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This paper presents a unified theory on the interpretation of total pressure and total
temperature in multiphase flows. The present approach applies to both vapour—
droplet mixtures and solid-particle laden gases, and at subsonic as well as supersonic
velocities. It is shown here that the non-equilibrium processes occurring in the vicin-
ity of a stagnation point are important. These processes may be responsible for
the generation of entropy and affect the pressure and temperature at the stagna-
tion point. They should be properly considered while inferring, say, flow velocity
or entropy generation from Pitot measurements. By proper non-dimensionalization
of the relevant parameters, it is possible to find a single (theoretically obtained)
calibration curve for the total pressure as a function of the particle size, which
is almost independent of the constituents of the multiphase mixture and of the
flow conditions. The calibration curve is a plot of a pressure recovery factor ver-
sus Stokes number and specifies the total pressure under different non-equilibrium
conditions. The total pressure, predicted by the present theory, varies monotoni-
cally between the two limiting values: the frozen total pressure (when there is no
interphase mass, momentum and energy transfer in the decelerating flow towards
the stagnation point) and the equilibrium total pressure (when the dispersed phase,
either the liquid droplets or the solid particles, is always at inertial and thermody-
namic equilibrium with the continuous vapour phase). The equilibrium total pressure
is always higher than the frozen total pressure. It is shown that the equilibrium total
temperature, on the other hand, may be higher or lower than the frozen total tem-
perature. In addition, unlike the case of total pressure, the calibration curve for total
temperature is not so universal, and the total temperature under non-equilibrium
conditions is not necessarily bounded between the frozen and equilibrium values. It
is further shown that the entropy of a multiphase mixture has to be carefully inter-
preted and is not unequivocally related to the total pressure even in steady adiabatic
flow.
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Figure 1. A Pitot tube in two-phase flow.

1. Introduction

A vapour—droplet flow is both scientifically interesting and of engineering importance
(in a variety of areas in mechanical engineering, chemical engineering and meteorol-
ogy). Applications include condensing flows of moist air or combustion products,
aerosol formation in mixing processes, aerodynamic testing in cryogenic wind tun-
nels and wetness problems in steam turbines. Mixtures of gases laden with solid
particles occur frequently in solid-propellant rocket motors and in many industrial
processes.

In this paper we discuss the physics of a stagnating flow in multiphase mixtures.
We also consider its engineering applications. For example, following single-phase
measuring techniques, stagnation probes are often used in two-phase flow situation
(e.g. Skillings 1987, 1989; Petr & Kolovratn’k 1994; Stastny & Sejna 1994; White et
al. 1996). The question then arises: what does a total pressure or temperature probe
measure when inserted in a flowing stream of such two-phase mixtures (figure 1)? The
general approach of the present theory is supported by the experiments conducted
by White et al. (1996), albeit the measurements were made in a rather limited Mach
number range (see Appendix A).

The essence of the theory is that the liquid droplets or the solid particles respond to
changes in temperature, velocity, etc., of the gas phase through interphase exchanges
of mass, momentum and energy. These are essentially rate processes and hence sig-
nificant departures from equilibrium can take place if the rate of change of external
conditions, imposed by the deceleration in the stagnating flow, is comparable to the
internal time scales. Thus, for example, if the size of the liquid droplets or the solid
particles is very small, then inertial and thermodynamic equilibrium between the
two phases are maintained always, and a Pitot tube would measure the equilibrium
total pressure, pp.. On the other hand, if the size of the droplets or the particles
is very large, all interphase transfer processes remain essentially frozen. The Pitot
tube records the pressure which it would have recorded if the vapour phase alone
was brought to rest from the same velocity. The total pressure in this case is termed
the frozen total pressure, pos.

As an example, consider low-pressure wet steam with a typical wetness frac-
tion of 10% and at Mach number 1.5. Calculations show that por/po = 3.3 and
Doe/Poo = 3.79, where p is the static pressure. Therefore, in this particular example,
the equilibrium total pressure is about 15% higher than the frozen total pressure.

For intermediate sizes of the droplets or particles, the pressure recorded by the
probe would neither be the equilibrium nor the frozen value. Similar effects would
also be observed regarding the measurements of stagnation temperature. Therefore,
one needs some method of estimating the total pressure and temperature under non-
equilibrium conditions. In spite of the theoretical interest and the practical impor-
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Two-phase flows at subsonic and supersonic speeds 673

tance of the problems, the existing literature on the former is quite modest, and that
on the latter is virtually non-existent.

Taylor (1945) gave an interesting introduction to the problems of interpreting the
Pitot pressure in moist air. However, no practical method was suggested for determin-
ing the true velocity from the recorded pressures. Crane & Moore (1972) improved
upon the theory of Dussourd & Shapiro (1958) and presented calculations for the
flow of wet steam around purged or unpurged Pitot tubes. They determined the
vapour velocity field around the Pitot tube by means of an incompressible, poten-
tial flow theory and assumed that the same velocity field applies in the presence of
the droplets as well. Then droplet-tracking calculations were made along different
streamlines and the total droplet momentum loss was calculated within a suitable
control volume. From these, the contribution of the droplets to the total pressure rise
could be found. Although these calculations were quite important, Crane & Moore
did not consider supersonic flows in which case a frozen shock wave stands in front
of the Pitot tube. They also neglected any mass transfer between the liquid droplets
and the vapour phase (which has an important effect).

In a slightly different context, some work was done on the general relaxation
phenomena and the structure of shock waves in pure vapour—droplet flows (Guha
1992q,b). In particular, the flow structure in a partly dispersed shock wave is not
very different from the flow structure between a frozen shock wave and the Pitot
mouth. Guha’s calculation methods (1992b) for determining the structure of partly
dispersed shock waves were, therefore, extended by White et al. (1996) to the case of
stagnating flow with a frozen shock wave. Based on these calculations, White et al.
(1996) showed good correspondence between total pressures measured downstream
of a wet-steam cascade operating with condensation shocks, and that predicted by a
two-dimensional time-marching scheme. Their calculations and Pitot measurements
were in the vicinity of a cascade exit Mach number 1.2 (see Appendix A).

Both Crane & Moore (1972) and White et al. (1996) were interested in the
behaviour of wet steam, and while the former calculations are aimed for subson-
ic flow, the latter are restricted to supersonic flow. None of these previous authors
attempted any generalization for all flow conditions and different two-phase mix-
tures. In this paper, calculations have been carried out for a number of two-phase
mixtures—both vapour droplet and gas particle—and for a wide range of subson-
ic and supersonic velocities. Both Crane & Moore (1972) and White et al. (1996)
presented the overpressure (the difference between the actual total pressure and the
frozen total pressure) normalized by the upstream dynamic head (equation (4.1)).
It is shown here that no generalization is possible with this non-dimensionalized
parameter. Instead, a pressure recovery factor (equation (4.4)) is defined and plotted
against the Stokes number. The resulting calibration curve is shown to be very gen-
eral and applies (with acceptable accuracy) to all diverse two-phase mixtures studied
at a wide range of flow conditions. This universal scaling law for total pressure adds
to the utility of the present theory. In addition, the similar question of interpret-
ing stagnation temperature in two-phase flows is also studied. This analysis of the
stagnation temperature is believed to be the first of its kind.

2. Modelling a vapour—droplet mixture

A vapour—droplet medium is considered to be a homogeneous two-phase mixture
of the continuous vapour phase and a large number of small liquid droplets. Surface
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tension normally assures that small droplets are spherical in shape. For simplicity, a
monodispersed droplet population is assumed. This means that the all the droplets
are of the same size, although a prescribed size-distribution can be accommodated in
a numerical calculation. The present analysis is restricted to pure substances (so that
phase change is heat transfer, rather than diffusion controlled) and to low wetness
fractions (y < 0.2) so that the volume occupied by the liquid phase is negligible.
Also neglected is the partial pressure of the droplet cloud.

Sufficient number density and uniform distribution of the droplets make their
interaction with the vapour describable by a continuous variation. We adopt the
usual ‘two-fluid’ model and view the droplets as providing sources or sinks of mass,
momentum and energy for the vapour, each source term varying continuously in
the z-direction. Coagulation as well as fragmentation of droplets is neglected. Each
droplet is therefore assumed to retain its identity and individual droplet radii change
solely by pure evaporation or condensation.

The wetness fraction y is then given by

y =nm, (2.1)

where there are n droplets, each of mass m, per unit mass of the mixture. y can
therefore change as a result of a change in either n, m, or both. The droplet mass,
m, may change due to evaporation or condensation. (Evaporation takes place across
a compression, as is the case in the decelerating flow in front of a Pitot tube.) The
droplet concentration, n, may change as a result of velocity slip. (If there is no
velocity slip between the vapour and the droplets then n remains constant along a
streamline.) The mass of an individual droplet is connected to its radius, r, and the
liquid density, p;, via

m = $rrp. (2.2)

If the vapour density is pg, the mixture density p (neglecting the volume of the liquid
phase) is

p=pg/(1—y), (2.3)
and the number of droplets, N, per unit volume is given by
N = npg/(1—y). (2.4)

We assume that the vapour phase behaves as a perfect gas with constant isobaric
specific heat capacity cpg. Thus

d p
i =0 2.5
dz (PgRTg> (25)
and
dhg  dT;
W Cpg P (2.6)

where R is the specific gas constant and 7T, is the temperature of the vapour. The
perfect gas approximation is not crucial to the analysis (although this assumption is
not far from reality for steam at low pressure, which is of more interest here). More
realistic equations of state can be introduced if desired but these tend to complicate
the algebraic development and do not provide any further physical insight.

Later we shall specify the thermal equilibrium state by the saturation temperature
T, rather than the pressure. The two are related by the Clausius—Clapeyron equation.
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Neglecting the specific volume of the liquid and introducing the perfect gas equation
for the vapour phase, we have,

1d h 1 dT;

e b P 2.7)
pdx RT, ) T, dx

where hg, is the specific enthalpy of evaporation and is a known function of temper-

ature.

3. Calculation of total pressure under non-equilibrium conditions

The analytical expressions for calculating frozen and equilibrium total pressures
depend on upstream frozen Mach number, M;., (equation (B2)), and equilibrium
Mach number, M.y, (equation (B 10)), and will be fully discussed in Appendix B. In
most real situations, however, the pressure recorded by the Pitot tube will neither be
the frozen nor the equilibrium value. The imposed deceleration in front of the Pitot
tube would throw the vapour—droplet mixture into non-equilibrium situations, both
inertially and thermodynamically. The deceleration process consequently ceases to
be isentropic, as non-equilibrium exchanges of mass, momentum and energy between
the two phases create entropy. The degree of the non-equilibrium effects will depend
on the droplet size, mass concentration, etc., or more precisely on the relaxation
times of the system. Hence, relaxation gas dynamics have to be used to obtain a
solution of the problem.

For a proper solution of the real flow field around the mouth of a Pitot tube,
one therefore has to solve multidimensional (at least two-dimensional axisymmetric)
conservation equations with viscous, thermal and inertial non-equilibrium effects.
It is important to incorporate the inertial non-equilibrium effects, i.e. to allow a
velocity slip between the two phases. It is so, not only because the inertial effects
are themselves significant, but also because restraining the two phases to travel at
the same velocity has serious implications for the thermal equilibration process. For
example, a fluid particle moving along the stagnation streamline takes infinite time
to reach the stagnation point. Therefore, in the absence of any velocity slip, the
vapour—droplet mixture would have time enough to come to thermal equilibrium,
irrespective of the magnitude of the thermal relaxation time. In reality, however,
large droplets may move without significant interphase mass and energy transfers
and finally hit the inside of the probe without influencing the pressure.

Most available computational schemes (explicit time-marching, see, for example,
Guha & Young (1991) and Young (1992)), however, neglect any velocity slip between
the phases. In most situations with sub-micron size droplets, this is an acceptable
assumption and saves computer time tremendously. (The relaxation time governing
the velocity slip is very small and hence the computational time-step required for
numerical simulation is small resulting in a large CPU time.) However, as explained in
the previous paragraph, the effects of velocity slip cannot be neglected in a stagnating
flow. Even if all these effects are incorporated in the computer programs, it is quite
likely that the numerical entropy generation would make it difficult to study the
desired effects (e.g. the entropy generation due to relaxation processes) properly.
Hence, in this paper, we present a simple, quasi-one-dimensional model.

The basic one-dimensional gas dynamic equations for steady non-nucleating flow
in a vapour—droplet system can be written in the usual way (Guha 1992b):

d
droplet number conservation: E(AN W) =0, (3.1)
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- d d
continuity: a;(Angg) + d_x(ANmVI) =0, (3.2)
dp d d
momentum: AE + E(Apgvgz) + a(ANme) =0, (3.3)
d d
energy: gﬂg[(hg + 3V ApeVe] + ﬂ[(hl + V) ANmV|] = 0, (3.4)

where h is the specific enthalpy, V is the velocity, A is the flow area and x is the
distance along the flow direction. The subscript g denotes the vapour phase and
subscript | refers to the liquid properties. (Obviously equation (3.1) should be applied
so long as the droplets are not evaporated completely. If complete evaporation of
the liquid phase occurs in the space-marching integration of the above equations,
described later in this section, before the Pitot mouth is reached, the gas dynamic
equations for the pure vapour phase (equations (3.2)—(3.4) with the droplet terms
removed) need to be applied for the rest of the computation.)

After considerable algebraic manipulation of equations (2.5)—(2.7) and (3.1)—(3.4),
the above momentum and energy equations, (3.3)—(3.4), can be put into the form
(in the same order):

dp p ., dVg dvi dm
PVecog ATy dn _,dp dm 1 Ay ny 4™
RT, do TNeg Vg, = (s m )NV — 3 (AVINV

dWi
NmAVV— .
+/Nm 1 dz ) (3 6)

where AV is the slip velocity given by AV =V, — Vi. Eliminating dA/dz from (3.1)
and (3.2),

d d
e In(NV}) = e In(pg Vg + NmW). (3.7)

The temperature 7} is assumed uniform throughout a droplet and always at its
steady-state value, which is usually close to the saturation temperature. It is shown
(Guha 1992b) that the time scale mp with which the droplet temperature approaches
this steady-state value, following a perturbation, is extremely small. Hence, although
it is easy to include this relaxation process in a numerical scheme, the time-step
required for stable numerical integration would be necessarily very small. It is, there-
fore, justifiable to neglect the droplet temperature relaxation process (without much
loss in accuracy but with a large reduction in CPU time) in a practical calculation
of the present nature. The upshot is that d7;/dz in (3.6) can be expressed in terms
of dp/dz via equation (2.7).

The equation set (3.5)—(3.7) is incomplete and must be supplemented by two
equations representing the interphase transport of mass, momentum and energy.
(The droplet temperature relaxation is neglected in this study, as explained in the
previous paragraph.) The interphase transfer mechanisms are quantified in terms
of relaxation times which represent the time scales with which the two-phase sys-
tem reverts to equilibrium following a disturbance. As non-equilibrium variables,
we choose AV =V, — V| to represent velocity (or inertial) relaxation and Tj — T
to represent vapour thermal relaxation. (Note that the subcooling, AT = Tg — Ty,
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Two-phase flows at subsonic and supersonic speeds 677

represents the negative of the vapour superheat.) The interphase transfer equations
can be written as (Guha 1992b)

dvi AV
T (3.8)
1-— T - T,
(hg — hl)nd_m _ (1 = y)eog (T g), (3.9)
dt1 TT

where d/dt; = Vi d/dz is the substantive derivative following the droplets. The iner-
tial relaxation time, 71, and the vapour thermal relaxation time, 7r are given by

_ 2r’py

n [¢(Re) + 4.5 Kn), (3.10)
g
_ 2
o= (1_3./)0_%”1_71(1 +4.5Kn/ Pr), (3.11)
3y

where ¢(Re) is an empirical correction for large slip Reynolds numbers (Re =
2per|AV|/1g) given by

d(Re) = [1 4 0.15 Re®587] 71 (3.12)

and Ay and pg are the vapour thermal conductivity and dynamic viscosity, respec-
tively. Pr is the vapour Prandtl number and Kn = [;/2r is the droplet Knudsen
number, I, being the molecular mean free path of the vapour and r the radius of the
droplet. Equations (3.10) and (3.11) are supposedly valid for all droplet Knudsen
numbers from the continuum to the free molecule regime. For example, for small slip
Reynolds numbers and continuum flow (Re < 1, Kn < 1) equation (3.10) reduces
to the Stokes drag formula for a sphere. For free molecule flow (Kn > 1) an expres-
sion derivable from kinetic theory is obtained. The expression within the bracket in
equation (3.10) provides a simple interpolation formula for intermediate Knudsen
numbers. Similarly, for small Kn, equation (3.11) reduces to the continuum expres-
sion for steady-state heat transfer from a sphere. For large Kn the kinetic theory
(free molecule) result is regained. The method of analysis is not dependent on the
forms of (3.10)—(3.11), however, and other, possibly more suitable, expressions could
easily be incorporated if desired.

When the upstream frozen Mach number is above unity, a frozen shock wave stands
at a distance X from the Pitot mouth. We estimate X from the measurements given
by Liepmann & Roshko (1957). These experiments show that X, is proportional to
the Pitot diameter (or the cross-stream height) and depends on the upstream Mach
number.

The vapour velocity decreases discontinuously across the frozen shock wave which
can be determined from the classical Rankine-Hugoniot equation. The variation
of the vapour velocity downstream of the frozen shock is assumed to be linear.
Therefore, if the velocity just downstream of the frozen shock is Vs, then it is assumed
that

X
Ve = Vas (—X—> , (3.13)

where, X is the distance measured from the Pitot mouth against the flow direction.
When there is no frozen shock wave in the flow field (i.e. in subsonic flow), it is
assumed that V; varies exponentially such that

va = Voo(]- - eXp(_X/kD))’ (314)
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where V,, is the unperturbed velocity far upstream, D is the Pitot diameter and
k is an empirical constant. However, it is explained later that the non-dimensional
representation of the total pressure does not depend on specific values of k. Equa-
tion (3.14) gives V; = Vo as X — oo and V; =0 at X = 0.

Given (3.13) and (3.14), equations (3.5)—(3.9) represent five ordinary differential
equations for five variables, p, Ty, N, Vi and m. Hence, they may be numerically
integrated. For this purpose, (3.5), (3.6), (3.8) and (3.9) are integrated by a fourth-
order Runge-Kutta procedure. At the end of each computational step, the value of
N is then updated by using (3.7). (Note, from (3.7), that the wetness fraction at the
stagnation point may attain a very low value in a frozen flow, in which the droplet
velocity changes only slightly. This happens as a result of a negligible concentration
there, although the size of each droplet hardly changes.)

A computational procedure that marches forward in space must necessarily
start from an initial condition that represents a deviation from equilibrium. When
Moo > 1, the flow variables representing the vapour phase (e.g. p, V; and Ty) change
discontinuously across the frozen shock, while the flow variables for the liquid phase
(Vi, N and m) remain unaltered at their respective far-upstream values. The dif-
ference in the vapour and liquid phase flow variables just downstream of the frozen
shock discontinuity constitute the required initial departure from equilibrium. In
subsonic flow (Mo < 1), arbitrary perturbation of the flow must be specified at a
sufficient distance from the Pitot mouth. The perturbation is thought to be generat-
ed by a small compression wave in the vapour phase. Step-by-step integration of the
conservation equations, (3.5)—(3.9), then specifies the variation of all flow variables.
Providing the initial perturbation is sufficiently small, the numerical results closely
approach the exact solution.

The numerical scheme used for the present purpose is similar to that employed
for the analysis of the structure of shock waves (Guha 1992b). All the interesting
behaviour of fluid properties in a partly dispersed shock wave, as discussed in that
reference, can also be observed in a stagnating flow with a frozen shock wave. (This
includes, for example, the initial rise in vapour temperature downstream of the frozen
shock, the many complicated pattern of the variation of wetness fraction, the ini-
tial rise in slip velocity if the frozen shock wave is weak or the case of complete
evaporation.) Here we concentrate only on the pressure calculated at the stagnation
point.

4. Results and discussion for vapour—droplet flow

Usually the results are plotted as the overpressure (the difference between the
actual total pressure and the frozen total pressure), normalized by the dynamic
head, versus Stokes number, St (see, for example, Crane & Moore 1972; White et al.
1996),

Do — Pof 4y
= t 4.1

7--I‘/'oo
= 4.2
St=—=, (4.2)

where the subscript co refers to the respective unperturbed flow variables at the far
upstream. The Stokes number St, given by (4.2), is nothing but a Damkohler param-
eter signifying the importance of the relaxation processes and L is a representative
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Figure 2. Variation of J (defined by equation (4.1)) with droplet radius at different upstream
frozen Mach numbers in wet steam.

Figure 3. Variation of equilibrium J with upstream frozen Mach number for different wetness
fractions (wet steam).

length scale (its appropriate value is given later in this section). If St — oo, then
the internal relaxation processes are infinitely slow compared to the external time
scale. Hence this represents the limiting case of frozen flow, where py should be same
as por and the value of J should be zero. If St — 0, then the full equilibrium flow
results. Thus the function J in (4.1) essentially specifies the calibration curve for a
Pitot tube.

Numerical calculations are performed here for wet steam. However, the results and
conclusions should also be valid for other pure vapour—droplet mixtures. Figure 2
plots the values of J calculated from the present scheme against the droplet radius,
covering a wide range of upstream Mach numbers. The value of J indeed tends to zero
for very large droplets, having large relaxation times. However, J varies significantly
with droplet size as well as with Mach number. Crane & Moore (1972), on the other
hand, recommended a universal value of J = 0.3. (Their sample calculations were
based on M, = 0.8.) White et al. (1996), however, showed the variation of J with
droplet sizes but concluded that it was virtually independent of the Mach numbers.
This was so because White concentrated only on supersonic flow over a limited Mach
number range.

It should be emphasized that the equilibrium value of J, as the droplet radius tends
to zero, can be calculated directly from the conservation equations as discussed in
Appendix B. Therefore, this limiting value (J, = J (St — 0)) will be independent
of any non-equilibrium calculation scheme and can be calculated with certainty.
Figure 3 plots this limiting value of J, as a function of upstream frozen Mach number,
with the upstream wetness fraction, y,, as the parameter. The point where the curve
for Yo, = 0.05 starts decreasing represents the Mach number at which the resulting
deceleration is just enough to evaporate the liquid phase completely. That all the
curves in the low subsonic limit tend to a unique value can be explained by combining
(B1) and (B9) and then letting M;o, — 0, which results in

lim Poe — Pof _ Y
Mio—0 0.500V2 1 — Yoo

(4.3)
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Figure 4 Figure 5
1.0 T

RTTTT R TTTY RSN TTTT MRS R TTITY RATETERTIT BRI
<

T T T

0.0 ~rrrem—r e
-3 -2 -1 0 1 2 3
logio(St) logi10(S?)
Figure 4. Variation of non-dimensionalized total pressure with Stokes number for different wet-
ness fractions in wet steam.
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Figure 5. Variation of non-dimensionalized total pressure with Stokes number for different
upstream frozen Mach numbers in wet steam.

Clearly, the function J is not unique for all flow conditions and, hence, not very
useful as a calibration curve. It was found during the present course of research that
a much better non-dimensional parameter is Ry, defined by

Po — Dot

R, = ——. 4.4
® Poe — Dot (4.4)
R, may thus be physically interpreted as a pressure recovery factor. One of the
advantages of using R, as opposed to J, is obvious. The value of R,, unlike J,
is bounded between 0 and 1 as the Stokes number varies from oo to 0. Thus the
maximum error in the predicted overpressure is ppe — por, and the predicted total
pressure always lies within its two limiting values. There is no such limit on the
error using J, since the dynamic head is used to non-dimensionalize it. For example,
according to figure 2, if a universal calibration curve for J was adopted based on, say,
M;o, = 1.5 and is used when M., = 0.3, the overpressure could be overpredicted by

a factor of three.

Figure 4 shows the variation of R, versus Stokes number, for different wetness
fractions. The effect of the wetness fraction is quite small. Figure 5 shows the influence
of the upstream frozen Mach number on the calibration curve. Again, the variation
is not much when it is appreciated that the present theory is based on a simple one-
dimensional analysis and cannot be expected to capture all the complicated fluid
mechanical phenomena. It can be seen that choosing the curve for Mz, = 0.6, would
give quite a universal calibration of the Pitot tube for a wide range of Mach numbers.
In order to appreciate the effect of the size of the Pitot tube, the diameter of the tube
was varied from 0.05-10 mm. This variation would have the same effect as varying
k in (3.14) in the subsonic calculations, while keeping the probe diameter fixed. It
was found that the non-dimensional calibration curve was virtually unchanged on
the scale of the graphs. (It is found that the best matching, including the results
presented in the next section, is obtained when the characteristic length used in
(4.2) is taken as L = kD in the subsonic flow, and L = 0.5X, in the supersonic case.)

It should be noted that the denominator in the expression for R, (equation (4.4))
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is calculated using the equilibrium gasdynamic calculations (hence performed with
certainty) described in Appendiz B, whereas the numerator is calculated using the
non-equilibrium calculations as discussed in § 3. That the value of R, indeed tends
to unity and zero in the appropriate limits of St (figure 4), demonstrates independent
theoretical consistency of the calculation schemes.

5. Total pressure in a solid-particle-laden gas

An excellent review of the dynamics of dusty gases is given by Marble (1970). He,
however, did not specifically consider the question of total pressure.

An almost similar analysis for calculating the total pressure, as presented in §4,
also applies to a solid-particle-laden gas. In fact, the analysis gets somewhat simpler
because a mixture of solid particles and a perfect gas, at inertial and thermodynamic
equilibrium, behaves as a modified perfect gas with an isentropic exponent, 7, given
by

. (1 —y)epg +ye

K (1= y)(epg — R) +yc’ (51
where c is the specific heat of the solid particles. (Compare 4 with the isentropic
exponent 7., of a vapour—droplet mixture given by (B7).) Following (B11), the
equilibrium sonic speed is given by a. = \/4p/p, where p is the mixture density.
Thus the equilibrium total pressure po. can be calculated from the ideal gas isentropic
relations (equation (B 1) with ¥) in the subsonic case, and from the classical Rayleigh
equation for the Pitot tube (again with %) when the flow is supersonic and a shock
wave is present in front of the tube. There is no interphase mass transfer involved.
Hence the sizes of the solid particles do not change and much of the complexity faced
in the vapour—droplet flow calculations due to complete evaporation does not exist
in a solid particle laden gas.

Equations (3.1)—(3.8) are equally applicable to a solid-particle-laden gas. The main
difference between the equations for vapour—droplet and gas—particle mixtures lies
in the facts that there is no interphase mass transfer in the latter case and that the
pressure and temperature of a gas—particle mixture, even at equilibrium, are inde-
pendent of each other. (The pressure and temperature of an equilibrium, wet vapour
are, on the other hand, related by equation (2.7).) Therefore, the term dm/dz in the
above-mentioned equations is always zero, and one needs an equation describing the
rate of change of the temperature of the solid particles. This is obtained by equating
the thermal inertia term for the solid particles with the rate of heat transfer to a
cold spherical particle from the hot surrounding gas. The resulting equations are

d7; T, - T,
N (5.2)
dz ‘/pTTp
r2ppe 4.5 Kn
TTp = —3g <1 + Pr ) 5 (53)

where, the subscript ‘p’ refers to the solid particles. The equations for velocity slip
remain unaltered. (The same equations (3.8) and (3.10), with the subscript p instead
of 1, are valid in gas—particle mixtures.) Since the radii of the solid particles do not
change, the relaxation times given by (3.10) and (5.3) remain almost constant. (On
the other hand, the interphase mass transfer in a vapour—droplet mixture results in
substantial changes in the relaxation times, especially close to the point of complete
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Figure 6. Variation of non-dimensionalized total pressure with Stokes number for different
two-phase mixtures.

Table 1. Property values for different gas—particle miztures (SI units)

R 0 cog  pg X 10° X c pp 6 =c/cpg
rocket fuel 4188 1.2 2513 6.4 0.2737 1424 3848 0.57
air + glass particles 287 1.4 1004.5 1.85  0.0262 840 2720 0.84
He + steel particles 2039.7 1.65 5193.5 2 0.1482 461 7823 0.09
Ar + wood dust 208 1.67 565 1.37  0.011 2387 818 4.22

evaporation (Guha 1992b).) Step-by-step numerical integration of equations (3.5)—
(3.8) and (5.2) then generates the pressure profile in front of the mouth of the Pitot
tube.

Figure 6 shows the calculated variation of R, versus Stokes number for a number
of gas—particle mixtures (all with M., = 0.5). Four different mixtures are considered
to give a wide variety of different thermophysical properties—a typical mixture used
in solid propellant rocket motors, air plus glass particles, Helium plus stainless steel
particles and Argon plus wood dust. The property values are collected from various
sources and are shown in table 1 in SI units, all at 1 bar and 293 K.

It may be seen from figure 6 that the curves for different gas—particle mixtures
are almost superposed on each other. The curve for wet steam at M, = 0.5 is
also included in the same figure to compare the results in gas—particle mixtures
with that in a vapour—droplet flow (the calculation methods are somewhat differ-
ent as explained earlier). Similar calculations were repeated for all four gas—particle
mixtures at a variety of Mach numbers (M;o, varying from 0.2-2) and the curves
remained virtually the same (much less variation than in vapour—droplet flow, shown
in figure 5). Thus it may be concluded that the R, versus St curve for wet steam at
M;o = 0.6, as shown in figure 5, may be adopted as a universal total pressure calibra-
tion curve in two-phase flows, either of gas—particle or of vapour—droplet mixtures,
at most working conditions.
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6. Interpretation of total temperature in two-phase flows

Equations (5.3) and (3.10) may be compared to find the relative magnitudes of
the thermal and inertial relaxation times in a gas—particle mixture. Their ratio in
the continuum limit (Kn — 0) with small slip Reynolds number reduces to

Trp/T = 1.56 Pr, (6.1)

where 6 is the ratio of the specific heat of the solid particles to that of the gas
(6 = ¢/cpg). Therefore, it is expected that the relative extent of the inertial and
thermal relaxation zones should depend on §. Table 1 shows that § varies between
0.09 and 4.22 for the four gas—particle mixtures considered. Yet the variation of
R, with St was found to be almost independent of the constituents of the mixture
(figure 6).

The variation of §, however, manifests its influence through its effects on the total
temperature of the mixture. Total temperature is calculated in the present theory
simultaneously with the total pressure. (Like total pressure, it is assumed that the
measured total temperature is the same as the temperature of the continuous gas
phase at the measuring device. The solid particles or the liquid droplets affect this
temperature through interphase transfer mechanisms.) Hence, the present calcula-
tions are possibly the first analysis to throw some light on the interpretation of total
temperature in two-phase flows.

It is shown in previous sections that the equilibrium total pressure is always high-
er than the frozen total pressure (poe > por). The same conclusions do not apply
universally in the case of total temperature. The frozen total temperature (7o) and
the equilibrium total temperature (Toe) in a gas—particle mizture can be found from
the energy equation and are given by

Toe/Too = 1+ 2(v — 1) MZ,, (6.2)
Toe/Too =14+ $(3 — 1) M2, (6.3)

Taking ratios of (6.2) and (6.3), and using the definitions of My, Meoo (Appendix B)
and 7,
Tor — Teo _
TOe - Too
Equation (6.4) clearly shows that T, is higher than Tp; if § < 1, whereas Tp, is less
than Top if 6 > 1. At 6 = 1, Tye = Tor. This is understood when it is realised that
6 = 1 implies that the mixture specific heat is the same as the specific heat of the
gas alone. Therefore, in this limit, the rise in temperature is the same whether the
whole mixture or the gas alone decelerates from V., to rest.
To see how the total temperature would depend on the particle size and other
relevant parameters, a temperature recovery factor Rt is defined as follows:

_ T Ty
Toe — Tor
Figure 7 shows the variation of Rt with the Stokes number at M, = 0.5, in a
mixture of air and hypothetical solid particles with § = 0.1, 0.8, 1.2 and 8, respec-
tively. It may be seen that when the value of ¢ is far away from unity, Rt varies

monotonically from 1 to 0 as Stokes number varies from 0 — oo. However, when
¢ is close to unity, undershooting or overshooting in the value of Ry takes place in

14 Yoo(6 —1). (6.4)

Rr (6.5)
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Figure 7. Variation of non-dimensionalized total temperature with Stokes number in air with
solid particles of various materials.
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Figure 8. Effects of Mach number on the variation of non-dimensionalized total temperature
with Stokes number in air with solid particles of various materials.

Figure 9. Effects of Mach number on the variation of non-dimensionalized total temperature
with stokes number in wet steam.

the neighbourhood of unity Stokes number. It may be recalled that R, on the other
hand, always decreases monotonically with increasing Stokes number.

Physically, the stagnation process may be appreciated by considering it in two
steps. In the first step, the dissipation of the kinetic energy of the decelerating solid
particles appears as internal energy of the gas phase. (This process is controlled
by the relaxation time 71.) A part of this internal energy is then transferred to the
solid particles through interphase heat transfer. (This process is controlled by the
relaxation time 7r.) .

Figure 8 shows the effects of varying Mach number on Ry. The effect is quite
small when § is far away from unity. When § is close to unity, the overshoots (and
the undershoots) are quite strongly dependent on the Mach number. However, in this
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case the difference in the two limiting total temperatures, To. — Tor, itself is quite
small. (Recall that Toe — Tor = 0, when § = 1. Ty, — Tor is negative when § > 1.)
The equilibrium total temperature, Tp,, in vapour—droplet flow is always (whether
or not complete evaporation takes place) less than the frozen total temperature, To;.
This may be physically explained by considering the fact that evaporation of the lig-
uid phase takes place in a compression process. The latent enthalpy of evaporation is
supplied by a reduction in the internal energy of the vapour phase, thereby reducing
the temperature. Figure 9 plots the total temperature in wet steam at four different
Mach numbers. The liquid phase is completely evaporated for the case M, = 2.2
(y = 0.1) and when the Stokes number is low. This fact has caused the total tem-
perature to rise over the value for, say, M., = 1.5 at similar Stokes numbers.

7. Entropy production

As Becker (1970) points out, both frozen and equilibrium flows are isentropic.
Relaxation effects are most pronounced when the external time scale is comparable
to the internal time scale. Therefore, it is expected that the entropy production due
to relaxation would be maximum when the Stokes number is of the order of unity.

In order to calculate the rise in entropy in the stagnation process, the effects of
the interphase velocity slip have to be accounted for. Mixture entropy is, therefore,
determined from the entropies of the individual phases by weighted averaging with
their respective mass flow rates. Consider the mass flow rates at two sections, denoted
by subscripts 1 and 2, along a stream tube.

m = mgl + md1 = mgg + mdz, (71)

where 7 is the total mass flow rate in the stream tube, and the subscripts g and
d refer to the gas phase and the dispersed phase (liquid droplets or solid particles),
respectively. If s, s, and sq denote the specific entropy of the mixture, the gas
phase and the dispersed phase, respectively, then the rise in mixture entropy between
sections 1 and 2 can be calculated from

Sg — 81 = —-fg—%sgz - ~7g£8g1 + —.(1—28.12 - —.d—lsdl- (7.2)

m m m m

It may be noted that in the absence of velocity slip, equation (7.2) reduces to the
familiar form:

sy — 81 = (1 —y2)Sg2 + Y28a2 — (1 — ¥1)Sg1 — Y1541- (7.3)

In a solid-particle-laden gas there is no interphase mass transfer. Therefore, the
conservation of mass is separately valid for each phase (g = 7ige, Tha1 = Maz).
With this condition (together with the assumption that the gas phase behaves ide-
ally), equation (7.2) takes the simpler form

5 = 800 = (1 — yoo) [cpg In (TTTgO) — Rln (i)} + yeocln (%) , (7.4)

where, s, T,, p and T, are, respectively, mixture specific entropy, gas temperature,
pressure and particle temperature at any section of the stream tube, and the subscript
oo refers to those values at the far upstream where the mixture is assumed to be
at equilibrium. The total rise in entropy in the stagnation process can, therefore, be
determined by using in equation (7.4) the numerically calculated (described in §§5
and 6) values of p, T, and T}, at the Pitot mouth.
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Figure 10 plots the rise in mixture entropy, as mixtures of air and solid particles
are decelerated by a measuring probe from their far upstream velocity to rest. Four
different solid particles (hypothetical) with 6 = 0.1, 0.8, 1.2 and 4 are considered and
the calculations are done for two Mach numbers. For the subsonic case (Mo, = 0.8),
figure 10 shows that the rise in entropy is indeed maximum when St ~ 1, and are
almost zero in the frozen and equilibrium limits. (Recall from figure 6 that the total
pressures are different in these limits.) When M;., = 1.5, the entropy rise is again
maximum close to St ~ 1, but it has a finite value both at St — 0 as well as at
St — o0o. The rise in entropy in the limit St — oo is simply that across the frozen
shock. (Since the same frozen shock is involved in all the cases, this increase in entropy
is the same for all four mixtures considered.) The rise in entropy in the limit St — 0 is,
however, different for different mixtures (it depends on 4 and hence on §). However,
it is shown by Guha (1992a) that if the particles come to equilibrium downstream
of a frozen shock wave, then the entropy rise (across the shock plus the relaxation
zone) is not dependent on the particle size (and hence on the relaxation times) but
is determined completely by Rankine-Hugoniot equations for two-phase flow. This
fact is reflected in the straight horizontal portions of the curves (at M, = 1.5) in
figure 10 in the limit St — 0.

The fact that the total pressure decreases monotonically from pg. to por as St
changes form 0 to co, whereas the entropy rise is zero at both limits and has a
maxima when St ~ 1, demands care before attempting to relate a loss in total
pressure with a rise in entropy.

8. Conclusions

A theory is presented for the calculation of total pressure and temperature in
two-phase flows. The theory is based on the solution of the gas dynamic conserva-
tion equations and the interphase transfer equations. The calculations are carried
out for vapour—droplet as well as gas—particle mixtures, and, at subsonic as well as
supersonic speeds. The calculation scheme is robust to include the effects of complete
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evaporation. (Since evaporation takes place in a stagnation process, a vapour—droplet
mixture may become a single-phase dry vapour before reaching the stagnation point.)
A universal scaling law for the total pressure is proposed.

It is shown that the normally used calibration parameter J, defined by (4.1), is
not suitable for any generalization, and the use of J may give unbounded large error
in the estimated total pressure. The scaling law proposed here expresses a pressure
recovery factor R, defined by (4.4), as a function of the Stokes number St, defined
by (4.2). It is found that the curve for Mi,, = 0.6 for wet steam (figure 5) can
be adopted, with acceptable accuracy, as a universal calibration curve for any type
of two-phase flow—vapour-droplet or gas—particle—and at any Mach number. R,
varies monotonically between 1 and 0, as St varies between 0 and oo.

An analytical expression for calculating the equilibrium total pressure pg. is for-
mulated, which is useful in finding p, if the value of R, is given. In a vapour—droplet
flow, equation (B9) gives po. if complete evaporation of the liquid phase does not
take place, and (B 18) in case of complete evaporation. In a solid-particle-laden gas,
equation (B9), with ~, replaced by 7, always specifies poe.

The equilibrium total pressure is always higher than the frozen total pressure,
either in a vapour—droplet or a gas—particle mixture. The equilibrium (low Stokes
number solution in case of complete evaporation) total temperature in a vapour—
droplet flow, on the other hand, is always less than the frozen total temperature.
Equation (6.4) shows that the equilibrium total temperature Ty, in gas—particle mix-
tures may be higher or lower than the frozen total temperature Ty, depending on
the magnitude of 6. In addition, unlike the case of total pressure, the calibration
curve for total temperature is not so universal, and the total temperature under
non-equilibrium conditions is not necessarily bounded between the frozen and equi-
librium values.

It is shown that the rate of entropy production in a multiphase mixture is maxi-
mum when the Stokes number is of the order unity and a reduction in measured total
pressure is not unequivocally related to a rise in entropy (as it is in steady adiabatic
flow of single-phase fluids). The total pressure decreases monotonically from pg. to
Por @s St changes from 0 to oo (figures 4-6), whereas the entropy rise is zero at both
limits and has a maxima when St ~ 1 (figure 10). Caution must be exercised before
interpreting Pitot measurements in multiphase flow.

The author is grateful to Gonville & Caius College, Cambridge, where he was a Research Fellow
while conducting this work. He is also grateful to Dr J. B. Young for providing him with the
computing facility.

Appendix A.

The theory presented is plausible and testable. It is indeed hoped that the present
paper would lead to new experiments suitable for direct comparison with the theory.
The theory shows the quantities to measure and how to non-dimensionalize them.
The experiments may, in turn, give new insight into improving certain aspects of the
present theory, if required. No such elaborate data exists at the moment.

Some verification of the theory is provided by the data presented by White et
al. (1996). Figure 19b from their paper is reproduced here as figure 11 for ready
reference. The solid line in the figure represents the frozen total pressure calculated
by a two-dimensional time-marching computational scheme which gives reasonable
agreement with measurements in terms of other important quantities such as the
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Figure 11. Comparison of measured and predicted traverse results (at the downstream location
of a cascade) showing the variation of total pressure ratio. This figure is reproduced from the
paper of White et al. (1996), their figure 19b.

static pressure contours. The two dotted lines represent measured total pressure—
one is the raw data and the other is an interpreted value using a non-equilibrium
calculation similar to the present theory. It is evident that the time-marching com-
putation and conventionally interpreted Pitot measurements differ significantly and
that, in the central blade passage, the theoretical and measured total pressures are
in good agreement when the non-equilibrium corrections are employed. (Since the
time-marching calculation scheme is an inviscid one, good agreement is not expected
inside the wake region where the viscous loss is significant.) Both the calculations
and the measurements were for a cascade exit Mach number of around 1.2.

Figure 12 shows the comparison of the calculations presented by White et al.
(1996) and that predicted by the present theory for similar flow conditions. The
figure depicts the variation of calculated total pressure with size of droplets in wet
steam with 10% wetness fraction and an unperturbed upstream Mach number 1.24.
The variables plotted as abscissa and ordinate are as chosen by White et al. The
two predictions are similar (this is not surprising as both calculations are based on
that of Guha 1992b). The calculations of White et al., however, suggested that the
variation of J with droplet size was virtually independent of the Mach numbers or
upstream wetness fraction. This was so perhaps because they concentrated only on
supersonic flow over a limited Mach number range. Figures 2 and 3, shown in §4 of
the present paper, on the other hand, depict the very substantial variation in J that
is possible.

Figure 13 shows the comparison of the calculations by Crane & Moore (1972) and
the present theory. The abscissa and ordinate are as chosen by Crane & Moore and
the flow is subsonic (Mach number 0.8). The comparison is not very good. The Crane
& Moore prediction gives almost a constant value of J at 0.32, and does not either
tend to the equilibrium value for very small size of the droplets or to the frozen value
for very large droplets. On close inspection it is further found that, although always
close to about 0.32, J shows a small maxima at some intermediate Stokes number.
Crane & Moore do not offer any physical explanation for these behaviours.

As explained earlier, the response time of the droplets is controlled by the relax-
ation times which decrease monotonically with decreasing droplet size. Thus when
the droplets are very large (and consequently the relaxation time is very large) there
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is not sufficient time for the droplets to respond to the decelerating vapour field.
Thus only the vapour momentum is converted into pressure at a stagnation point.
As the droplet size decreases, the contribution from decreasing droplet momentum
rises and thus the total pressure increases. For very small droplets, which are capa-
ble of maintaining equilibrium with the vapour, both the vapour and the droplets
come to rest at the stagnation point. This gives rise to the maximum pressure—the
equilibrium total pressure. The calculations of the present theory are consistent with
this physical picture.

The calculations of both Crane & Moore (1972) and White et al. (1996) are for
wet steam. The scope of the present theory is more general—it applies to vapour—
droplet flow as well as solid-particle-laden gas flow (the interphase transport of mass,
momentum and energy are quite different in these two types of mixtures as explained
in §§3 and 5). Crane & Moore calculated the vapour velocity field by potential theory
(with some approximate method for including density changes) and their calculations
do not apply to supersonic flow. They considered only momentum transfer between
the two phases and neglected interphase mass and energy transfers which are too
important to be ignored. The calculations of White et al., on the other hand, are only
for supersonic flow of wet steam. The present theory is applicable for subsonic as well
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as supersonic flow (the gas flow field in front of the stagnation point is quite different
in these two flow situations—there is a shock wave in front of a measuring device in
supersonic flow). It is also shown in §4 that neither Crane & Moore’s representation
(J versus St) nor the representation of White et al. (J versus r) is amenable to
any generalization. The present theory, on the other hand, is formulated with a
universal scaling law (R, versus St) such that, within acceptable accuracy, a single
curve of R, versus St can be proposed that can be used for any two-phase mixtures
and under any flow conditions. This aspect of the present theory adds to its utility.
Moreover, the present theory as its integral part also presents an interpretation of
total temperature in two-phase mixtures, simultaneously with total pressure. This
aspect of the theory is novel.

To sum up, the present theory for determining total pressure under non-
equilibrium conditions applies to diverse two-phase mixtures (vapour—droplet or gas—
particle), to various flow conditions (subsonic or supersonic) and to a wide size range
of droplets or particles; the present theory proposes a universal scaling law for total
pressure by carefully choosing the non-dimensional variables, and includes as an
integral part of the analysis an interpretation of the total temperature.

In steady adiabatic flow of a single-phase fluid, a change in stagnation pressure
is unequivocally related to a change in entropy. It is therefore common practice
to measure stagnation pressure, say, upstream and downstream of a blade passage,
and directly determine the amount of ‘loss’ or entropy generated within the blade
passage (there is no ‘entropy meter’). The present paper shows that this unambiguous
relation between stagnation pressure and entropy does not hold in multiphase flow,
and measured stagnation properties must be interpreted considering the various non-
equilibrium processes taking place in the vicinity of a stagnation point.

On the quantitative aspect of the theory, it should be noted that the numerator of
the pressure recovery factor, R, (equation (4.4)), that represents total pressure and
is plotted in figures 4-6, is calculated from the present non-equilibrium theory, but
the denominator is calculated from equilibrium thermodynamics which is certain.
That the value of calculated R, indeed tends, as expected, to unity and zero in the
limits of very low and very high Stokes number (representing particle size), shows
independent theoretical consistency of the calculation schemes. py can only vary
between po¢ and po. according to the present theory, whereas the use of J in previous
works is vulnerable to large unbounded error (see §4).

Appendix B. Calculation of limiting total pressures in
vapour-droplet flow

(a) When there is no frozen shock wave in front of the Pitot tube

It is possible to define two limiting total pressures depending on how the vapour
is brought to rest. For example, the vapour may reach the stagnation point isentrop-
ically while the droplets continue to move with the undisturbed upstream velocity.
(The droplets would ultimately hit the inside of the Pitot tube and give rise to an
axial force. But the interphase transfer of mass, momentum and energy between the
two phases—the vapour and the droplets, is assumed to be absent. Hence the motion
of the droplets does not contribute to the total pressure.) The total pressure recorded
by the Pitot tube under these conditions will be termed as the frozen total pressure,
pos- On the other hand, if the vapour is brought to rest such that, at each location in
the stagnating flow, equilibrium is maintained between the two phases, the pressure
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recorded by the total pressure probe will be termed as the equilibrium total pres-
sure, poe. Note that both these processes are isentropic but result in different total
pressures.
The frozen total pressure is easily calculated from the expression given in classical
gas dynamics
L — 1+ 40— DMEJO, (B1)
Peo
where -y is the isentropic exponent of the vapour phase alone and M;, is the frozen
Mach number of the undisturbed flow. (The subscript oo is used in this paper to
denote the undisturbed flow far upstream of the probe, where it is assumed that the
two-phase mixture is at inertial and thermal equilibrium. The subscript 0 is used to
denote stagnation quantities. The subscripts f and e are used to denote frozen and
equilibrium conditions, respectively.) If V, is the common velocity of the vapour—
droplet mixture far upstream, M;., can be calculated as

Mfoo = oo/affooa (B 2)
where, a¢oo is the frozen speed of sound and is given by
ag = (vp/pg)"*. (B3)

In order to calculate the equilibrium total pressure, pg., one has to write the
momentum and the energy equations for the two-phase mixture (which is always at
inertial and thermal equilibrium)

VdV + dp/p =0, (B4a)

dh + VAV = [(1 - y)cpg + ya] AT, — hggdy + V dV =0, (B4b)

where, ¢ is specific heat of the liquid phase, A is the mixture specific enthalpy and p
is the mixture density calculated from equation (2.3). dT; in equation (B4b) can be
related to dp via equation (2.7). It can be easily verified that equations (B4a) and
(B4b) are specialized forms of equations (3.5) and (3.6), in the limits V; — V; and
T, — 1) .

Equations (B4 a) and (B4b) imply no increase in entropy due to viscous dissipa-
tion and thermal conduction. Because of the assumption of the same velocity and
temperature of the two phases, there is also no rise in entropy due to relaxation
processes. Equations (B4a) and (B4b) together, therefore, describe an isentropic
process (represented by a vertical line in the two-phase region of a Mollier diagram).
(An alternative way of looking at it would be as follows. The thermodynamic relation
Tds = dh — dp/p is separately valid for each constituent phase, but, in general, is
not valid for a two-phase mixture. However, the relation holds for the mixture if it
is at inertial and thermal equilibrium. Equations (B4 a) and (B4b) give dh = dp/p.
Therefore, ds = 0. In a non-equilibrium context, it can be shown that the rate of
entropy production, As, due to thermal relaxation is proportional to AT? /71, where
AT is the interphase temperature difference and 7r is the thermal relaxation time
(Guha 1992a). A ~ AT? /77, or, from equation (3.9), As ~ MAT, where M is the
rate of interphase mass transfer. For small droplets, both AT and 71 tend to zero,
their ratio remaining finite. The entropy generation, therefore, tends to zero as the
non-equilibrium variables, e.g. AT, tend to zero. This is why the low Stokes number
non-equilibrium solution, presented in figure 4, gives the same total pressure as pge.)
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For any assumed velocity distribution, (B4 a) and (B4b) can be numerically inte-
grated as V changes from V. to zero. If the step size is small, the final calculated
total pressure does not depend on the assumed velocity variation.

The above method of calculating pge is numerical in nature, although exact.
Approxzimate methods can, however, be devised to calculate po. analytically. (Such
analytical methods cannot be found in the literature.) It has been shown by Guha
(1992a) that the pressure-density relation and the energy equation for an isentropic
process in a pure vapour—droplet flow are approximately given by

P/P" = Poo /DL, (B5)
Ye P Ye Poo
ﬁ;"‘%VZ:Hp;‘F%VOQOa (B6)

where the equilibrium isentropic exponent of the mixture . is given by

2RT, ¢T, RT.\
e=(1-5"24 2220 B7
7 ( hfg hfg hfg) ( )
where
¢ =cpg +ya/(1—-y). (B8)

The value of ~, is, in general, less than -y, the isentropic exponent for the vapour phase

alone. For low-pressure steam, v ~ 1.32 and 7, ~ 1.12. While deriving equations (B 5)

and (B 6) it was assumed that . remains approximately constant during the process.
By combining equations (B5)—(B7), it is easy to show that

o= [+ e = ME /0, (B9)
where the equilibrium Mach number far upstream, M,.,, can be calculated as
Moo = Vo Geco, (B10)
where a.o is the equilibrium speed of sound far upstream and is given by
a0 = (vep/p)""* = (7e(1 — y)RT,)"/2. (B11)

The accuracy of pg. calculated from equation (B9) is obviously dependent on the
acceptability of the assumption of the constancy of .. A further restriction for the
use of (B6) and hence of (B9), is that complete evaporation of the liquid phase
does not take place during the process of stagnation. In the absence of any liquid
phase, the vapour is not restrained to follow the saturation temperature, and hence
a different strategy for calculating the stagnation pressure is to be followed.

We therefore need to determine the condition for complete evaporation. Combina-
tion of equations (2.3), (2.5) and (2.7) results in a relation between the differential
changes of pressure, mixture density and the wetness fraction. Integration of this

relation gives
'y'ln(i)—ln<-p—>:ln(l—y), (B12)
Peo Poo 1- Yo

¥ = 1= RT/he. (B13)
Substitution of equation (B 5) and of the condition y = 0 in (B 12) gives the pressure
achieved at the point of complete evaporation, py:

pg/poo =(1- yoo)""/e/(’Ye'Y,_l)' (B14)

where
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If the value of pg. calculated from equation (B9) is, say, py, and pj > pj, then
obviously complete evaporation takes place during stagnation. In this case the equi-
librium total pressure is to be calculated in two stages. It may be assumed that, at
first, the pressure rises to pj given by (B14) as the equilibrium mixture decelerates.
The velocity of the vapour, Vg’, at the end of this phase of deceleration is given very
simply from the energy equation

Vg/ = [Z(Cpg(Tsoo - Ts/) — Yoohig + 0'5Vozo]1/2? (B15)

where T is the saturation temperature at pj. The subsequent deceleration of the
vapour from V to the stagnation point takes place under frozen conditions. Hence,
the final total pressure is given by
Poe —
© = [+ 50y = DMEPOD, (B16)
o

where M;: is given by

My = V! /\/7RTL. (B17)
Combining (B14) and (B 16),

BOe — (1 = yoo) /07 D1 4 L(y — 1)ME]/ =D, (B18)

(o]
To sum up, the exact value of the equilibrium total pressure can be calculated by
numerically integrating equations (B4 a) and (B4b). An approximate but analytical
expression for the equilibrium total pressure is given by (B9) when complete evap-
oration of the liquid phase does not take place, and by (B18) in case of complete
evaporation. Calculations show that the error in using the approximate equations is
less than 1% even when the upstream Mach number M., is close to unity.

(b) When there is a frozen shock wave in front of the Pitot tube

If the upstream frozen Mach number M;, is greater than one, then a frozen shock
wave forms in front of the Pitot tube. Methods of calculation for the frozen total
pressure in this case are exactly same as in a single-phase ideal gas. The pressure
and velocity just after the frozen shock are calculated using the classical Rankine—
Hugoniot relations. Subsequent deceleration to rest is calculated using isentropic
relations. There is a loss in stagnation pressure and a rise in entropy because of the
presence of the shock wave.

The equilibrium total pressure can be calculated approximately in a similar man-
ner. It is assumed that, following disruption by the frozen shock wave, the vapour—
droplet mixture comes to equilibrium, and then this equilibrium mixture undergoes
further deceleration up to the stagnation point. This latter phase of deceleration is
isentropic. The rise in pressure across the equilibrium shock wave can be calculated
from the two-phase Rankine-Hugoniot relations given by Guha (1992a), whereas the
further rise in pressure due to isentropic deceleration up to the stagnation point may
be calculated using the theory presented in Appendix B a. It has been shown (Guha
1992a) that the pressure and velocity ratio across a partly dispersed shock wave in
a vapour—droplet medium is given by

25_: 276 Mezoo_’}/e’—l’
Do Vet 1 Yo+ 1
Vi  (ve—1)MZ +2

Voo (etl)MZ,

(B19)

(B 20)
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where the subscript s is used to denote properties just downstream of the partly
dispersed shock wave and the subscript oo is used, as previously, for far upstream
conditions. At point s, the vapour—droplet mixture is at equilibrium and V; calculated
from (B 20) is subsonic. Hence, the methods described in Appendix B a can be used
to determine the further rise in pressure as the mixture decelerates from velocity V4
to rest. Note that equations (B 19) and (B 20) are valid if complete evaporation of the
liquid phase does not take place within the dispersed shock wave itself. If, however,
this does take place then alternative equations for jump conditions, given again by
Gubha (1992a), have to be used.

Nomenclature

speed of sound

specific heat of solid

specific heat at constant pressure

specific enthalpy

specific enthalpy of evaporation

calibration factor (equation (4.1))

Mach number

mass of a droplet or particle

mass flow rate

number of droplets (or particles) in unit volume of mixture
number of droplets (or particles) in unit mass of mixture
pressure

total pressure

Prandtl number

specific gas constant of vapour

radius of droplets or particles

pressure recovery factor (equation (4.4))

temperature recovery factor (equation (6.5))

specific entropy

Stokes number (equation (4.2)).

Low and high St correspond to small and large r, respectively
temperature

total temperature

saturation temperature

velocity

flow co-ordinate

mass fraction of dispersed phase

isentropic index of vapour phase

equilibrium isentropic index in gas—particle mixture (equation (5.1))
equilibrium isentropic index in vapour—droplet mixture (equation (B 7))
slip velocity (AV =V, — V1)

vapour subcooling (AT = Ts — Tg)

vapour thermal relaxation time (equation (3.11))

inertial relaxation time (equation (3.10))

TTp thermal relaxation time in gas—particle mixture (equation (5.3))
é ratio of specific heats (6 = ¢/cpg)

p density

>0 08
& o

<

@m ’_];U@ﬁ :U"U'gﬁ 3233 2&.

A= B NN

23 bR
3H<

subscripts

unperturbed value at far upstream

dispersed phase (liquid droplets or solid particles)
equilibrium

frozen

vapour phase

liquid phase

=@ o Q—-8
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