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a b s t r a c t

An analysis is performed to study the fluid flow and heat transfer characteristics for the steady laminar
natural convection boundary layer flow over a semi-infinite horizontal flat plate subjected to a variable
heat flux or variable wall temperature. The heat flux qwð�xÞ varies as the power of the horizontal coordi-
nate in the form qwð�xÞ ¼ a�xm whereas the wall temperature �Twð�xÞ is assumed to vary as �Twð�xÞ ¼ �T1 þ b�xn.
The governing boundary layer equations are first cast into a dimensionless form and then transformed to
ordinary differential equations using generalized stretching transformation to derive the appropriate
similarity variables. This results in a set of three coupled, non-linear ordinary differential equations with
variable coefficients (representing the interaction of the temperature and velocity fields) which are then
solved by the shooting method. The numerical results are obtained for various values of Prandtl number
under different levels of heating. The effects of various values of Prandtl number and the indices m and n
on the velocity profiles, temperature profiles, skin friction, and heat transfer coefficients are presented.
Correlation equations between Nusselt number and Grashof number, and that between skin friction
coefficient and Grashof number have been derived. It is shown that when the heat flux variation is spec-
ified, Nu

^
/ ðGr�LÞ

1
6 and ĉf / ðGr�LÞ

�1
6; when the wall temperature variation is specified, Nu

^
/ ðGrLÞ

1
5 and ĉf /

ðGrLÞ
�1

5. For a fixed value of m or n (including the cases of constant wall temperature or constant heat
flux), the heat transfer coefficient increases whereas the local wall shear stress decreases with increasing
Prandtl number. The heat transfer coefficient increases with increasing values of exponent m or n when
the Prandtl number is kept constant. For a fixed Prandtl number, the local wall shear stress increases with
increasing values of n, while it decreases with increasing values of m.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Transport of heat by natural convection arises in nature and
many engineering applications. The bulk fluid motion in this case
is generated only by density differences in the fluid occurring
due to temperature gradients. Applications include cooling of
electronic equipments, heat transfer from refrigeration coils, heat
loss from power transmission lines, heat transfer from human
and animal bodies, etc. Thus the phenomenon of natural convec-
tion has been studied extensively.

Experimental and analytical study of laminar free convection
from a vertical plate with both constant surface temperature and
constant wall heat flux is given in Rajan and Picot [1], Burmeister
[2], Martynenko et al. [3], and Martynenko and Khramtsov [4].
Natural convection from a vertical flat plate with uniform surface
temperature in a non-Newtonian fluid has been studied by Sharma
and Adelman [5], and Ghosh Moulic and Yao [6].

Kurdyumov [7] presented steady, two-dimensional, laminar
free convection flow downstream of a heat source near a horizontal
or vertical wall at large Grashof numbers. Goldstein and Lau [8]
performed an experimental and numerical study of laminar free
convection from an isothermal horizontal plate, with particular
attention on the effects of various plate-edge extensions. Kuiken
[9] presented an analysis of free convection boundary layer by
the method of matched asymptotic expansion for fluids with low
Prandtl number.

Natural convection from horizontal plates has not been studied
analytically as extensively as compared to the case of vertical
plates. Clifton and Chapman [10] analytically solved boundary
layer equations by integral analysis to determine the heat transfer
from a finite size isothermal horizontal plate with the cold face fac-
ing upwards. Pretot et al. [11] numerically and experimentally
studied heat transfer in laminar free convection above an upward
facing horizontal heated plate placed in a semi-infinite medium.
Higher order natural convection boundary layer effects over a hor-
izontal plate have been studied by Mahajan and Gebhart [12], and
Afzal [13]. Schlichting and Gersten [14] have presented a similarity
solution for horizontal semi-infinite plates for constant wall
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temperature. According to Schlichting and Gersten, the first simi-
larity solution for an isothermal, semi-infinite, horizontal plate
was given by Stewartson [15], later corrected by Gill et al. [16].
Experimental study of this problem is presented by Rotem and Cla-
assen [17]. Schlichting and Gersten [14] termed this type of flow as
‘‘indirect natural convection’’, for which, unlike the usual analysis
for the boundary layer, neither the term op/ox nor the term op/oy
can be neglected. The similarity solution provided in the present
work for horizontal plates for the constant heat flux condition is
believed to be the only of its kind. The present work also uses a
generalized stretching transformation technique by which the pro-
cess of identifying the appropriate similarity variables becomes
systematized. Moreover, many engineering heat transfer applica-
tions involve cases of laminar natural convection where the surface
temperature or heat flux is not constant. Similarity solutions for
horizontal plates have been derived in the present work for both
cases of variable surface temperature (�Twð�xÞ ¼ �T1 þ b�xn) and vari-
able heat flux (qwð�xÞ ¼ a�xm).

Similarity theory for an isothermal horizontal plate is the most
readily available solution in the existing literature and is included
in the book by Schlichting and Gersten [14]. Gebhart et al. [18]
have presented more generalized similarity equations for natural
convection along a semi-infinite horizontal flat plate with power
law variation in wall temperature, but they directly quote the final

three ordinary differential equations only and no numerical com-
putations are presented (numerical results for non-dimensional
velocity and temperature profiles are given by Gebhart et al. [18]
only for the case of isothermal horizontal plate which are the same
as given by Schlichting and Gersten [14]).

A large number of important practical and experimental free
convection situation correspond to cases where the surface dissi-
pates heat non-uniformly rather than it is maintained at a non-uni-
form temperature. Chen et al. [19] studied the effect of laminar
natural convection on horizontal and vertical plates for cases
where either the surface temperature or the heat flux varies as a
power of �x, but their solution involves an integro-differential ap-
proach. A similarity theory has been developed here. The present
work is also more general than Chen et al. [19] in its applicability
to fluids of various Prandtl numbers. In the present work we have
considered the spectrum of Prandtl number from very low to very
high, Prandtl number of liquid metals being less than 0.01 whereas
that for heavy oils being more than 100,000. Numerical results are
presented for a wide range of Prandtl numbers under different lev-
els of heating.

Correlation equations for the local and average Nusselt number
as well as those for local and average skin friction coefficient are
also theoretically derived here. Chen et al. [19] have given correla-
tions for Nusselt number alone but these seem to involve

Nomenclature

a dimensional constant in the power-law variation of wall
heat flux

b dimensional constant in the power-law variation of wall
temperature

cf �x local skin friction coefficient
ĉf average skin friction coefficient
F, f reduced non-dimensional stream functions defined,

respectively, by Eqs. (22) and (43)
�g gravitational acceleration
G, g reduced non-dimensional temperatures defined,

respectively, by Eqs. (22) and (43)
Gr�x;GrL Grashof numbers defined, respectively, as

�gb½Twð�xÞ � T1��x3=m2 and �gb ½TwðLÞ�T1�L3

m2

Gr��x;Gr�L modified Grashof numbers defined, respectively, as
�gbqwð�xÞ�x4
� �

=ðkm2Þ and ½�gbqwðLÞL4�=ðkm2Þ
h local heat transfer coefficient, qwð�xÞ=½Twð�xÞ � T1�
ĥ average heat transfer coefficient defined by Eq. (39)
k thermal conductivity of the fluid
L reference length of the plate in �x direction
m exponent in the power-law variation of wall heat flux
n exponent in the power-law variation of wall tempera-

ture
Nu�x local Nusselt number, h�x=k

Nu
^

average Nusselt number, ĥL=k
�p1 static pressure in the undisturbed fluid
p, pwt non-dimensional static pressure difference defined in

Eq. (6) and (41) respectively
Pr Prandtl number, m/a
�T fluid temperature
�u axial velocity component
�u0; �u0wt velocity scales used to non-dimensionalize �u and �v in

Eqs. (6) and (41) respectively
u, uwt non-dimensional axial velocity component defined in

Eqs. (6) and (41) respectively
�v normal velocity component

v, vwt non-dimensional normal velocity component defined in
Eqs. (6) and (41), respectively

~v non-dimensional normal velocity component defined in
Eq. (A1)

�x axial coordinate
x non-dimensional axial coordinate defined in Eqs. (6)

and (41), respectively
�y normal coordinate
y non-dimensional normal coordinate defined in Eqs. (6)

and (41), respectively
~y non-dimensional normal coordinate defined in Eq. (A1)

Greek symbols
a thermal diffusivity
b coefficient of thermal expansion at the reference

temperature
d, dwt length scales used to non-dimensionalize normal

coordinate �y in Eqs. (6) and (41), respectively
g, gwt similarity variables defined respectively by Eqs. (22)

and (43), respectively
l dynamic viscosity
m kinematic viscosity
h, ht non-dimensional temperatures defined respectively by

Eqs. (6) and (41), respectively
q density of fluid
sw local wall shear stress, lðo�u=o�yÞ�y¼0
w non-dimensional stream function

Subscripts
w condition at the wall
1 condition in undisturbed fluid
wt for the case when wall temperature is fixed

Superscripts
0 differentiation with respect to g
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empiricism and have restricted validity since they apply only for a
Prandtl number of 0.7 with uniform heat flux or uniform surface
temperature. The correlations developed here apply even when
the surface temperature or the heat flux exhibits power-law varia-
tion and for a wide spectrum of Prandtl number.

2. Mathematical formulation for variable heat flux

Consider steady, laminar, natural convection boundary layer
flow past a semi-infinite horizontal flat plate. The plate is subjected
to a variable heat flux qwð�xÞ ¼ a�xm, where a is a dimensional con-
stant, �x is dimensional coordinate measured along the plate from
the leading edge and m is an exponent (m = 0 corresponds to uni-
form heat flux). The quiescent ambient fluid is maintained at a uni-
form temperature �T1 and pressure �p1:

The physical model and coordinate system is depicted in Fig. 1.
The boundary layer equations in dimensional form governing nat-
ural convection flow over a horizontal surface under Boussinesq
approximation are:

o�u
o�x
þ o�v

o�y
¼ 0; ð1Þ

�u
o�u
o�x
þ �v o�u

o�y
¼ � 1

q
o�p
o�x
þ m

o2�u
o�y2 ; ð2Þ

� 1
q

o�p
o�y
þ �gb T � T1

� �
¼ 0; ð3Þ

�u
oT
o�x
þ �v oT

o�y
¼ a

o2T
o�y2 : ð4Þ

The boundary conditions are:

at �y ¼ 0; �u ¼ 0; �v ¼ 0; �k
oT
o�y
¼ qwð�xÞ;

as �y!1; �u ¼ 0; T ¼ T1; �p ¼ �p1:
ð5Þ

Following the order of magnitude analysis given in Appendix A, Eqs.
(1)–(5) are non-dimensionalized as follows:

x ¼
�x
L
; y ¼

�y
d
¼

�y
L

Gr�L
� �1

6; u ¼
�u
�u0
¼ L

m
�u Gr�L
� ��1

3; v ¼
�v

e�u0

¼ L
m

�v Gr�L
� ��1

6; p ¼
�p� �p1ð Þ
q�u2

0

¼
�p� �p1ð Þ
q m2

L2

Gr�L
� ��2

3; h

¼
T � T1
� �

DT
Gr�L
� �1

6: ð6Þ

The derivation of appropriate velocity scale �u0, temperature scale
D�T and the length scale in the �y-direction d is given in Appendix

A. Here Gr�L ¼
�gbqwðLÞL4

km2 is the modified Grashof number, L is a refer-
ence length, x and y are non-dimensional coordinates along and
normal to the plate, u and v are the non-dimensional velocity com-
ponents in the x and y directions, p is the non-dimensional static
pressure difference, �g is the gravitational acceleration, a is the
thermal diffusivity, b is the coefficient of thermal expansion at the
reference temperature, d is the length scale used to non-dimension-
alize normal coordinate �y; �T1 is the ambient temperature, m, k and q
are the kinematic viscosity, thermal conductivity, and density of the
fluid respectively and the bars denote corresponding dimensional
coordinates.

Substitution of the non-dimensional variables (6) into Eqs. (1)–
(4) leads to the following non-dimensional equations:

ou
ox
þ ov

oy
¼ 0; ð7Þ

u
ou
ox
þ v ou

oy
¼ � op

ox
þ o2u

oy2 ; ð8Þ

� op
oy
þ h ¼ 0; ð9Þ

u
oh
ox
þ v oh

oy
¼ 1

Pr
o2h
oy2 : ð10Þ

Here Pr is the Prandtl number defined as Pr = m/a. The corresponding
boundary conditions (Eq. (5)) become:

at y ¼ 0; u ¼ 0; v ¼ 0;
oh
oy
¼ �xm;

as y!1; u! 0; h! 0; p! 0:
ð11Þ

We introduce the non-dimensional stream function w, defined by

u ¼ ow
oy
; v ¼ � ow

ox
; ð12Þ

which automatically satisfies the continuity equation.
The governing boundary layer Eqs. (8)–(10) can then be ex-

pressed in terms of w, p and h, along with the corresponding
boundary conditions. For the purpose of finding the similarity var-
iable we use the generalized stretching transformation as follows:

w� ¼ c1w; x� ¼ c2x; y� ¼ c3y; h� ¼ c4h and p� ¼ c5p; ð13Þ

where c1, c2, c3, c4 and c5 are arbitrary positive constants. Using the
definitions contained in Eq. (13), one finally obtains the following
stretched boundary layer equations and boundary conditions:

Fig. 1. Physical model and coordinate system.
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c2c2
3

c2
1

ow�

oy�
o2w�

ox�oy�
� ow�

ox�
o2w�

oy�2

" #
¼ � c2

c5

op�

ox�
þ c3

3

c1

o3w�

oy�3
; ð14Þ

� c3

c5

op�

oy�
þ 1

c4
h� ¼ 0; ð15Þ

c2c3

c1c4

ow�

oy�
oh�

ox�
� ow�

ox�
oh�

oy�

� �
¼ 1

Pr
c2

3

c4

o2h�

oy�2
: ð16Þ

Boundary conditions:

at y� ¼ 0;
ow�

oy�
¼ 0;

ow�

ox�
¼ 0;

c3

c4

oh�

oy�
¼ �c�m

2 x�m;

as y� ! 1; ow�

oy�
! 0; h� ! 0; p� ! 0:

ð17Þ

The boundary layer equations along with their boundary conditions
should remain invariant under the special stretching transforma-
tion. Hence:

c2 ¼ c1c3; c2
3 ¼

c2
1

c5
; c3 ¼ c4c�m

2 ; c5 ¼ c3c4: ð18Þ

Using Eq. (18) and expressing c2, c3, c4, c5 in terms of c1 one obtains:

c2 ¼ c
6

ðmþ4Þ
1 ; c3 ¼ c

ð2�mÞ
ðmþ4Þ
1 ; c4 ¼ c

ð2þ5mÞ
ðmþ4Þ
1 and c5 ¼ c

ð4þ4mÞ
ðmþ4Þ
1 : ð19Þ

Using Eq. (19), Eq. (13) can be rewritten as:

w� ¼ c1w; x� ¼ c
6

ðmþ4Þ
1 x; y� ¼ c

ð2�mÞ
ðmþ4Þ
1 y; p�

¼ c
ð4þ4mÞ
ðmþ4Þ
1 p and h� ¼ c

ð2þ5mÞ
ðmþ4Þ
1 h: ð20Þ

Eq. (20) shows that the PDEs along with their boundary conditions
would become independent of c1 for the following combinations of
the variables:

y

x
ð2�mÞ

6

;
w

x
ðmþ4Þ

6

;
h

x
ð5mþ2Þ

6

;
p

x
ð4mþ4Þ

6

: ð21Þ

Hence the appropriate similarity variable g and the functional
forms for w, h and p can then be written as:

g ¼ Ayx
ðm�2Þ

6 ; w ¼ Bx
ðmþ4Þ

6 FðgÞ; h ¼ Cx
ð5mþ2Þ

6 GðgÞ; p

¼ Dx
ð4mþ4Þ

6 HðgÞ; ð22Þ

where A, B, C and D are constants. With the help of Eq. (22), the
boundary layer equations are transformed into the following ordin-
ary differential equations:

F 000ðgÞ � D

3A3B
2ðmþ 1ÞHðgÞ þ 1

2
ðm� 2ÞgH0ðgÞ

� �
¼ B

3A
ðmþ 1ÞðF 0ðgÞÞ2 � ðmþ 4Þ1

2
FðgÞF 00ðgÞ

� �
; ð23Þ

�H0ðgÞ þ C
AD

GðgÞ ¼ 0; ð24Þ

ABC
6
ð5mþ 2ÞF 0ðgÞGðgÞ � ðmþ 4ÞFðgÞG0ðgÞ
� �

¼ 1
Pr

A2C G00ðgÞ: ð25Þ

The boundary conditions corresponding to Eqs. (23)–(25) are:

at g ¼ 0; F 0ð0Þ ¼ Fð0Þ ¼ 1þ ACG0ð0Þ ¼ 0;
and at g!1; F 0ð1Þ ¼ Gð1Þ ¼ Hð1Þ ¼ 0:

ð26Þ

Choice of the constants A, B, C and D:
The choice of A, B, C and D are arbitrary and the simplest possi-

ble choice can be to set A = B = C = D = 1. However, then Eqs. (23)–
(25) will contain several constant coefficients. So here we choose
values of A, B, C and D such that the Eqs. (23)–(25) contain the least
number of constant coefficients.

Thus by setting:

D

3A3B
¼ 1;

C
AD
¼ 1;

B
6A
¼ 1; AC ¼ 1; ð27Þ

A, B, C and D can be obtained as

A ¼ 1

18
1
6
; B ¼ 6

18
1
6
; C ¼ 18

1
6; D ¼ 18

1
3: ð28Þ

Thus the following system of non-linear coupled ordinary
differential equations with variable coefficients are obtained as
the boundary layer equations:

F 000 � 2 ðmþ 1ÞF 02 � ðmþ 4Þ1
2

FF 00
� �

� 2ðmþ 1ÞH þ 1
2
ðm� 2ÞgH0

� �
¼ 0; ð29Þ

G� H0 ¼ 0; ð30Þ

1
Pr

G00 � ð5mþ 2ÞF 0G� ðmþ 4ÞFG0
� �

¼ 0: ð31Þ

The corresponding boundary conditions are:

at g ¼ 0 and g!1; F 0ð0Þ ¼ Fð0Þ ¼ 1þ G0ð0Þ ¼ F 0ð1Þ
¼ Gð1Þ ¼ Hð1Þ ¼ 0; ð32Þ

where prime denotes differentiation with respect to g.
The local heat transfer coefficient (h) obtained by using expres-

sions for h from Eqs. (6) and (22) is given by

h ¼ qw �xð Þ
Tw � T1
� � ¼ k

L
qw �xð Þ
qw Lð Þ

1

C G 0ð Þx5mþ2
6

Gr�L
� �1

6: ð33Þ

The local Nusselt number Nu�x is given by

Nu�x ¼
h�x
k
¼ 1

ð18Þ
1
6Gð0Þ

Gr��x
� �1

6: ð34Þ

The local wall shear stress sw is given by sw ¼ ðl o�u
o�y Þy¼0, where l is

the dynamic viscosity of the fluid. Using expressions for �u, u and w
from Eqs. (6), (12), and (22) respectively the wall shear stress
becomes:

sw ¼
6

ð18Þ
1
2

lm
�x2 Gr��x
� �1

2 F 00ð0Þ: ð35Þ

The local skin friction coefficient, cf �x, is defined as
cf �x ¼ sw

ð1=2Þq�u2
0
¼ sw

ð1=2Þqðm2=L2ÞðGr�LÞ
2
3
. Substituting the value of sw from Eq.

(35), the expression for local skin friction coefficient becomes:

cf �x ¼
12

ð18Þ
1
2

x
2
3ðmþ1Þ Gr��x

� ��1
6F 00ð0Þ: ð36Þ

The average skin friction coefficient (ĉf ) is given by

ĉf ¼
1
L

Z L

0
cf �xd�x ¼

Z 1

0
cf �xdx: ð37Þ

Substituting the value of cf �x from Eq. (36) the average skin friction
coefficient (ĉf ) may be written as:

ĉf ¼
24

ð18Þ
1
2

1
ðmþ 2Þ Gr�L

� ��1
6F 00ð0Þ: ð38Þ

The average heat transfer coefficient (ĥ) may be written as

ĥ ¼ 1
L

Z L

0
hd�x ¼

Z 1

0
hdx: ð39Þ

Using the expression for local heat transfer coefficient from Eq. (33),
the average Nusselt number (Nu

^
) over a plate length of L is:
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Nu
^
¼ 6

mþ 4
1

ð18Þ
1
6Gð0Þ

Gr�L
� �1

6: ð40Þ

3. Mathematical formulation for variable surface temperature

The formulation is similar to that in Section 2 except that power
law variation in wall temperature of the form �Twð�xÞ � �T1 ¼ b�xn is
assumed, where b is a dimensional constant and n is an exponent.
The case of uniform wall temperature corresponds to n = 0. We
introduce the following non-dimensional variables given by

x ¼
�x
L
; y ¼

�y
dwt
¼ Gr

1
5
L

� 	 �y
L
; uwt ¼

�u
�u0wt

¼ Gr
�2

5
L

� 	 L
m

�u;

vwt ¼
�v

e�u0wt
¼ Gr

�1
5

L

� 	 L
m

�v; hwt ¼
�T � �T1
� �

D�Twt
¼

�T � �T1
� �

bLn ;

pwt ¼
�p� �p1ð Þ
q�u2

0wt

¼ Gr
�4

5
L

� 	 �p� �p1ð Þ
qm2

L2

: ð41Þ

The derivation of appropriate velocity scale �u0wt and the length scale
in the y-direction dwt is given in Appendix A. Here GrL is the Grashof

number given by GrL ¼ �gb½�TwðLÞ��T1�L3

m2 (it is to be remembered that Eq.
(6) represented the non-dimensionalization when the wall heat flux
was prescribed).

The governing non-dimensional boundary layer equations take
the same form as presented in (7)–(10) whereas the pertinent
boundary conditions become:

at y ¼ 0; uwt ¼ 0; vwt ¼ 0; hwt ¼ �xn;

as y!1; uwt ! 0; hwt ! 0; pwt ! 0: ð42Þ

Following the same process of stretching transformation as used
above in Section 2, the appropriate similarity variable gwt and the
functional forms for wwt, hwt and pwt can then be written as:

gwt ¼ Ayx
ðn�2Þ

5 ; wwt ¼ Bx
ðnþ3Þ

5 f ðgwtÞ; hwt ¼ CxngðgwtÞ;

pwt ¼ Dx
ð4nþ2Þ

5 hðgwtÞ; ð43Þ

where A, B, C and D are positive constants. For A = B = C = D = 1,
substitution of (43) into the boundary layer equations gives the
following set of ordinary differential equations:

5f 000 � ð2nþ 1Þf 02 þ ðnþ 3Þff 00 � ð4nþ 2Þh� ðn� 2Þgwth
0 ¼ 0; ð44Þ

g � h0 ¼ 0; ð45Þ
5
Pr

g00 � 5nf 0g � ðnþ 3Þfg0 ¼ 0: ð46Þ

The corresponding boundary conditions are:

at gwt ¼ 0 and gwt !1; f 0ð0Þ ¼ f ð0Þ ¼ gð0Þ � 1

¼ f 0ð1Þ ¼ gð1Þ ¼ hð1Þ ¼ 0: ð47Þ

Following the methods shown in Section 2, the local Nusselt num-
ber Nu�x, the wall shear stress sw, local skin friction coefficient cf �x,
average skin friction coefficient (ĉf ) and the average Nusselt number
(Nu
^

) can be found out to be:

Nu�x ¼ �g0ð0Þ Gr�xð Þ
1
5; ð48Þ

sw ¼
lm
�x2 Gr�xð Þ

3
5 f 00ð0Þ; ð49Þ

cf �x ¼ 2x
2
5 2nþ1ð Þ Gr�xð Þ�

1
5 f 00ð0Þ; ð50Þ

ĉf ¼
10

3nþ 4ð Þ GrLð Þ�
1
5 f 00ð0Þ; ð51Þ

Nu
^
¼ � 5

nþ 3
GrLð Þ

1
5 g0ð0Þ: ð52Þ

4. Method of solution

The system of Eqs. (29)–(31) for power law variation of heat
flux, subject to boundary conditions (32), and the system of Eqs.
(43)–(45) for power law variation in wall temperature subject to
boundary conditions (47) are solved numerically for various values
of Pr and m or n using the shooting method. In this method, the
system of Eqs. (29)–(31) or (44)–(46) are first reduced to a system
of six first order equations. The equations can now be solved by
marching forward in g, if the boundary values which are not spec-
ified at g = 0 are first guessed so that the solution process can pro-
ceed. However, the boundary values computed at g ?1 will
depend on these guessed values and, in general, will not agree with
the actual prescribed conditions at g ?1. Since we need to guess
multiple (three) values simultaneously at g = 0 for the six first or-
der equations (three boundary conditions prescribed at g ?1),
the Newton method for simultaneous non-linear equations [20]
has been used here for finding the roots of the boundary residuals
(difference between the computed and specified boundary values
at g ?1). The fourth-order Runge–Kutta method with step size
of 0.05 was chosen for the integration of differential equations.

5. Results and discussion

Fig. 2 shows the evolution of the velocity profiles in the x and y
directions as the boundary layer due to natural convection
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Fig. 2. (a) Predictions of the present theory showing the variation of non-
dimensional velocity u versus non-dimensional vertical coordinate y at various
distances x along the plate for Pr = 0.7 and m = 0; qwð�xÞ ¼ a�xm. (b) Predictions of the
present theory showing the variation of non-dimensional velocity v versus non-
dimensional vertical coordinate y at various distances x along the plate for Pr = 0.7
and m = 0; qwð�xÞ ¼ a�xm .
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develops (see Fig. 1). These are the solutions of the equation set
(29)–(31) for Pr = 0.7 and m = 0 (i.e. constant heat flux case).
Fig. 2(a) shows that the non-dimensional velocity u is zero on
the surface as well as at the edge of the boundary layer (asymptot-
ically) with its maximum occurring at an intermediate value of y.
The locus of the maximum u is also shown on the graph. It is seen
that the y location of the point for maximum u increases as x in-
creases. Fig. 2(b) shows that the non-dimensional velocity in the
y-direction, v, is zero on the surface (the wall being impermeable)
but, at a particular x, its magnitude increases continuously with y
until a plateau is obtained. The plateau value for v decreases slowly
with increasing x. A non-zero value for v at the edge of the bound-
ary layer is physically consistent, as this represents entrainment of
previously unaffected fluid. The locus of the end-points of the u-
velocity profiles shown in Fig. 2(a) represents how the boundary
layer grows in the x-direction.

The characteristic numerical values of G(0) and F 00ð0Þ on a uni-
form heat flux surface for different values of Pr are given in Table 1.
According to Eq. (34), the local Nusselt number Nu�x is inversely
proportional to G(0), and according to Eq. (35) the wall shear stress
sw is proportional to F 00ð0Þ. It is to be noted that both G(0) and F 00ð0Þ
depend only on Pr and m. From Table 1 it may be concluded that
for a fixed value of m, both the skin friction coefficient and the re-
ciprocal of heat transfer coefficient decreases with increase in Pr.

Table 2 presents the values of skin friction coefficient and reci-
procal of heat transfer coefficient for various values of m when
Pr = 1. Inspection of Table 2 reveals that for a given Pr, both the skin
friction coefficient and the reciprocal of heat transfer coefficient
decreases as the value of m increases. The rate of decrease of both
diminishes as m is increased. Thus the wall shear stress decreases
nominally while heat transfer rate increases as m is increased for a
fixed Pr. Table 3 presents the values of G(0) and F 00ð0Þ for various
values of Pr when m = 2. Table 4 presents the values of skin friction
coefficient and reciprocal of heat transfer coefficient for various
values of m when Pr = 7. Tables 1–4 are constructed when the
surface heat flux is specified as a boundary condition.

The characteristic numerical values of �g0(0) and f 00ð0Þ on a hor-
izontal surface with constant wall temperature for different values
of Pr are given in Table 5. For the general boundary condition in

which the surface temperature is specified (of which constant wall
temperature is a special case), the local Nusselt number Nu�x is pro-
portional to �g0(0), according to Eq. (48), and the wall shear stress
sw is proportional to f 00ð0Þ, according to Eq. (49). It is to be noted
that both �g0(0) and f 00ð0Þ depend only on Pr and n. Table 5 shows
that, as the Prandtl number of the fluid increases, the magnitude of
heat transfer coefficient increases whereas the skin friction coeffi-
cient decreases. It can be recalled that this behavior is also ob-
served when the plate is subjected to constant heat flux (Table 1).

The numerical values of heat transfer coefficient�g0ð0Þ and skin
friction coefficient f 00ð0Þ for a plate subjected to variable wall tem-
perature for various values of n at a fixed Prandtl number is given
in Table 6. An increase in n results in an increase in both skin fric-
tion coefficient and heat transfer coefficient.

From Eq. (22), one can show that the non-dimensional velocity
in the x-direction ow/oy is proportional to F 0 ðgÞðow=oy ¼
ABx

mþ1
3 F 0ðgÞ, where the constants A and B are given by Eq. (28)).

Fig. 3 presents F 0ðgÞ for a uniform heat flux surface for various

Table 3
Values of G(0) and F 00ð0Þ in Eqs. (34) and (35) for m = 2 and various
values of Pr.

Pr G(0) F 00ð0Þ

0.01 2.29550 9.727700
0.1 1.22870 2.879500
0.7 0.79299 1.020000
7 0.51925 0.313800

100 0.32847 0.082724

Table 1
Values of G(0) and F 00ð0Þ in Eqs. (34) and (35) for a constant heat
flux plate for various values of Pr.

Pr G(0) F 00ð0Þ

0.01 3.65580 10.245000
0.1 1.88540 3.062400
0.7 1.18430 1.095500
1 1.09790 0.910070
7 0.75055 0.340530

10 0.70289 0.285220
100 0.46798 0.090971

1000 0.32039 0.028713

Table 2
Values of G(0) and F 00 ð0Þ in Eqs. (34) and (35) for various values
of m when Pr = 1.

m G(0) F00ð0Þ

1 0.84793 0.86197
3 0.66415 0.84172
5 0.57789 0.83625

10 0.47213 0.83149
20 0.38301 0.82607
50 0.28395 0.82605

100 0.22987 0.81580

Table 4
Values of G(0) and F 00 ð0Þ in Eqs. (34) and (35) for various values of
m when Pr = 7.

m G(0) F 00ð0Þ

1 0.59092 0.31910
3 0.46701 0.30963
5 0.41447 0.30803

10 0.33569 0.30693
20 0.27217 0.30567
50 0.20522 0.30315

100 0.16890 0.29399

Table 5
Values of g0ð0Þ and f 00ð0Þ in Eqs. (48) and (49) for an isothermal
plate for various values of Pr.

Pr �g0ð0Þ f 00ð0Þ

0.01 0.087650 3.921867
0.1 0.196149 2.027907
0.7 0.354304 0.987531
1 0.389570 0.861390
7 0.623621 0.413872

10 0.677046 0.361854
100 1.089644 0.146055

1000 1.747600 0.058810

Table 6
Values of g0ð0Þ and f 00 ð0Þ in Eqs. (48) and (49) for various values of
n when Pr = 1.

n �g0ð0Þ f 00ð0Þ

1 0.646671 0.980503
3 0.932752 1.148485
5 1.122001 1.250802

10 1.457725 1.418496
20 1.922568 1.626085
50 2.762732 1.946709

100 3.640775 2.233779
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values of Prandtl number. The figure shows that at a particular va-
lue of Pr, F 0ðgÞ at first increases with g, goes to a maximum and
then decreases asymptotically to zero. The velocity gradient at sur-
face is large for small values of Prandtl number, which produces a
large skin friction coefficient F 00ð0Þ. With increasing Prandtl num-
ber, the maximum velocity occurs at a smaller value of g as seen
from the graph. The velocity profile for the special case of
Pr = 0.7 as given by Chen et al. [19] is superposed in Fig. 2 for the
purpose of comparison.

From Eqs. (22) and (6), one can show that the non-dimensional
temperature is represented by G(g)/G(0) ðð�T � �T1Þ=ð�Tw � �T1Þ ¼
hðgÞ=hð0Þ ¼ GðgÞ=Gð0ÞÞ. Fig. 4 presents the non dimensional tem-
perature profile for an iso-heat flux surface for various values of
Prandtl number. It can be seen from the figure that for a fluid with
high value of Prandtl number the temperature gradients at wall are
very large resulting in a high rate of heat transfer from the plate
surface. The temperature profile for the special case of Pr = 0.7 as
given by Chen et al. [19] is superposed in Fig. 4 for the purpose
of comparison.

Fig. 5 presents the non-dimensional velocity profiles F 0ðgÞ for
various values of m when Pr = 1. It can be seen that close to the

wall (i.e. at small values of g) the curves for various values of m
are almost superposed on one another. The velocity gradient at
wall is therefore a very weak function of m: this can also be seen
from Table 2 where it is shown that F 00ð0Þ changes only slightly
for a very large change in m. The wall shear stress therefore
changes only slightly with m (this is later shown in Fig. 8 where
the skin friction coefficient is plotted). Fig. 6 presents the non-
dimensional temperature profile for various values of m when
Pr = 1. As the value of m increases, the plate is subjected to a higher
value of heat flux. The temperature gradient at wall is more for
higher values of m as can be seen from the graph as well as from
Table 2 (where it can be seen that G(0) decreases approximately
by a factor of 4 as m is increased hundredfold.).

Figs. 7 and 8 show the variation of Nusselt number and skin fric-
tion coefficient when the surface heat flux is the prescribed quan-
tity. Computations are performed for a wide range of parameters:
the Prandtl number is varied from 0.01 to 100, the value of heating
index m is varied from 0 (constant heat flux) to 100. Since Eq. (34)
shows that Nu�x / ðGr��xÞ

1
6, the composite variable Nu�xðGr��xÞ

�1
6 is plot-

ted as the ordinate in Fig. 7: in this way data generated by compre-
hensive computations can be presented in a concise manner. For
the same reasons, for presenting values of skin friction coefficient,
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Fig. 3. Non dimensional self-similar velocity profiles for a constant heat flux plate
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the variable F 00ð0Þ is used as the ordinate in Fig. 8. Eqs. (35) and (36)
predicts that the wall shear stress as well as the local skin friction
factor is directly proportional to F 00ð0Þ. The computations show that
for a particular value of m, the local Nusselt number increases and
the local skin friction coefficient decreases with increasing value of
Prandtl number for a fixed value of modified Grashof number.
Fig. 7 shows that, at fixed values of the modified Grashof number,
the Nusselt number increases as the value of m increases for a fixed
Prandtl number. Fig. 8, on the other hand, shows that the depen-
dence of local skin friction coefficient on the value of m is very
weak. It is interesting to note that this behavior bears resemblance
to the case of forced convection where, if constant thermo-physical
properties of the fluid are assumed, the skin friction coefficient is
determined by the well-known Blasius solution and is completely
independent of the value of m.

Equation (40) shows that Nu
^
/ ðGr�LÞ

1
6; this behavior is exactly

the same (except a difference in the constant of proportionality)
as that given by Nu�x / ðGr��xÞ

1
6 in equation (34). Thus the conclusions

made on the basis of the variation of the local Nusselt number re-
main valid for the variation of the average Nusselt number as well.
Similarly, a study of Eqs. (36) and (38) shows that the variations of
the average and local skin friction coefficients follow the same
trend.

Figs. 9 and 10 show the variation of Nusselt number and skin
friction coefficient when the surface temperature is the prescribed
quantity. The trends and qualitative behaviors of these curves are
found to be similar to the corresponding curves (Figs. 7 and 8)
where the surface heat flux is the prescribed quantity. A compari-
son of Figs. 8 and 10 shows that the skin friction coefficient de-
pends more strongly on n (i.e. when the surface temperature is
prescribed) than on m (i.e. when the surface heat flux is pre-
scribed). A comparison of Figs. 8 and 10 shows that the skin friction
coefficient depends more strongly on the Prandtl number when the
surface heat flux is constant as compared to the case when the sur-
face temperature is constant.

In order to understand further the mathematical nature of the
similarity theory, a series solution of the Eqs. (29)–(31), (44)–
(46) following the perturbation method has also been formulated
in the present work. A summary of the principal steps for such
an analysis, when the plate is subjected to a variable heat flux of
the form qwð�xÞ ¼ a�xm, for two limiting cases – m � 0 and m >> 1
is given in Appendix B as an example application of the procedure.
Figs. 11 and 12 given in Appendix B compare the full numerical
solutions of the similarity theory with the approximate first-order
series solutions (Eqs. (B6) and (B17)).
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6. Conclusion

In this paper, an analytical study of the problem of steady, lam-
inar natural convection boundary layer flows over a semi-infinite
horizontal flat plate for power law variation in both the surface
heat flux and the wall temperature has been made. The procedure
of obtaining the similarity variable using generalized stretching
transformation for any problem permitting similarity solution is
given. Similarity solutions are then formulated for both boundary
conditions, viz. qwð�xÞ ¼ a�xm and �Twð�xÞ ¼ �T1 þ b�xn, the fundamental
coupled equation sets derived here being Eqs. (29)–(31) and Eqs.
(44)–(46), respectively. The particular cases of constant heat flux
and constant surface temperature are obtained by respectively
substituting m = 0 or n = 0 in the solutions. Similarity solution for
natural convection boundary layers on horizontal semi-infinite
plates when the heat flux is the prescribed quantity has been de-
rived for the first time in the present paper: a modified Grashof
number Gr�L is used for this purpose.

Representative velocity and temperature profiles for
qwð�xÞ ¼ a�xm are plotted in Figs. 3–6 corresponding to two cases:

(i) for various values of Pr when the heat flux is constant along
the surface, and (ii) for various levels of heating (varying m) when
the Prandtl number is 1. The present similarity solution agrees well
with the solution from the integro-differential approach of Chen
et al. [19] who provided solutions only for two cases of heat flux
variation for a fixed Prandtl number – Pr = 0.7, m = 0, and Pr = 0.7,
m = 1.

The systematic procedure for obtaining the similarity solutions
for �Twð�xÞ ¼ �T1 þ b�xn helps to identify appropriate scales to non-
dimensionalize various parameters. The general solution devel-
oped here reduces to the specific case for isothermal plates given
by Stewartson [15] and Gill et al. [16] by substituting n = 0 in the
equations.

A systematic study has been made for various values of Prandtl
number Pr and the constants m or n. Theoretical relations have been
derived here on the variation of Nusselt number (Eqs. (34), (40), (48),
(52)) and skin friction coefficient (Eqs. (36), (38), (50), (51)) with the
Grashof number (or modified Grashof number). Appropriate velocity
scales for the non-dimensionalization of the shear stress are derived
in the paper (Eqs. (A7) and (A9) in the Appendix A). Similarly, for the
heat flux case, an appropriate temperature scale has also been de-
rived (Eq. (A10) in the Appendix A). The major findings from these
studies can be summed up as follows:

(1) For a fixed value of m or n (including the cases of constant
wall temperature or constant heat flux), the heat transfer
coefficient increases whereas the local wall shear stress
decreases with increasing Prandtl number.

(2) The heat transfer coefficient increases with increasing values
of exponent m or n when the Prandtl number of the fluid is
kept constant.

(3) For a fixed Prandtl number, the local wall shear stress
increases with increasing values of n for power law variation
in surface temperature while it decreases with increasing
values of m for power law variation in heat flux. This is in
contrast with the results proposed by Chen et al. [19] where
local wall shear stress decreases for both cases.

(4) The non-dimensional correlations developed in the present
work show that the Nusselt number increases but the skin
friction coefficient decreases with increasing Grashof num-
ber. This is true either when the wall heat flux

(Nu
^
/ ðGr�LÞ

1
6 and ĉf / ðGr�LÞ

�1
6) or when the wall temperature

(Nu
^
/ ðGrLÞ

1
5 and ĉf / ðGrLÞ

�1
5) is specified.

(5) The behavior of average Nusselt number and average skin
friction coefficient would be similar to that of local Nusselt
number and local skin friction coefficient for all the cases
that were investigated.

Appendix A. Derivation of appropriate velocity scales for non-
dimensionalisation of wall shear stress, and a temperature scale
for the case of prescribed heat flux

Consider a steady two-dimensional laminar incompressible
flow. The Navier–Stokes equations giving the conservation of mass,
momentum and energy in the rectangular Cartesian coordinate
system invoking the Boussinesq approximation are well known
(e.g. see Refs. [14,18]).

The equations are now non-dimensionalized. The length and
the velocity scales are chosen as L and �u0 (to be determined),
respectively. The non-dimensional variables are:

x ¼
�x
L
; ~y ¼

�y
L
; u ¼

�u
�u0
; ~v ¼

�v
�u0
; h ¼

�T � �T1
D�T

; p ¼
�p� �p1
q�u2

0

:

ðA1Þ
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D�T in Eq. (A1) is known from the boundary conditions when wall
temperature is prescribed, but needs to be determined when heat
flux is the prescribed quantity.

After non-dimensionalisation in the particular way as described
above in (A1), the Navier–Stokes equations become:

ou
ox
þ o~v

o~y
¼ 0; ðA2Þ

u
ou
ox
þ ~v ou

o~y
¼ � op

ox
þ 1

ReL

o2u
ox2 þ

o2u
o~y2

 !
; ðA3Þ

u
o~v
ox
þ ~v o~v

o~y
¼ � op

o~y
þ GrL

Re2
L

hþ 1
ReL

o2 ~v
ox2 þ

o2 ~v
o~y2

 !
; ðA4Þ

u
oh
ox
þ ~v oh

o~y
¼ 1

ReLPr
o2h
ox2 þ

o2h
o~y2

 !
: ðA5Þ

In Eq. (A4), GrL should be interpreted as the usual Grashof number
for the case when wall temperature is known, but should be inter-
preted as the modified Grashof number Gr�L for the case when the
wall heat flux is the prescribed quantity.

Now, we can identify the following scales for the boundary
layer variables as given in Table A1.

A.1. Determination of the appropriate velocity scale ð�u0 and �u0wtÞ

From the y-momentum Eq. (A4) we have:

Inertia force � OðeÞ;

Viscous force � O
1

ReL

1
e


 �
:

Now, if the order-of-magnitude of the viscous force has to be
the same with that of the inertia force within the boundary layer,
then:

OðeÞ � O
1

ReL

1
e


 �
which gives:

e � 1ffiffiffiffiffiffiffi
ReL
p : ðA6Þ

A.1.1. Power law variation in wall temperature
For power law variation in wall temperature of the form

�Twð�xÞ � �T1 ¼ b�xn, the order of magnitude of buoyancy and pressure
forces from y-momentum Eq. (A4) gives:

Buoyancy force � O
GrL

Re2
L

 !
;

Pressure force � O
1
e


 �
:

The decreased pressure gradient in y-direction is a consequence of
buoyancy force [14]. Hence equating order of magnitude of buoy-
ancy and pressure force in the boundary-layer region one obtains:

O
GrL

Re2
L

 !
� O

1
e


 �
which gives ReL � Gr

2
5
L

Hence dwt ¼ eL � Gr
�1

5
L L and �u0wt ¼

m
L

GrLð Þ
2
5: ðA7Þ

This is used in the non-dimensionalisation shown in Eq. (41).

A.1.2. Power law variation in wall heat flux
For power law variation in wall heat flux of the form

qwð�xÞ ¼ a�xm:

h � OðeÞ as y � OðeÞ so that
oh
oy
� Oð1Þ: ðA8Þ

Buoyancy force � O
Gr�L
Re2

L

e

 !
;

Pressure force � O
1
e


 �
;

O
Gr�L
Re2

L

e

 !
� O

1
e


 �
which gives ReL � ðGr�LÞ

1
3

Hence d ¼ eL � Gr�L
� ��1

6L and �u0 ¼
m
L

Gr�L
� �1

3: ðA9Þ

This is used in the non-dimensionalisation shown in Eq. (6).

A.2. Determination of the appropriate temperature scale ðD�TÞ

When the surface temperature is prescribed then the tempera-
ture scale for non-dimensionalisation is obvious: it is taken as
DTwt ¼ TwðLÞ � T1, as used in Eq. (41). However, when the surface
heat flux is prescribed, an appropriate temperature scale has to be
derived as follows:

at �y ¼ 0; �k
o�T
o�y
¼ a�xm;

�k
D�T
L

oh
oy
¼ aLmxm;

Choose D�T ¼ aLmL
k
¼ qwðLÞL

k
; ðA10Þ

so that at y ¼ 0; oh
oy ¼ �xm.

This temperature scale D�T is used in the non-dimensionalisa-
tion shown in Eq. (6).

Table A1
Order of magnitude analysis.

Variable Appropriate scale Order of magnitude of non-dimensional variable

Wall temperature Heat flux

�x L L x ¼ �x=L � 1
�y d ¼ eL dwt ¼ eL ~y ¼ �y=L � e
�u �u0 �u0wt u ¼ �u=�u0 � 1

u ¼ �u=�u0wt � 1
�v e�u0 e�u0wt ~v ¼ �v=�u0 � e

~v ¼ �v=�u0wt � e
�p q�u2

0 q�u2
0wt p ¼ ð�p� �p1Þ=ðq�u2

0Þ � 1

p ¼ ð�p� �p1Þ=ðq�u2
0wtÞ � 1
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Appendix B. Application of perturbation methods to free
convection flow

Further insight to the mathematical nature of the solution can
be obtained by applying first-order straightforward expansion of
perturbation technique. A concise analysis is presented below for
free convection over a horizontal plate when the heat flux is pre-
scribed for two limiting cases: m � 0 and m >> 1.

Case 1: m � 0
An approximate solution of Eqs. (29)–(31) subject to the bound-

ary conditions (32), near m � 0 can be obtained by expanding F(g),
H(g) and G(g) in a power series in m of the form:

FðgÞ ¼ F0ðgÞ þmF1ðgÞ þ � � �
HðgÞ ¼ H0ðgÞ þmH1ðgÞ þ � � �
GðgÞ ¼ G0ðgÞ þmG1ðgÞ þ � � �

9=;: ðB1Þ

Substituting the expansions (B1) into Eqs. (29)–(31) and boundary
conditions (32) and equating coefficients of equal powers of m lead
to the following two systems of equations (denoted below by the
Equation sets (B2) and (B4) respectively):

F 0000 þ 4F0F 000 � 2F 020 þ gH00 � 2H0 ¼ 0
H00 ¼ G0
1
Pr G000 þ 4F0G00 � 2F 00G0 ¼ 0

9>=>;; ðB2Þ

subject to the boundary conditions:

F 00ð0Þ ¼ F0ð0Þ ¼ 1þ G00ð0Þ ¼ F 00ð1Þ ¼ G0ð1Þ ¼ H0ð1Þ ¼ 0; ðB3Þ

and

F 0001 þ 4F0F 001 � 4F 00F 01 þ 4F 000F1 þ gH01 � 2H1 þ F0F 000 � 2F 0;20 � 1
2 gH00 � 2H0 ¼ 0

H01 ¼ G1
1
Pr G001 þ 4F0G01 � 2F 00G1 � 2G0F 01 þ 4G00F1 þ G00F0 � 5F 00G0 ¼ 0

9>=>;;
ðB4Þ

subject to the boundary conditions:

F 01ð0Þ ¼ F1ð0Þ ¼ G01ð0Þ ¼ F 01ð1Þ ¼ G1ð1Þ ¼ H1ð1Þ ¼ 0: ðB5Þ

Solving both sets of Eqs. (B2) and (B4) numerically, subject to the
appropriate boundary conditions (B3) and (B5), for Pr = 1 gives:

F 00ð0Þ ¼ 0:908231� 0:098472mþ � � �
Gð0Þ ¼ 1:101024� 0:428537mþ � � �



: ðB6Þ

Equation set (B6) constitutes the solution for m � 0.

Case 2: m >> 1
For large values of m(>>1), solution of Eqs. (29)–(31) subject to

the boundary conditions (32) can be obtained by making the fol-
lowing transformation:

n ¼ m
1
3g; FðgÞ ¼ m�

2
3~FðnÞ; HðgÞ ¼ m�

2
3 ~HðnÞ and GðgÞ

¼ m�
1
3 ~GðnÞ: ðB7Þ

This leads to the equations:

~F 000 � 2 1þ 1
m


 �
~F 02 � 1þ 4

m


 �
1
2

~F~F 00
� �

� 2 1þ 1
m


 �eH þ 1
2

1� 2
m


 �
neH 0� �

¼ 0; ðB8Þ

eG � eH 0 ¼ 0; ðB9Þ

1
Pr
eG00 � 5þ 2

m


 �eF 0eG � 1þ 4
m


 �eF eG0� �
¼ 0: ðB10Þ

The corresponding boundary conditions are:

eF 0ð0Þ ¼ eF ð0Þ ¼ 1þ eG0ð0Þ ¼ eF 0ð1Þ ¼ eGð1Þ ¼ eHð1Þ ¼ 0; ðB11Þ

where primes now denote differentiation with respect to n.
A solution of Eqs. (B8)–(B10) subject to the boundary conditions

(B11) is sought to be of the form:

eF ðnÞ ¼ eF 0ðnÞ þ 1
m
eF 1ðnÞ þ � � �eHðnÞ ¼ eH0ðnÞ þ 1

m
eH1ðnÞ þ � � �eGðnÞ ¼ eG0ðnÞ þ 1

m
eG1ðnÞ þ � � �

9>>=>>;; ðB12Þ

where eF 0; eH0; eG0 and eF 1; eH1; eG1 are the solution of the differential
equations (denoted below by the equation sets (B13) and (B15),
respectively):

eF 0000 þ eF 0
eF 000 � 2eF 020 � 1

2 neH 00 � 2eH0 ¼ 0eH 00 ¼ eG0

1
Pr
eG000 þ eF 0

eG00 � 5eF 00eG0 ¼ 0

9>>=>>;; ðB13Þ

subject to the boundary conditions:

eF 00ð0Þ ¼ 0; eF 0ð0Þ ¼ 0; 1þ eG00ð0Þ ¼ 0eF 00ð1Þ ¼ 0; eG0ð1Þ ¼ 0; eH0ð1Þ ¼ 0

)
; ðB14Þ

and,

eF 0001 þ eF 0
eF 001 � 4eF 00eF 01 þ eF 000eF 1 � 1

2 neH 01 � 2eH1 þ 4eF 0
eF 000 � 2eF 020 þ neH 00 � 2eH0 ¼ 0eH 01 ¼ eG1

1
Pr
eG001 þ eF 0

eG01 � 5eF 00 eG1 � 5eG0
eF 01 þ eG00eF 1 þ 4eG00eF 0 � 2eF 00 eG0 ¼ 0

9>>=>>;;
ðB15Þ

subject to the boundary conditions:

eF 01ð0Þ ¼ 0; eF 1ð0Þ ¼ 0; eG01ð0Þ ¼ 0eF 01ð1Þ ¼ 0; eG1ð1Þ ¼ 0; eH1ð1Þ ¼ 0

)
: ðB16Þ

Numerical solution of both sets of Eqs. (B13) and (B15), subject to
the appropriate boundary conditions (B14) and (B16), for Pr = 1
gives:

F 00ð0Þ ¼ 0:816449þm�10:069319þ � � �
Gð0Þ ¼ m�

1
3 1:068595�m�10:383858þ � � �
� �): ðB17Þ

Equation set (B17) therefore constitutes the solution for m >> 1.
A similar analysis has been carried out for n � 0 and n >> 1

when the surface temperature is prescribed instead of heat flux.
The calculations pertaining to the case of variable surface temper-
ature is not repeated here for brevity, but the results have been in-
cluded in Fig. 12. The solutions for Nu�xðGr��xÞ

�1
6 (with prescribed heat

flux) and for Nu�xðGr�xÞ�
1
5 (with prescribed surface temperature) as

obtained from the full numerical solution of the similarity theory
and the approximate series solution are compared in Figs. 11 and
12 respectively. It is found that the two methods are in reasonable
agreement even for moderate values of m or n.
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