,
similar to the in-plane configuration, the values of ES /P for
the out-of-plane configuration also do not vary significantly
with the variation of Re. We therefore show the evolution of
ES /P down the generations of the out-of-plane configuration at
Re = 1000 only (Fig. 18). The value of ES /P is found to decrease
appreciably across the straight portion of a branch (i.e., from
start-plane to end-plane of the branch). However, there occurs
a considerable increase in the secondary flow strength across a
bifurcation module due to the introduction of fresh secondary
motion to the existing flow. This contribution of the bifur-
cation modules in repeated enhancement of the secondary
kinetic energy is responsible for the occurrence of signifi-
cant values of ES /P even in generation G5. A comparison of
Figs. 11 and 18 shows that the levels of ES /P are greater in the
out-of-plane than in the in-plane configurations. This may be
attributed to the more tortuous flow path in the out-of-plane

configuration resulting in the generation of greater secondary
motion.

Table V shows the values of the non-uniformity index
δSF [defined in Eq. (13)] at the start-planes of the branches
of generations G1-G5 for three values of the inlet Reynolds

FIG. 18. Evolution of the relative secondary kinetic energy ES /P down the
generations in the G0-G5 network for Re = 1000; out-of-plane configuration.
(As a result of symmetry in out-of-plane configuration, results are shown only
for one-fourth of the entire network.)
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TABLE V. Values of the non-uniformity index δSF at the start-planes of the
branches of generations G1-G5 for various inlet Reynolds numbers; out-of-
plane configuration.

Branch Re = 400 Re = 1000 Re = 1600

G1B1 0.489 0.443 0.425
G2B1 0.521 0.452 0.441
G3B1 0.528 0.467 0.440
G3B2 0.538 0.468 0.445
G4B1 0.573 0.518 0.503
G4B2 0.546 0.530 0.511
G4B3 0.539 0.502 0.567
G4B4 0.581 0.551 0.530
G5B1 0.623 0.593 0.595
G5B2 0.607 0.559 0.598
G5B3 0.608 0.553 0.607
G5B4 0.623 0.579 0.539
G5B5 0.620 0.582 0.572
G5B6 0.596 0.525 0.524
G5B7 0.599 0.626 0.623
G5B8 0.619 0.602 0.621

number. As a result of symmetry explained at the beginning of
Sec. V B dedicated to the out-of-plane configuration, Table V
shows results only for one-fourth of the entire network. As in
the case of the in-plane configuration (Table IV), the values of
δSF in Table V are found to lie within a small range of 0.43
to 0.62. For branches of generations G1, G2, and G3, δSF is
found to decrease as the inlet Reynolds number increases from
400 to 1600. In generation G4, the same trend (i.e., decrease
of δSF with increasing Re) exists for all branches except G4B3
(and its homologues). However, it is difficult to establish any
definite trend in the variation of δSF with Re in the branches
of generation G5. For all three values of Re listed in Table V,
the maximum value of δSF in a generation increases mono-
tonically from G1 to G5. Another interesting characteristic of
δSF in the out-of-plane configuration is that for a given inlet
Reynolds number, the variation of δSF in a particular gen-
eration is appreciably smaller than the same in the in-plane
configuration.

C. Non-uniformity of secondary motion in a generation
and its downstream evolution

Both ES /P defined by Eq. (12) and δSF defined by Eq. (13)
are parameters that quantify the overall characteristics of sec-
ondary flow on a cross-sectional plane of a particular branch.
A further overall parameter δGn is defined below to quantify
the degree of non-uniformity in secondary motion among the
branches of a particular generation Gn,

δGn = (v̄S,Gn,max − v̄S,Gn,min)/v̄S,Gn,avg. (15)

v̄S values are calculated by Eq. (14) at homologous locations
in all the branches of a particular generation Gn: the maximum
of this cohort is designated by v̄S,Gn,max, the minimum of this
cohort is designated by v̄S,Gn,min, and v̄S,Gn,avg is the arithmetic
mean of the v̄S values in all branches belonging to the gener-
ation Gn. The condition δGn = 0 indicates that all branches of
the chosen generation have the same value for v̄S . The greater

FIG. 19. Evolution of δGn with increasing generation number for both in-
plane and out-of-plane configurations at Re = 1000.

the value of δGn, the greater is the non-uniformity in the dis-
tribution of secondary flow among the branches of generation
Gn.

Figure 19 shows that δGn grows as the generation number
Gn increases. For a given inlet Reynolds number, the value of
δGn in a particular generation in the out-of-plane configuration
is appreciably smaller than the same in the in-plane configu-
ration. This is in line with the conclusion regarding mass-flow
distribution in various branches of a generation.1

VI. CONCLUSION

A major aim of the present work is to understand and
thoroughly document the generation, the three-dimensional
distribution, and the evolution of secondary motion as the fluid
progresses downstream through a branched network. Six gen-
erations of branches (involving 63 straight portions and 31
bifurcation modules) are computed in one go; such compu-
tational challenges are rarely taken in the literature. Since
accurate capturing of the fine details of secondary motion
is more challenging than capturing the primary flow field,
we recomputed the entire flow field through the same three-
dimensional geometry of flow passages given in Ref. 1 using
a much finer mesh here; more than 30 × 106 computational
elements are used. Results are presented for three values of
inlet Reynolds number: 400, 1000, and 1600, and two dif-
ferent three-dimensional arrangements of the same individual
branches—in-plane and out-of-plane.

As compared to the secondary motion in a simple curved
pipe,3 three distinctive features, viz., the change of shape and
size of flow-cross-section, the division of non-uniform pri-
mary flow in a bifurcation module, and repeated switchover
from clockwise to anticlockwise curvature and vice versa
in the flow path, make the present situation more complex.
Another complexity arises due to the consideration of two
three-dimensional branching configurations, in-plane and out-
of-plane, side by side. It is shown that the straight portions
in the network, in general, attenuate secondary motion, while
the three-dimensionally complex bifurcation modules gener-
ate and alter the nature of secondary motion (Figs. 4–6, 10–14,
17, and 18). Across a bifurcation module, the locations of
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maximum secondary velocity tend to shift toward the cen-
tral regions of the cross sections of the daughter branches and
the centres of vortices tend to shift toward the walls. Along
the straight portions, on the other hand, the locations of the
maximum secondary velocity tend to move toward the walls,
whereas the centres of vortices tend to move toward the centre
of the cross section.

On the basis of the primary flow field, an important con-
clusion was reached in Ref. 1 that in the in-plane configuration,
for every branch there is one (and only one) other branch in
the same generation (from G2 onward) where the flow field
is identical, and for the out-of-plane configuration, for every
branch there are three (and exactly three) other branches in the
same generation (from G3 onward) where the flow fields are
identical. It is established in the present work that the same con-
clusion holds true also regarding the secondary velocity field.
For example, for the in-plane configuration, the secondary flow
field in branch G5B1 is identical to that in branch G5B32 (and
the secondary flow field in all other branches of G5 is different
from that in G5B1 and G5B32), and for out-of-plane configu-
ration, the secondary flow field in branch G5B1 is identical to
that in branches G5B16, G5B17, and G5B32. Another feature
about the symmetry of flow field on a cross-sectional plane in
any particular branch, established in connection with primary
flow in Ref. 1, also holds true for the secondary flow. It is found
that, for the in-plane configuration, the secondary flow field is
symmetric about the meridional plane in all branches, but for
the out-of-plane configuration there exists no line of symmetry
on a cross-sectional plane in any branch from generation G2
onward. It was shown in Ref. 1 that the modular approach or the
truncation approach, often used in the literature to drastically
reduce the number of branches in a generation for which CFD
solutions are obtained, have serious limitations in accurately
determining the primary flow field. The modular or truncation
approach has similar limitations in determining the secondary
flow field.

We have used all three parameters, ��~vS
��, ωS , and λ2, for a

comprehensive description of the secondary flow field because
each has its own advantages as well as certain shortcomings.
The λ2-criterion is used to locate the core of vortices more
precisely; it does not however provide any information on
the sense of rotation of the flow in a vortex. The stream-
wise vorticity parameter ωS not only conveys the sense of
rotation in a vortex through a change of sign but also cap-
tures the secondary boundary layer (Fig. 7). ωS thus provides
more physical insight into the description of the secondary
motion in branched networks as compared to the λ2-criterion.
It is to be appreciated that the contours of streamwise vor-
ticity are indicative of the pattern of the secondary velocity
vectors and not of the contours of secondary velocity magni-
tude. Thus contours of ��~vS

�� are constructed in Figs. 4–6, 8, and
12–15 to present this complementary aspect of the secondary
motion.

The three-dimensional modification of the secondary flow
field in a single bifurcation module is similar in both config-
urations (Figs. 6 and 14), and is primarily governed by the
local curvature of the flow path in the module. The number,
arrangement, and structure of vortices may be altered as the
flow passes through a bifurcation module (e.g., Fig. 10 shows

how a bifurcation module modifies a two-vortex system in
G1B1 into a four-vortex system in G2B1 or G2B2). A bifur-
cation module, on the other hand, preserves certain symmetry
present at its inlet plane: if the line of symmetry at inlet is
along the bifurcation ridge, then the secondary flow structure
in the daughter branches would be identical, and if the line
of symmetry at inlet lies on the meridional plane, then for
each daughter branch the secondary flow in the two halves
of the individual cross sections would be identical. However,
the rotation of successive flow units through 90° in the out-
of-plane configuration results in the gradual distortion of the
secondary flow field down the generations leading to a lack
of any order in the flow field (considering only one quarter of
the network). Thus, whereas for the in-plane configuration the
vortices on any plane appear in pair (i.e., for each clockwise
rotating vortex there is an otherwise identical anticlockwise
vortex), the vortices on a plane for out-of-plane configuration
may be dissimilar and there may be odd number of vortices
[e.g., three vortices in G2B1 shown in Fig. 15(a) or three in
G4B3 shown in Fig. 17]. Second, whereas the vortices in the
in-plane configuration can be described as the usual Dean or
anti-Dean vortices, the shapes and orientations of the vortices
in the out-of-plane configuration may be such that they do not
conform to the conventional Dean or anti-Dean type.

The details of the secondary flow field and the vortical
structures in a branched network are analysed comprehen-
sively and many subtle features are unearthed. As an example,
it is shown that at low inlet Reynolds number (e.g., Re = 400) all
branches in generation G1 onward exhibit a two-vortex system
whereas 2, 3, or 4 vortices may occur at higher inlet Reynolds
number. If one follows the path from G1B1 to G5B15 (or
G5B16) in the in-plane configuration at high inlet Reynolds
number (e.g., Re = 1000 or Re = 1600), one would encounter
an alternation of two-vortex and four-vortex systems (2 vor-
tices in G1B1, 4 in G2B2, 2 in G3B4, 4 in G4B8, 2 in G5B15
or G5B16). Similarly, in the out-of-plane configuration, if one
follows the path from G1B1 to G5B5 (or G5B6) at high inlet
Reynolds number (e.g., Re = 1000 or Re = 1600), one would
encounter an alternation of two-vortex and three-vortex sys-
tems. For both configurations, the persistence of the vortex
structures in the branches of a generation broadly correlates
with the mass-flow distribution pattern.

Other than providing a comprehensive picture of the evo-
lution of quantitative flow visualizations of secondary motion
through three-dimensional branched networks (e.g., contours
of ��~vS

��, ωS , and λ2), we have formulated three new parame-
ters (ES /P, δSF , and δGn) for a quantitative description of the
overall features of the secondary flow field. δSF represents
a non-uniformity index of the secondary flow in an individ-
ual branch, ES /P represents the mass-flow-averaged relative
kinetic energy of secondary motion in an individual branch,
and δGn provides a measure of the non-uniformity of secondary
flow between various branches of the same generation Gn.

The repeated enhancement of the secondary kinetic
energy in the bifurcation modules is responsible for the occur-
rence of significant values of ES /P even in generation G5 (Figs.
11 and 18). For the in-plane configuration, the alignment of
any branch with its own grandmother favours the generation
of secondary flow. For both configurations, it is found that for
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any bifurcation module, the value of ES /P is greater in that
daughter branch in which the mass-flow rate is greater. In gen-
eral, the levels of ES /P are greater in the out-of-plane than in
the in-plane configuration. This may be attributed to the more
tortuous flow path in the out-of-plane configuration resulting
in the generation of greater secondary motion.

Even though the various contour plots of the complex
secondary flow structure appear visually very different from
one another, the values of δSF are found to lie within a
small range (0.37 ≤ δSF ≤ 0.66) for the six-generation net-
works studied. For the out-of-plane configuration, the max-
imum value of δSF in a generation increases monotonically
from G1 to G5 (Table V). For the in-plane configuration,
this monotonicity is maintained from generation G3 onward
(Table IV).

Figure 19 shows that δGn grows as the generation number
Gn increases. For a given inlet Reynolds number, the value of
δGn in a particular generation in the out-of-plane configuration
is appreciably smaller than the same in the in-plane configu-
ration (this is in line with the conclusion regarding mass-flow
distribution in various branches of a generation1). Thus it is
found that the out-of-plane configuration, in general, creates
more secondary kinetic energy (higher ES /P), similar level of
non-uniformity in secondary flow in an individual branch (sim-
ilar δSF), and significantly lower level of non-uniformity in the
distribution of secondary motion among various branches of
the same generation (much lower δGn), as compared to the
in-plane arrangement of the same branches.

1A. Guha, K. Pradhan, and P. K. Halder, “Finding order in complexity: A
study of the fluid dynamics in a three-dimensional branching network,”
Phys. Fluids 28(12), 123602 (2016).

2J. J. Murray, A. Guha, and A. Bond, “Overview of the development of heat
exchangers for use in air-breathing propulsion pre-coolers,” Acta Astronaut.
41(11), 723–729 (1997).

3W. R. Dean, “The stream-line motion of fluid in a curved pipe,” London,
Edinburgh, Dublin Philos. Mag. J. Sci. 5(30), 673–695 (1928).

4A. Guha, “A unified Eulerian theory of turbulent deposition to smooth and
rough surfaces,” J. Aerosol Sci. 28(8), 1517–1537 (1997).

5A. Guha, “Transport and deposition of particles in turbulent and laminar
flow,” Annu. Rev. Fluid Mech. 40, 311–341 (2008).

6J. H. Horlock, “Some experiments on the secondary flow in pipe bends,”
Proc. R. Soc. London, Ser. A 234, 335–346 (1956).

7W. R. Hawthorne, “The growth of secondary circulation in frictionless flow,”
Math. Proc. Cambridge Philos. Soc. 51, 737–743 (1955).

8R. W. Detra, “The secondary flow in curved pipes,” D.Sc. thesis, The Swiss
Federal Institute of Technology, Zurich, 1953.

9M. Rowe, “Measurements and computations of flow in pipe bends,” J. Fluid
Mech. 43(4), 771–783 (1970).

10Y. Agrawal, L. Talbot, and K. Gong, “Laser anemometer study of flow devel-
opment in curved circular pipes,” J. Fluid Mech. 85(3), 497–518 (1978).

11S. Dey, “Secondary boundary layer and wall shear for fully developed flow
in curved pipes,” Proc. R. Soc. London, Ser. A 458, 283–298 (2002).

12S. A. Berger, L. Talbot, and L. S. Yao, “Flow in curved pipes,” Annu. Rev.
Fluid Mech. 15, 461–512 (1983).

13W. R. Dean, “Fluid motion in a curved channel,” Proc. R. Soc. London,
Ser. A 121, 402–420 (1928).

14S. N. Barua, “On secondary flow in stationary curved pipes,” Q. J. Mech.
Appl. Math. 16(1), 61–77 (1963).

15L. Talbot and K. O. Gong, “Pulsatile entrance flow in a curved pipe,” J.
Fluid Mech. 127, 1–25 (1983).

16Y. Zhao and B. B. Lieber, “Steady inspiratory flow in a model symmetric
bifurcation,” J. Biomech. Eng. 116(4), 488–496 (1994).

17Y. Zhao and B. B. Lieber, “Steady expiratory flow in a model symmetric
bifurcation,” J. Biomech. Eng. 116(3), 318–323 (1994).

18P. Evegren, L. Fuchs, and J. Revstedt, “On the secondary flow through
bifurcating pipes,” Phys. Fluids 22(10), 103601 (2010).

19F. Y. Leong, K. A. Smith, and C. H. Wang, “Secondary flow behavior in a
double bifurcation,” Phys. Fluids 21(4), 043601 (2009).

20F. E. Fresconi and A. K. Prasad, “Secondary velocity fields in the con-
ducting airways of the human lung,” J. Biomech. Eng. 129(5), 722–732
(2007).

21E. R. Weibel, “Geometric and dimensional airway models of conductive,
transitory and respiratory zones of the human lung,” in Morphometry of
the Human Lung (Springer, Berlin, Heidelberg, 1963), pp. 136–142.

22SolidWorks, Release 2010, Dassault Systèmes SolidWorks Corporation,
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