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A unified theory for aerodynamic and condensation shock waves in vapor-droplet flows in the 
presence of an inert carrier gas is presented. Same conservation equations apply across 
discontinuous models for both types of wave. Exact (as well as approximate), explicit analytical 
jump conditions across such discontinuities are derived subject to several boundary conditions. 
Collectively they may be called the generalized Rankine-Hugoniot equations for vapor-droplet 
mixtures. All the equations derived are general and can be applied in the case of a pure 
vapor-droplet flow by letting the mass fraction of the carrier gas go to zero. Much physical 
insight may be obtained from this integral analysis. It is shown that four types of aerodynamic 
shock waves (viz., equilibrium partly dispersed, equilibrium fully dispersed, partly dispersed 
with complete evaporation, and fully dispersed with complete evaporation) may occur. 
Conditions for each type of these waves to occur are specified and the appropriate jump 
conditions are derived. A flow map for different types of condensation discontinuities to occur 
is deduced. It is shown that the same jump conditions are applicable for most supersonic and 
subsonic condensations-both homogeneous and heterogeneous. However, for certain types of 
condensation shocks predicted by the integral jump conditions, consideration of nonequilibrium 
gas dynamics must be called for. As a sequel to the integral analysis, time-marching solutions for 
different types of condensation shock waves in a convergent-divergent nozzle are presented, 
which include some novel solutions. isentropic exponents for gas-vapor-droplet flow under 
frozen and equilibrium conditions are formulated. Gasdynamic equations for vapor-droplet 
flow, including area variation and interphase transport of mass, momentum, and energy, are 
derived. It is shown that equations in this full form are to be considered for making correct 
physical interpretations, e.g., determining the conditions for thermal choking. 

1. INTRODUCTION 

The thermofluid dynamics of the two-phase flow of a 
vapor-droplet mixture consisting of a large number of 
minute liquid droplets uniformly dispersed throughout a 
background vapor phase continuum is both scientifically 
interesting and of engineering importance (in a variety of 
areas of mechanical engineering, chemical engineering, and 
meteorology). Applications include condensing flows of 
moist air or combustion products, aerosol formation in 
mixing processes, aerodynamic testing in cryogenic wind 
tunnels, and wetness problems in large, low-pressure steam 
turbines used for electricity generation. In this article, we 
present a unified, control-volume analysis for different 
types of discontinuities (similar to the analysis of an adia- 
batic shock wave in an ideal gas) that occur in vapor- 
droplet mixtures under a variety of operating conditions. 
(Note, however, that although they can be modeled as 
mathematical discontinuities for many practical purposes 
and many useful aspects can be studied from such models, 
no actual, physical discontinuities are involved. Physical 
mechanisms such as viscous dissipation, thermal conduc- 
tion, and relaxation give rise to a continuous variation of 
flow properties, even if over a small length scale.) The 
integral treatment is then complemented by analysis and 
numerical solutions of the differential equations of motion. 

One application of the integral, discontinuous model is 
involved with the formation of the liquid droplets itself. 

When a dry mixture of an inert gas and a condensable 
vapor is expanded rapidly, liquid droplets do not form as 
soon as the vapor reaches the saturation temperature. The 
vapor goes out of equilibrium and attains considerable sub- 
cooling (i.e., the vapor temperature falls below the local 
saturation value) due to continued expansion. The rate of 
formation of liquid nuclei is very strongly dependent on the 
subcooling. Thus when the subcooling becomes apprecia- 
ble, a very large number of very small nuclei form over a 
relatively short time. These nuclei grow by exchanging 
heat and mass with the surrounding, subcooled vapor. The 
resulting release of latent heat is conducted back to the 
vapor and the vapor temperature quickly rises to the local 
saturation value (i.e., the subcooling decreases to almost 
zero). This rapid reversion to equilibrium is generally 
termed condensation shock and has been the topic of an 
extremely large number of studies.‘-” (The term conden- 
sation shock is, in general, a misnomer. Although heat 
addition in a supersonic flow results in an increase in pres- 
sure, the rise is gradual and the Mach number at the end of 
the condensation zone, in general, remains above unity. ) 

On the other hand, aerodynamic shock waves may 
form in a supersonic, two-phase, vapor-droplet flow in the 
same way as they form in an ideal gas. However, the anal- 
ysis is more complicated than that in an ideal gas because 
there is no unique sonic speed in a vapor-droplet mixture, 
and nonequilibrium exchanges of mass, momentum, and 
energy between the two phases are involved. The general 
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FIG. 1. Control volume analysis of discontinuities: (a) condensation 
shock, (b) aerodynamic shock wave. 

behavior of condensing flow and the propagation of small- 
amplitude harmonic waves in vapor-droplet mixtures have 
been studied extensively.‘2P’3 Although the structure of 
shock waves in a general relaxing medium has been dis- 
cussed in many publications’47” in the past, the work on 
shock waves in vapor-droplet mixtures is rather recent.‘6-23 
A practical example of two-phase aerodynamic shock 
waves occurs near blade trailing edges in the last, transonic 
stages of low-pressure steam turbines used in power plants. 

In this article, we perform a Rankine-Hugoniot-type 
analysis describing the jump conditions across aerody- 
namic as well as condensation shock waves. Approximate 
as well as exact, explicit jump conditions have been derived 
(which have not been considered in the literature previ- 
ously). The same conservation equations hold for both 
types of discontinuities but lead to different solutions de- 
pending on the boundary conditions. It is therefore instruc- 
tive to study both types of discontinuities from a common 
standpoint. Figure 1 schematically depicts the control- 
volume models applied in the present study. 

Note that the fluid is at a metastable, subcooled state 
upstream of a condensation shock wave but is at two-phase 
equilibrium downstream of it. On the other hand, the fluid 
is at two-phase equilibrium upstream of an aerodynamic 
shock wave but may be either superheated or at two-phase 
equilibrium downstream. Moreover, evaporation of liquid 
droplets takes place across an aerodynamic shock wave, 
whereas condensation takes place in a condensation discon- 
tinuity. Thus phase change effectively results in heat re- 
moval for the vapor’ phase in the former case, and in heat 
addition in the latter. The entropy of the medium, how- 
ever, increases across both types of discontinuities, as is 
dictated by the second law of thermodynamics. This has 
important implications on permissible upstream and down- 
stream Mach numbers in the two cases. 

Another subtle difference between the two cases arises 
because it may be normally assumed that individual drop- 
let radii change solely due to pure evaporation or conden- 
sation. Coagulation of droplets is neglected and the Weber 

number criterion for stability against fragmentation is well 
satisfied even for very strong shock wave deceleration.” 
Each droplet, therefore, retains its individual identity and 
the number of droplets per unit mass does not change 
across an aerodynamic shock wave (unless a droplet is 
evaporated completely). On the other hand, new liquid 
droplets obviously nucleate before their rapid growth re- 
sults in a condensation shock wave. Integral conservation 
equations, either across an aerodynamic or a condensation 
shock, however, depend on the total moisture content and 
not on its distribution among different droplet size groups. 

For the sake of generality, we assume that the vapor 
phase consists of a condensable vapor and an inert, carrier 
gas. However, the formulas derived and the conclusions 
deduced are equally applicable to pure vapor-droplet flows. 
For example, the jump conditions across aerodynamic 
shock waves in pure vapor-droplet flows (given in Ref. 16) 
can be recovered from the jump conditions across aerody- 
namic shock waves given here simply be letting the mass 
fraction of the carrier gas go to zero. 

II. PvlODELlNG THE MIXTURE 

Consider a gas-liquid droplet mixture. The gas phase 
is the continuous phase and, in general, consists of a mix- 
ture of an inert gas and a condensable vapor. The liquid 
phase is the discontinuous phase and consists of a polydis- 
persed population of spherical droplets of the same chem- 
ical species as the condensable vapor. The inert gas, vapor, 
and liquid droplets are referred to by subscripts g, v, and 1, 
respectively. 

If the mass fraction of the inert gas per unit mass of the 
mixture is denoted by g, the mass of vapor plus liquid per 
unit mass of mixture is ( 1 -g). The wetness fraction y is 
then defined as the mass of liquid per unit mass of vapor 
plus liquid. Therefore, the mass of vapor per unit mass of 
mixture is ( 1 -g) ( 1 -y) and the total mass of liquid per 
unit mass of mixture is ( 1-g)y. 

The above definitions of g and y are very convenient. In 
the absence of velocity slip between the gas and liquid 
phases, elemental fluid particles retain their identity in that 
the total mass of vapor plus liquid contained in the particle 
remains constant even though condensation or evaporation 
may occur. Under these conditions, it follows that g re- 
mains constant along a particle path line in unsteady flow 
or along a streamline in steady flow. Furthermore, any 
generalized set of equations can be converted to the special 
case by letting the appropriate quantity go to its limiting 
value. For example, for a pure vapor g= 0, and y is synon- 
ymous with the conventional definition of the wetness frac- 
tion. The condition g= 1 renders the medium to consist of 
the inert gas only, and y=O renders the medium to be a 
mixture of the inert gas and superheated vapor. In passing, 
note that the specific humidity (defined for mixtures of low 
vapor content as the ratio of the mass of vapor to the mass 
of inert gas) is given by ( 1 -g) ( 1 -y)/g. 

If p is the density of the gas phase (inert gas+vapor) 
and pI is the material density of the liquid phase, then the 
mixture density pm is calculated from 
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1 s+u-gw-Y)+u-~)Y -= 
Pm P PI * 

(1) 

However, usually p+p. The usually small numerator of 
the second term in the right-hand side (RHS) of Eq. ( 1) 
makes its contribution to the total density even less signif- 
icant and hence the second term can be neglected for most 
practical calculations. 

The inert gas and the vapor are assumed to behave as 
perfect gases with partial pressures pg and pu, respectively. 

Pg= PbJ%TY (2) 

PO= PAT, (3) 

where pg and pu are the partial densities and R,, R, are the 
specific gas constants for the inert gas and vapor, respec- 
tively, and T is the common temperature of the gas phase. 
By Dalton’s law the partial pressures and densities are ad- 
ditive: 

P=Pg+Pw (4) 

P=Pd- PO, (5) 

wherep is the mixture pressure. Equation (4) implies that 
the partial pressure due to the liquid droplets is negligible. 
Note the difference in combining component densities in 
Eqs. ( 1) and (5). In Eq. ( 1 ), pz is the actual material 
density of the liquid phase. Hence specific volumes, rather 
than density, of the individual phases are added to calcu- 
late the mixture specitic volume. From Eqs. ( l)-(5) 

p=pRT=p,RT, (6) 

where 

R =gR9+ ( 1 -g) ( 1 -Y)& 
g+(l--g)(l-y) 

and 

~=gR,-t(l-g)U-YM,. (8) 

Both R and i? may vary from point to point in the flow 
field. The specific enthalpy of the gas-vapor-droplet mix- 
ture, z, comprises of the contribution from individual com- 
ponents and is given by 

6=&,-t- ( 1-g) ( 1 -yM,+ ( 1 -g)h. (9) 

Equation (9) is a general expression valid under nonequi- 
librium conditions as well, in which case hl would be cal- 
culated at the liquid phase temperature (different from gas 
phase temperature) and also y would not be the equilib- 
rium wetness fraction. 

The partial pressure pu is related to the mixture pres- 
surep through Eqs. (2)-(8), which can be simplified to 

PU (1 -g) (1 -Y)& 
p=gR,+ (1 -g> (1 -Y)& * 

(10) 

Ill. DETERMINATION OF ISENTROPIC EXPONENTS 
OF THE MIXTURE 

The gas-vapor-droplet mixture is a relaxing medium 
and, following relaxation gas dynamics,24 there can be two 
limiting types of flow in which the entropy of the mixture 
remains constant. Many different expressions for the isen- 
tropic exponent in the two limiting cases can be found in 
the literature.3’9’11*25 We, therefore, include a short deriva- 
tion of the correct form of the exponents. 

A. Frozen flow 

This case arises when interphase transport of mass, 
momentum, and energy between the gas phase and the 
liquid droplets are frozen completely. In other words, the 
liquid droplets do not take part in the fluid mechanical 
processes. It can be shown that the thermodynamic form of 
the energy equation in this case is given by 

g 
g+(l-@(l-y) dhg+ 

(1-&7)(1-Y) dp 
g+(l-g)(l-Y) dhU=pP 

(11) 

where p is the gas phase density and the left-hand side 
(LHS) of (11) is the mass-fraction-weighted sum of the 
changes in specific enthalpies of the inert gas and the con- 
densable vapor (without the liquid droplets). Invoking the 
ideal gas assumption, Eq. ( 11) can be rewritten as 

& -= kc,,+ (1 -s) (1 -~k,,l dT~c 
rg+(l-g)(l-YIl 

dT 
P ’ (12) 

P 
where cPg and cpU are the isobaric specific heat capacities of 
the inert gas and vapor, respectively, and T is their com- 
mon temperature. Equations (6) and ( 12) can be com- 
bined to show that p/pyf remains constant in an isentropic 
process, where the frozen exponent rf is given by 

spg+ (1 -g) ( 1 -Yb,, 
yf=g(cpg-Rg) + (1 -g> ( 1 -y) Cc,,-R,) ’ 

(13) 

Accordingly, the frozen speed of sound, af, can be defined 
by 

af= J”/fp/p= m9 (14) 

where R is given by (7). If the flow velocity is V, then a 
frozen Mach number may be defined as Mf = V/a,. 

The frozen exponent yf, given by Eq. ( 13), can be 
interpreted as usual as rf = cJ(cp- R) where cp and R are 
given by Eqs. ( 12) and (7), respectively. The relevant 
properties are weighted averages according to the compo- 
sition of the gas phase only (not the mixture). It is impor- 
tant to note that the liquid phase does not take part in the 
dynamics of the flow process under the assumed conditions 
and the liquid flow properties do not change. But, with the 
present notations, different values of y for a fixed g changes 
the ratio of the mass fractions of the inert gas and the 
vapor. Hence the wetness fraction y appears in the expres- 
sion for the frozen exponent rf in Eq. ( 13 ) . In the limits 
g=O and 1, rf g iven by Eq. ( 13) reduces to the isentropic 
exponents of the vapor phase, ‘yv, and of the inert gas, y,, 
respectively. 
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The expressions for rf given in Refs. 9, 11, and 25 all 
tend to rg as g-* 1 (in accordance with the present theory). 
However, those expressions become increasingly more in- 
accurate as the mass fraction of the vapor increases, and do 
not tend to */u as g- 0 (the present theory does). According 
to the expressions of Refs. 9 and 25, as g+O, 
r~-~~(l--y)/[l+y(y,-l))]; according to Ref. 11, as 
g-0, yf-[( 1 -v>c,,+vcd/[( 1 --Y) Cc,,---&,I +ycd, where 
cf is the liquid specific heat. In pure steam-water mixture 
with y=O. 1, for example, the expressions of Refs. 9 and 25 
would give y,=O.87 y”, and the expression of Ref. 11 
would give l/f=O.94 yU. 

B. Equilibrium flow 

When the liquid droplets are always in complete equi- 
librium with their own vapor, the laws of equilibrium ther- 
modynamics hold good and any entropy production due to 
the relaxation mechanism vanishes. Conditions of equilib- 
rium are that the velocity and temperature (neglecting sur- 
face effects for established droplet sixes) of the gas and 
liquid phases are equal and also that the partial pressure 
due to the vapor is equal to the saturation pressure corre 
sponding to its temperature. Hence, the vapor pressure 
changes according to the Clausius-Clapeyron equation 

u’pu hf!J dT 
pu -R,T T ’ (15) 

where hfg is the specific enthalpy of evaporation which is a 
known function of temperature. Later we shall symboli- 
cally refer to this relation as p,=p,( T). Equations ( 10) 
and (15) together show that for particular values of p, T, 
and g, the equilibrium wetness fraction y is jxed. Any 
arbitrary combination of p, T, and g may not satisfy the 
requirements of two-phase equilibrium. For example, p can- 
not be less than the saturation pressure at T. Also note that 
to maintain the equilibrium partial pressure there must be 
some vapor in the mixture. In other words, at equilibrium, 
y can never be equal to 1. On the other hand, a mixture of 
inert gas and superheated vapor (without any liquid) can 
be at equilibrium. 

The thermodynamic relation for an isentropic process 
in the equilibrium gas-vapor-droplet mixture becomes 

d&d”. (16) 
Pm 

The value of dE is obtained by differentiating Eq. (9) un- 
der the assumption that all the components of the mixture 
are at temperature T 

dg=F&T-( I-g)h&y, 

where 
(17) 

q?=gcpg+ ( 1 -g) (1 --Y&i- ( 1 -g)ycz. (18) 
For thermodynamic consistency, since the specific 

heats of the vapor cPU and that of the liquid cl are assumed 
to be constant, hfg should vary with temperature such that 

Differentiating the equations of state (6) and (8), we ob- 
tain 

& dpm di? dT dpm 
p”-+--+F-- 

(1-g)R, 

Pm Pm R 
dy+$. (20) 

From Eqs. (10) and (15) 

hfi? dT dYfRT--+=. 
” 

(21) 

Eliminating dy between Eqs. (20) and (21) one obtains 
the relation between dp, dp,, and dT as 

Now, eliminating dT and dy from Eqs. (16), (17), (20), 
and (22) one obtains 

(23) 

where 

1 -t (RJR) [g/t 1 -g) (1 -Y) 1 EJ/hyJ (R,T/QJ 
Ye= l --2(R,T/h& + [l/( 1 -g) ( 1 -Y) 1 (&T/h& [ (FJ&g) - (gR,T/hf,) 1 ’ (24) 

Integration of Eq. (23) shows that p/p: remains constant 
in an isentropic process (if the variation in ‘ye is small). As 
an example, the values of ye in the air-water mixture for 
some specified conditions are plotted in Fig. 2. Interest- 
ingly, even for small mass fractions of H20, ( 1 -g>, the 
values of ‘ye in the air-water mixture is quite close to that 
in the pure water vapor-droplet mixture (given in Ref. 16). 

I 

The dotted line in Fig. 2 represents the maximum value of 
g for maintaining equilibrium at the specified pressure and 
temperature. 

The expression of ye, given by Eq. (24), reduces to 
known expressions in the appropriate limits. 

(i) In the case of pure vapor-droplet flow, g+ 0 and ye 
reduces to the familiar expression’6 
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---- .L Max~num g to maintain two- 
phase equilibrium at (p,‘I’) 

- ~,~~~‘,~~~‘r , 1 
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B 

FIG. 2. Isentropic exponent in an equilibrium air-water mixture as a 
function of gas mass fraction (p= 1 bar, varying r). 

1 
ye=l -2(R,T/hfg) + (R,T/hfg) CcT/hf$ ’ (25) 

where 

Y 
c=cpu+ Ivy - Cl. (26) 

(ii) In the case of pure gas, g- 1, y-+0, yedyg. (See Fig. 
2.1 

However, note that if g# 1 and y + 0, then 3/e does not 
tend to the frozen value rf [Rq. (13)], as would be ex- 
pected. The reason for such a discrepancy lies in the use of 
the Clausius-Clapeyron equation [Eq. ( 15 )] while deriving 
Eq. (24)) which does not remain valid in the absence of the 
liquid phase. The existence of a similar discontinuity in the 
value of the isentropic exponent in the case of pure vapor is 
noted in Ref. 19 and has been explained there. 

The equilibrium sonic speed in gas-vapor-droplet mix- 
ture is simply given by 

(27) 

where i? is given by Eq. (8). If the flow velocity is V then 
an equilibrium Mach number M, may be defined such that 
M,= V/a,. The equilibrium speed of sound is always less 
than the frozen speed of sound in any relaxing medium 
(af> a,) .24 Therefore, it follows, that the local equilibrium 
Mach number at any point in the flow field is higher than 
the local frozen Mach number (Iw, > MY). 

It can be shown that the expression for yC in Ref. 11 is 
the same as Eq. (24). ye given in Ref. 25 is, however, not 
quite correct and does not reduce to Eq. (25) in the limit 
of pure vapor-droplet tlow (g-to). A detailed study shows 
that the discrepancy can be traced to the assumption of 
constant h, and to the use of 5 [given by Eq. (3 I)] in 
Refs. 3 and 25 instead of FP [given by Eq. ( 18)] in the 
energy Eq. ( 17). 
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IV. AERODYNAMIC SHOCK WAVES 

A. Jump conditions across normal shock waves 
when the boundary conditions are equilibrium states 

We now consider the structure of stationary, finite- 
amplitude waves in one-dimensional steady flow of a gas- 
vapor-droplet mixture. Far upstream of the wave (denoted 
by subscript 1) the flow is assumed to be in thermody- 
namic and inertial equilibrium with a prescribed pressure, 
temperature, and mass fraction g. Far downstream of the 
wave (denoted by subscript 2) a new two-phase equilib- 
rium condition is re-established. The continuity, momen- 
tum, and energy equations for the two-phase mixture con- 
necting the two end equilibrium states across a normal 
shock wave take the form 

continuity pm1 VI = pm2 V, , 

momentum PI + pm1 VT =p2 + pm2 Vi, 

energy h,+$VT=h,+fVi. 

With the help of the definition 

(28) 

(29) 

(30) 

Fp=gcpg+ (1 -g>cp, 

and Eq. (9), Eq. (30) becomes 

(31) 

(32) 
Note that the same value of g applies to the far upstream 
and far downstream ends and ZP remains constant. Equa- 
tions (6), (lo), and ( 15) are applicable to both ends of the 
shock wave as well. The equation set (6), (lo), (15), 
(28), (29), and (32) therefore furnish altogether nine re- 
lations between thirteen variables and hence can be solved 
if any four of the variables are prescribed. However, no 
general analytical solution is possible if all four are speci- 
fied at the upstream and the equations have to be solved by 
an iterative numerical scheme. For moderate strengths of 
shock waves, it is, however, possible to obtain an approx- 
imate analytical solution and this has been derived below. 
Later it is also shown that if instead of specifying the up- 
stream velocity VI, the temperature ratio across the shock 
is prescribed a completely general analytical solution of the 
above-mentioned equation set is possible. 

1. Approximate Rankine-Hugoniot relations (for 
epecified p,, T,, V,, and g) 

The ratio of the different flow variables between the 
two end states of a normal shock wave in an ideal gas can 
be expressed as functions of the upstream Mach number. 
They are generally referred to as the Rankine-Hugoniot 
relations. In the case of a simpler relaxing medium (e.g., 
solid-particle-laden gas), it can be shown that these rela- 
tions remain identicalI if the upstream equilibrium Mach 
number (M,i) is used instead of the frozen Mach number 
(Mfl). These relations are exact and hold unconditionally. 
Derivation of similar relations in gas-vapor-droplet flow 
involves approximations and the derived relations are of 
conditional applicability. Difficulties arise mainly because 
of the mass transfer between the vapor and the liquid phase 
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and also because the partial pressure and temperature of 
the vapor at equilibrium with liquid droplets are not inde- 
pendent of each other but are connected via the Clausius- 
Clapeyron equation [p,=p,( T)]. 

If the shock wave is weak so that the entropy change is 
small, we can write the thermodynamic relation for the 
two-phase mixture by combining Eqs. ( 16) and (23) 

(33) 

Assuming ye does not change appreciably between end 
states, Eq. (33) may be integrated to give 

~22-+-- ye:1 (:-:)* (341 

Substitution of Eq. (34) in the energy equation (30) re 
suits in 

Ye - IL ++E- ( ) Ye-1 Pm1 ( ) z,?- +; vi. 
Y@---l Pm2 

(35) 

Equation (35) is analogous to the energy equation for the 
adiabatic flow of a single-phase ideal gas. However, in the 
case of ideal gas, dhg=c,gtT,=rg/(r,-l)d(p/p,) is a 
general identity and hence the analog of Eq. (35) is gen- 
erally valid for any arbitrary adiabatic process in an ideal 
gas. This may not be the case for gas-vapor-droplet flow. 
However, although Eq. (35) was derived subject to the 
assumptions of the isentropic process and constancy of ye, 
it applies reasonably well across shock waves of low to 
moderate strength. (This will be shown when calculations 
based on approximate Rankin+Hugoniot relations are 
later compared with an exact solution.) One of the condi- 
tions, as discussed in Sec. IV B, for using Eq. (35) is that 
complete evaporation of the liquid droplets does not occur 
and this restricts the upper limit of the upstream Mach 
number to rather low values. 

Once the energy equation, Eq. (30), is replaced by Eq. 
(35), the resulting set of Eqs. (28), (29), and (35) are 
identical with the ideal gas analogs, and the Rankine- 
Hugoniot relations may be derived following the standard 
procedure given in any gasdynamics textbook. The results 
are 

P2 we -=-J,fp+ 
PI Ye+1 Y&l’ 

(36) 

(37) 

Pm2 Vl 
-=- 
Pm1 V2’ 

(38) 

where the upstream equilibrium Mach number M,t is given 
by 

M,,JL- Vl 

41 (YrdMPml) ln * 

The range of acceptability of the above equations depends 
on the validity of Eq. (35). [The accuracy of Eqs. (36)- 

t 
Pf /PI = w$-i~ a * Rankine-Hugoniot 
P2lPI = mw t relation 

2 2 iz 8 
k 

P 
f Relaxation zone 

l 
Frozen shock 

1 
Distance Distance 

(4 (b) 

FIG. 3. Schematic structure of aerodynamic shock waves in a relaxing 
medium: (a) partly dispersed wave, M,, > 1, M,-, > I, (b) fully dispersed 
wave, Iw,, > 1, Iw,<l. 

(38) is compared with an exact solution given later in Sec. 
IV A 2.1 However, although not exact, these equations 
have two advantages: (i) all shock relations could be ex- 
plicitly written in terms of the upstream parameters only, 
and (ii) the form of the equations is similar to the well- 
known Rankine-Hugoniot relations for ideal gas. 

It should be noted that Eqs. (36)-(38) are valid for 
both partly and fully dispersed shock waves. Partly dis- 
persed shock waves arise when the upstream frozen Mach 
number is greater than unity (nW,t > 1 also implies 
Iw,, > 1). They are characterized by an almost discontinu- 
ous wave front, dominated by viscous dissipation and ther- 
mal conduction, followed by a continuous relaxation zone. 
The jump conditions across the discontinuous wave front 
[termed frozen shock) is given by the classical Rankine- 
Hugoniot relations based on Mfl Equations (36)-( 38)) on 
the other hand give the overall changes in flow properties 
across the entire shock wave (frozen shockfrelaxation 
zone). Fully dispersed waves do not involve any frozen 
discontinuity and give rise to continuous variation of tlow 
properties from one equilibrium state to another. They 
may appear in the tlow field if the upstream velocity is such 
that Mfl < 1, but iw,, > 1. Equations (36)-(38) specify the 
jump conditions across fully dispersed waves as well. This 
point is schematically presented in Fig. 3. 

2. An exact solution (for specified pl, T,, T2, and g) 

If instead of specifying the upstream velocity VI, the 
temperature ratio T,/T, across the shock wave is treated 
as an independent variable, an exact solution of Eqs. (28), 
(29), and (32) can be formulated (without requiring any 
approximate energy equation such as that used in Sec. 
IVA 1). 

The algebra is quite complicated but, briefly, the steps 
are as follows. The vapor pressure pti is known from Eq. 
(15). The mixture pressure p2 in Eq. (29) is expressed in 
terms of pu2 and y2 by Eq. ( 10). The downstream mixture 
density pm2 is expressed in terms of T2, pv2 and y2 by Eqs. 
(6) and ( 10). The downstream velocity V2 in Eqs. (29) 
and (32) is then expressed in terms of VI by the continuity 
equation (28). VI is then eliminated from the resulting two 
equations to give a quadratic equation in yz . The solution is 
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Approximate eqn (36) 

I- Exact solution, eqn (40) /, 

Mn 

FIG. 4. C!!mparison of an approximate Rankine-Hugoniot solution with 
an exact jump condition for aerodynamic shock waves (air-water mix- 
ture, p, = 1 bar, T=293 K, g=O.95). 

(40) 

where 

A=2( 1 -g>hfg2-- ‘3 T2( 1 -g)R,, 
tl 

+Pv2-PI 

Pm1 ’ 

C= & pv2 

t l-g)Ru Pm1 ’ 

The dimensions of A, B, and C in Eq. (40) are that of 
energy per unit mass. A and C are positive. Therefore the 
requirement that O<y2<l eliminates the other root in Eq. 
(40). Equation (40) reduces to Eq. (29) of Ref. 16 in the 
special case of the pure vapor-droplet mixture (g=O, 
C=O). 

Once yz is found, p2 may be calculated from IQ. (10) 
and pm2 from Eq. (6). The flow velocities VI and V2 may 
then be determined from Eqs. (28) and (29). 

The pressure ratio p2/p1 calculated for an air-water 
mixture from this exact solution procedure is plotted as a 
function of the upstream frozen Mach number ( VI/a, ) as 
the solid line in Fig. 4. Also included in the figure is the 
approximate relation, Eq. (36). It can be seen that the 
approximate relation performs quite well until the mixture 
is close to complete evaporation. The dotted line in the 
same figure gives the pressure ratio across shock waves in 
a dry mixture (with the same value of g as in the wet 
mixture). The rise in pressure in the wet mixture is more 
than that in the dry mixture because further increase in 
pressure takes place in the relaxation zone following the 
frozen shock. It is to be noted that steady shock waves exist 
in a wet mixture even for Mfl < 1. These waves are termed 
fully dispersed waves. Both Eqs. (36) and (40) apply 
across such waves. 

8. Limiting wetness fraction 

In the previous section it was assumed that down- 
stream of the shock wave the medium is an equilibrium 
mixture of the gas phase and the liquid droplets. However, 
the liquid droplets evaporate in a fully dispersed wave or in 
the relaxation zone of a partly dispersed wave. Hence if the 
strength of the shock wave is substantial, the whole of the 
liquid phase may evaporate. This would render the me- 
dium at the downstream end as a single-phase mixture of 
the inert gas and superheated vapor. The vapor pressure is 
no longer restrained to the saturation pressure correspond- 
ing to the mixture temperature and none of the equations 
derived in Sets. IV A 1 and IV A 2 would be valid. Note, 
however, that the value of g does not change as a result of 
the complete evaporation of the liquid phase. 

The limiting wetness fraction yl,am can be determined 
by letting y2 go to zero in Eq. (40). If the upstream wetness 
fraction is less than this limiting value corresponding to a 
shock of particular strength, complete evaporation takes 
place in the dispersed wave. Thus 

25 

+U-g)R, 

2hfnl Pv2-PI g R,P, --- 
R,Tl+ PI +1--g&p, ’ ) 

(41) 

pv2 in Eq. (41) is still given by the saturation pressure at 
T,. Equation (41) is an implicit relation because, for 
y1 =yl,lim, only two parameters out of pl, T1, and g can be 
specified independently. Equation (41) reduces to Eq. 
( 3 1) of Ref. 16 in the special case of the pure vapor-droplet 
mixture (g=O). 

C. Jump conditions across shock waves with 
complete evaporation of liquid phase (y2=O) 

If the amount of liquid phase in the mixture at the 
upstream of the shock wave is less than that given by Eq. 
(41) for a shock wave of a particular strength, then com- 
plete evaporation takes place. Upstream of the dispersed 
wave the medium is an equilibrium mixture of the gas, 
vapor and liquid, whereas downstream it is a mixture of 
the gas and superheated vapor. The vapor pressure and the 
temperature are then independent variables (i.e., they are 
not connected by the Clausius-Clapeyron equation) and, 
therefore, neither the approximate jump relations (36)- 
(38) nor the exact solution (40) derived in Sec. IV A are 
applicable. Mathematically, the condition y, =0 implies 
p02<ps( T2). The conservation Eqs. (28)-( 30) are general 
and applicable in this case as well. Care must be exercised, 
however, in determining the mixture enthalpy, density, and 
pressure. 
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FIG. 5. Exact solutions for pressure ratios across aerodynamic shock 
waves in air-water mixture as a function of upstream frozen Mach num- 
ber (pl=l bar, T=293 K, g=O.95). 

1. An exact solution (for specified p,, T,, VI, and g; 
Y2=0) 

This is the conventional case when all upstream pa- 
rameters are known and all the downstream parameters 
are to be predicted. In this case we can formulate an exact 
analytical solution of Eqs. (28), (29)) and (32). We define 

FI =PI +pm16 (42) 

H1 =Cpq - ( 1 -&).Ylhfgl + v;a (43) 

i=gR,+ (1 -g)R,. (44) 

Equations (28) and (29) give 

Equations (6) and (32) give .- H I= ” v; 
-PzV,+y . 
RP,I VI 

(45) 

(46) 

Substitution of Eq. (45) in Eq. (46) results in a single 
equation for p2. The solution is 

E+ JEW 
P2= 20 3 (471 

D=25%- 1, 

E=2F,($?-1), 

F=2H,p;,V$F;2. 

The pressure increases across an aerodynamic shock wave 
and, hence, p2>pI. This condition eliminates the other 
root in Rq. (47). Once p2 is known, V, can be calculated 
from Eq. (45) and T, from Eq. (32). Note that Eq. (47) 
should reduce to the classical Rankine-Hugoniot solution 
ify, = 0. (In other words, if the medium just consists of the 

inert gas and the superheated vapor, the medium is then a 
mixture of ideal gases under the assumptions made.) 

Equation (47) is plotted for an air-water mixture in 
Fig. 5. The solution for equilibrium shock waves as dis- 
cussed in Sec. IV A 2 is also included in the figure and it 
merges nicely with the curve of Eq. (47) at the point of 
complete evaporation. The pressure ratio across a frozen 
shock wave with same values of Mfl and g, is also plotted 
for comparison. It can be seen that the presence of a small 
quantity of condensable vapor may alter the pressure ratio 
significantly. (High latent heat of evaporation of water is 
responsible for this. ) 

2. An exact solution (for specified pl, T,, p2, and g; 
Yz=O) 

If, instead of the upstream velocity V,, p2 is specified, 
then also an exact solution of Eqs. (28), (29), and (32) 
can be obtained. The method of solution is exactly the 
same as used for deriving Eqs. (27) and (28) in Ref. 16. 
The solution is 

T2= ET --2(1-g)yLhf,l+[(p2-p,)/pmll ’ ’ 
+-Rt (P2-P*YPzl 

> (48) 

9 (49) 

where E is given by Eq. (44) and Ep by Eq. (3 1) . 

D. Entropy rise through a shock wave 

Once conditions upstream and downstream of the dis- 
persed shock wave are established, the increase in mixture 
specific entropy As can be calculated directly from 

- ks,1+ ( 1-g) ( 1 --Yl )%I + ( 1 -dw* I* (50) 

In the case of complete evaporation of the liquid phase, y2 
is zero in Eq. (50). Since both the inert gas and the vapor 
are assumed to behave as perfect gases, Eq. (50) can be 
expressed in the convenient form 

--(l-g> (51) 

Figure 6 plots the entropy rise across shock waves corre- 
sponding to calculations presented in Fig. 5. The large 
difference between the curves for wet gas-droplet mixture 
and dry gas phase suggests that a significant amount of 
entropy is produced as a result of relaxation mechanism. 
As an example, the entropy rise in the gas-droplet mixture 
(with g=O.95) is twice that in the dry gas for an upstream 
frozen Mach number of 1.75. For details of the mechanism 
for entropy production inside a dispersed shock wave one 
may refer to Ref. 16. 
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RG. 6. Entropy rise across aerodynamic shock waves in air-water mix- 
ture as a function of upstream frozen Mach number (pl =  1 bar, T= 293 
K, g=O.95). 

V. CONDENSATION SHOCK WAVES 

A. Jump conditions across condensation shocks 

If a mixture of an inert gas and a condensable (super- 
heated) vapor is expanded rapidly (as it flows through a 
nozzle, blade passage, or over an aerofoil) the vapor does 
not condense immediately on crossing the saturation line. 
The vapor becomes sufficiently subcooled until an appre- 
ciably high nucleation rate is obtained. Since nucleation 
rate is a very strong function of the subcooling, the major- 
ity of the nuclei are formed within a short region of the 
Wilson point which is defined as the point of maximum 
subcooling. When a significant nucleation rate produces 
sufficient droplet surface area for condensation to occur, 
the latent heat of condensation starts heating the mixture. 
As a result, the subcooling decreases very fast (almost ex- 
ponentially) and the mixture attains (nearly) thermody- 
namic equilibrium within a short zone (termed the con- 
densation shock). If the variation in the area of the flow 
passage over this zone of rapid condensation may be ne- 
glected, Eqs. (28)-(30) can again be used for giving the 
jump conditions across condensation shocks (between the 
Wilson point and the point of attainment of thermody- 
namic equilibrium). However, care should be taken while 
evaluating different flow properties. 

The mixture of the gas and the condensable vapor up- 
stream of the condensation shock is not in a state of stable 
thermodynamic equilibrium. The vapor pressure there is 
not equal to the saturation pressure at the vapor tempera- 
ture [in fact, pul >p,( T,)] and the wetness fraction is not 
given by the equilibrium value (in fact, y1 =O) . The con- 
servation equations can be solved analytically if all the 
downstream flow variables are known and the upstream 
variables are to be predicted. The solution given in Sec. 
IV C 1 applies in this case with subscripts 1 and 2 being 
interchanged. 

A more convenient boundary condition for an exact 
analytical solution is specified pl, T1, T2, and g. Since 
thermodynamic equilibrium is assumed downstream of the 

condensation shock, pu2 =p,( T2) . The upstream vapor 
pressure pul is related to the mixture pressure through Eq. 
( 10). It is convenient to express the upstream temperature 
T1 in terms of the subcooling which is the measure of 
departure from equilibrium. Thus 

Tl=TJp,d---hTl, (52) 

where TS(pul) is the saturation temperature corresponding 
to the vapor pressure pul and AT1 is the subcooling at the 
Wilson point (which constitutes the upstream condition 
for the condensation shock). The rest of the analysis is the 
same as in Sec. IV A 2 and the downstream wetness frac- 
tion is given by 

BS ,/m  
l--Y,= 24 , (53) 

where 

ps(T2)-~1 
A=2(1-g)hfgr p (T2) T,(l--g)R,, 

s 

B=2(1-g)h~g2+2Cpl.T,(p,,)-AT,-T2]+gRgT2 

P,( T2) -PI 
+ 

Pm1 ’ 

C= gRs PAT,) 

(l-g% pm1 ’ 

Pl 

p”l=R”[Ts(p,,) 4~11 ' 

The exact value of AT1 , at which the Wilson point occurs, 
depends on the stagnation conditions and the local expan- 
sion rate which, in turn, is determined by the shape of the 
flow passage. (Since nucleation and subsequent growth of 
droplets are rate processes, higher values of the expansion 
rate make the mixture deviate further from thermody- 
namic equilibrium and result in higher AT, at the Wilson 
point.) Once yZ is found, p2 may be calculated from Eq. 
(10) and pm2 from Eq. (6). The flow velocities VI and V2 
may then be determined from Eqs. (28) and (29). 

Figure 7 plots the pressure ratio p2/p1 across conden- 
sation shocks in the air-water mixture as a function of 
upstream frozen Mach number M fl. These curves are cal- 
culated quite conveniently by keeping pl , AT,, and g fixed 
and by varying T, in Eq. (53). Only those solutions which 
correspond to positive y2, net entropy rise, and real mass 
flux, are plotted. [Entropy rise across a condensation dis- 
continuity also can be calculated from Eq. (5 1) .] For the 
calculations shown in Fig. 7, p1 is 1 bar and the gas mass 
fraction is 99% (g=O.99). AT1 for the two sets of curves 
shown are 30 and 20 K, respectively. In a practical calcu- 
lation, pl, T,, and g will be isentropically related to the 
upstream stagnation conditions-p,, T,, and $c (the rela- 
tive humidity). 

Crudely, the elfect of condensation may be understood 
by analogy with external heat addition to an ideal gas flow- 
ing through a constant area duct [Eqs. (Al )-(A4), with 
dA=O]. [ The subtle d$erence arises because of the deple- 
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PIG. 7. Pressure ratio across condensation shocks in air-water mixture as FIG. 8. Equilibrium Mach number downstream of condensation shocks 
a function of upstream frozen Mach number (pi =2.5 bar, g=O.99). Sym- in air-water mixture as a function of upstream frozen Mach number 
bols: +: MD=l, x: M&=1. (p,=2.5 bar, g=O.99, Art=30 K). Symbol: f: MD= I. 

tion in the mass of the vapor as a result of condensation and 
the transfer of momentum between the phases. In addition, 
the amount of heat addition is not an independent variable 
but depends on the flow conditions. Furthermore, the vapor 
pressure and the vapor temperature, at thermodynamic 
equilibrium, are not independent of each other but are con- 
nected through the Clausius-Clapeyron equation. Com- 
pare Eqs. (65)-(67) with Eqs. (Al)-(A3).] Hence, if 
AT, is fixed, the curves for the pressure ratio show two 

stream condition. Hence, for example, transition from 
point a to b in Fig. 8 involves a pure aerodynamic shock 
wave and equations developed in Sec. IV A apply between 
points such as a and b. 

To put things in a more familiar perspective, we plot 
the Hugonlot curve which is. the locus of possible down- 
stream pressure p2 and specific volume v2 corresponding to 
fixed upstream pressure and specific volume (Fig. 9). The 
Hugoniot curve looks similar to the familiar examples of 

branches for subsonic and supersonic condensation, respec- 
tively. When Mfl < 1, the pressure falls across a conden- 
sation shock, whereas, for n/r,, > 1, the pressure rises. This 2.0 , I I ~~~1.-..~-*----- 
corresponds well with the well-known effects of heat addi- 
tion. Note that there is a forbidden region near the frozen 
Mach number of unity (both in the subsonic and super- Part I 
sonic regime). This results from thermal choking because 1.5 - 
of the liberation of latent heat. Mathematically it manifests Part II 

in nonreal values for the calculated mass flux. The maxi- 
mum subsonic and minimum supersonic Mach numbers 
depend on AT, and both of them come closer to unity with 

;; 1.0 
\ 

- 

decreasing AT,. This is because decreasing AT, results in 
less amount of heat addition. All this behavior can be seen 
from Fig. 7. 

Figure 7 shows that some values of Mil correspond to 

_ InitiaI state/~~<lv I 

0.5 - 

two different pressure ratios. To investigate exactly what 
happens in these cases, we plot (only for the case when 
AT,=30 K) the downstream equilibrium Mach number 
iw,, as a function of Mfl in Fig. 8. Since thermodynamic 
equilibrium is assumed downstream of a condensation 
shock, equilibrium Mach number a, is the characteristic 
sonic speed there. It can be seen that the two pressure 

0.0 I I I 1 I , 

0 . 0 0 . 5 1.0 1.5 2.0 
L‘2 
VT 

ratios (corresponding to the same Mfl) correspond to sub- 
sonic and supersonic downstream conditions. Any point on 
these curves represents an equilibrium (two-phase) down- 

FIG. 9. Calculated downstream states of condensation shocks in air- 
water mixture with p,=2.5 bar, g=O.99, AT,=30 K. Symbols: =t-: 
Mn= 1, x: Mc2= 1. 
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combustion waves. The points where the downstream flow 
velocity attains the local equilibrium sonic speed ( Me2 = 1) 
can be called the CJ points, in analogy with the combus- 
tion wave theory. Note that the line joining the upstream 
condition (pl ,vl > with the lowest point in the upper branch 
is an isochore, whereas the line joining the upstream con- 
dition and the topmost point on the lower branch is an 
isobar. Also note that the upstream point itself does not lie 
on the Hugoniot curve as it would do in the case of an 
adiabatic shock wave in a perfect gas, and that downstream 
conditions (on the Hugoniot curve) below (pl,vl) may 
correspond to a rise in entropy. 

Evidently the Hugoniot curve is divided into five parts 
[all of which are calculated by Eq. (53)] 

part I: strong compression Mfi > 1, Me2 < 1, 

part II: weak compression lwfi > 1, Me2 > 1, 

part III: forbidden zone Nonreal mass flux, 

part IV: weak expansion Mfi < 1, Me2 < 1, 

part V: strong expansion Mfi < 1, Me2 > 1. 

In the combustion wave theory, the compression and ex- 
pansion branches are called detonation and deflagration, 
respectively. Strong deflagration is a physical impossibility 
and weak detonation, although not ruled out theoretically, 
is rare in reality.26 A strong detonation generally comprises 
of an adiabatic shock wave followed by a combustion zone. 

While the physics of the combustion process is quite 
similar to that of a condensation shock under present dis- 
cussion, an important difference should be pointed out 
clearly. Combustion is an exothermic reaction which be- 
comes more vigorous at higher temperatures. Hence an 
adiabatic shock wave in front of a combustion zone facili- 
tates combustion by raising the temperature of the mixture 
of the reactants. Thus, this is normally the flow structure 
observed in strong detonation waves. On the other hand, 
the subcooling of a gas-vapor mixture always decreases in 
passing through an adiabatic shock wave. Since nucleation 
of liquid droplets is a very strong function of the vapor 
subcooling, an adiabatic shock wave hinders nucleation 
and might even cause its cessation. Liberation of an appre- 
ciable amount of latent heat does not take place unless 
sufficient number of nuclei are formed and the vapor may 
need signiticant further expansion, following an adiabatic 
shock, to reach the Wilson point (where rapid condensa- 
tion causes the mixture to return to equilibrium). Thus the 
flow structure inside a condensation shock wave may be 
quite different from that of a combustion wave. 

The most common type of condensation shock waves 
reported in the literature, both from experimental (e.g., 
Ref. 8) and theoretical (e.g., Ref. 5) points of view, falls in 
the category of part II (weak compression). Weak deto- 
nations in a combustible mixture, on the other hand, rarely 
occur, and slow combustion (weak expansion) is the usual 
occurrence. Calculations are presented in Sec. V B 2 to 
show that condensation shock waves in the category of 
part IV (weak expansion) are also possible. However, for 
this type of waves to occur through homogeneous nucle- 

ation in a nozzle, the vapor may have to be subcooled at 
the inlet stagnation condition. A recent article2’ describes 
subsonic condensation (heterogeneous condensation on 
cloud condensation nuclei, CCN) of moist air in very long 
intake ducts of jet engines during stationary operation. The 
theory presented in this section can be applied directly 
across such condensation zones. 

One can discount the possibility of a strong expansion 
(part V) because heat transfer alone cannot accelerate a 
flow from subsonic to supersonic velocities and, therefore, 
a strong expansion must include an expansion shock wave. 
Such a shock wave structure is internally unstable and is 
not evolutionary. (This is true both for combustible mix- 
tures as well as for condensation shocks. However, note 
that the parts of part V shown in Figs. 7-9 do not contra- 
vene the second law of thermodynamics. A strong expan- 
sion in an ideal gas, on the other hand, would have resulted 
in a decrease in entropy.) Landau and Lifshitz26 suggest 
that the remaining category of condensation shocks 
(strong compression, part I) is not normally achievable 
because the system is overdetermined in this case. How- 
ever, they reckon that a condensation discontinuity with 
Mfl > 1, 1ve2 < 1 may actually (for certain conditions of 
vapor content and shape of the surface past which the flow 
occurs) be simulated by a true condensation discontinuity 
with Mfl > 1, Me2> 1, closely followed by a shock wave 
which renders the flow subsonic. A flow structure such as 
this is plausible if the condensation shock is close to the 
usual trailing-edge shock waves in a transonic turbine 
blade row.28 In the next section we will show that, depend- 
ing on the flow conditions, the condensation zone may 
involve an embedded frozen shock wave as well, as op- 
posed to a separate shock wave downstream of the conden- 
sation zone as envisaged by Landau and Lifshitz. 

Figures 10 and 11 plot the entropy rise across conden- 
sation shocks and the mass fraction of the condensed 
phase, respectively. As with the aerodynamic shock waves, 
the entropy rise across condensation shock waves is also 
given by Eq. (5 1). The symbol x in Figs. 7-l 1 correspond 
to a downstream equilibrium Mach number of unity 
(Me2= 1). Similarly, the symbol + in Figs. 7-l 1 corre- 
spond to a downstream frozen Mach number of unity 
(MD = 1). The equilibrium, control-volume analysis of 
this section suggests that the line segment between X and 
+ represent viable condensational jumps. It has, however, 
been shown in Appendix B (also see Refs. 18 and 19) that 
the nonequilibrium variables such as subcooling and veloc- 
ity slip show unstable behavior when the flow velocity lies 
in this range. Thus consideration of nonequilibrium gas 
dynamics abandon these solutions which are permitted by 
an integral analysis. 

The condensation discontinuity is obviously not arbi- 
trarily triggered at any location in the flow field. It occurs 
only when the subcooling attained is sufficient (in respect 
of the expansion rate) to cause significant nucleation of 
liquid droplets and where the local flow velocity sustains it 
as a stable structure. It may also be recalled that the above 
discontinuous model of condensation assumes no variation 
in flow area within the zone of condensation, and, there- 
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FIG. 10. Entropy rise across condensation shocks in air-water mixture as 
a function of upstream frozen Mach number (pr=2.5 bar, g=O.99). Sym- 
bols: -+: MD=‘, X: Me2= 1. 

fore, sometimes may not be directly applicable to condens- 
ing nozzle flows. (References 29 and 30 discuss asymptotic 
theories describing conditions under which the final col- 
lapse of the supersaturated state can be described by a 
condensation shock.) Despite this limitation, the model 
provides valuable physical insight and can sometimes be 
applied directly for quantitative predictions. (For example, 
an application area, cited above, is the condensation of 
moist air in long intake ducts of jet engines during station- 
ary operation. Reference 31 discusses applications in noz- 
zle flows.) In the next section, we present example calcu- 
lations for different types of condensation shock waves in 
pure steam flowing through a convergent-divergent nozzle. 

In order to conclude this section, we note that all these 
complexities and different regimes of condensation shock 
waves did not arise in the case of aerodynamic shock waves 
in gas-vapor-droplet flow as discussed in Sec. IV. The only 
boundary condition compatible with stability and the seo 
ond law of thermodynamics consists of a supersonic flow at 
the upstream of the aerodynamic shock wave and a sub- 
sonic flow at the downstream (M,, > 1, Me2 < 1 if complete 
evaporation does not take place). 

5. Condensation shock waves in 
convergent-divergent nozzles 

The integral analysis of the previous section only re- 
lates the upstream and downstream conditions across con- 
densation shock waves. If, on the other hand, one is inter- 
ested in the details of the variation of different flow 
variables within a condensation shock wave, differential 
equations of motion must be solved. In Sec. V B 1 we 
present one-dimensional gasdynamic equations incorporat- 
ing all the relaxation processes arising out of nonequilib- 

rium transfer of mass, momentum, and energy between the 
vapor and the liquid phase. In Sec. V B 2 we present solu- 
tion methods and example calculations. 

7. Nonequilibrium gasdynamic equations for steady, 
pure vapor-droplet flow and conditions for 
thermal choking 

For simplicity, we consider pure substances only. This 
means that the vapor consists of the same chemical species 
as the liquid droplets and that no carrier gas is present. We 
adopt the usual “two-fluid” model and view the liquid 
droplets as providing sources or sinks of mass, momentum, 
and energy for the vapor, each source term varying con- 
tinuously in the x direction. The combined liquid and va- 
por continuity, momentum, and energy equations are, re- 
spectively, given by 

(55) )I =o, 

; [Ap,V,( h,+; V:) +$-j&Y/( h+; Vi)] =O, 
(561 

(54) 

where h is the enthalpy, p. is the vapor phase density, Vis 
the velocity, y is the wetness fraction, A is the flow cross- 
sectional area, and x is the distance measured in the flow 
direction. The subscripts u and I refer to the vapor and 
liquid phase, respectively. The equation set (54)-( 56) is 
incomplete and must be complemented by three equations 
representing the interphase mass, momentum, and energy 
transfer. The interphase transfer mechanisms are quanti- 
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FIG. 11. Mass fraction of liquid phase condensed across condensation 
shocks in air-water mixture as a function of upstream frozen Mach num- 
ber (p,=2.5 bar, g=O.99). Symbols: f: Mfl=l, X: M,=l. 
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fied in terms of relaxation times which represent the rates 
at which the two-phase system reverts to equilibrium fol- 
lowing a disturbance. As nonequilibrium variables, we 
choose AV= Vu-- VI to represent velocity (or inertial) re- 
laxation, AT,= T,-- TI to represent droplet temperature 
relaxation, and AT=T,-T, to represent vapor thermal 
relaxation. (Here, T, is the saturation temperature at pres- 
surep, and AT represents the negative of the vapor super- 
heat.) It is shown in detail by Young and Guhatg that the 
interphase transfer equations can then be written as 

(57) 

dVI Vu--V, -=- 
dx v/r, ’ 

(58) 

dm 
(h,--hbn x= 

( 1 -Y)c,,( TI, - T,) +YCA Tz, - TJ 
vFT vrD 

where m is the mass of a liquid droplet and n is the number 
of droplets per unit mass of the mixture, and are related to 
the wetness fraction viay=nm. rD, rr, and rT are different 
relaxation times and their expressions are given by 

2?PI 
~z=9,u, [We) +4.5 Kn], 

TDzr2)(2i”(g) y, (61) 

( 1 -Y) CPUPI~ ?-T=- 
3u 

(1+4.5 Kn/Pr), (62) 

where 4 (Re) is an empirical correction for large slip Rey- 
nolds numbers (Re=2p,r] A VI /,u& given by 

$(Re) = [ 1+0.15 Re”.687]-1 (63) 

and /2, and ,uu, are the vapor thermal conductivity and dy- 
namic viscosity, respectively, qC is the condensation coeffi- 
cient, Pr is the vapor Prandtl number and Kn=fJ2r is the 
droplet Knudsen number, I, being the molecular mean free 
path of the vapor, and r the radius of the droplet. In most 
situations, the steady-state droplet temperature T1, is 
close to the saturation temperature T, if the capillary sub- 
cooling (ATC,,=2asTJrplhf,, where a, is the surface ten- 
sion) is negligible. (The Kelvin-Hehnholtz equation 
shows that in steam-water mixture the capillary subcool- 
ing is 0.43 “C if the droplet radius is 0.05 pm and 0.01 “C! if 
the radius is 2 ,um.) Young and Guha” have discussed, at 
length, the assumptions involved in the derivation of the 
relaxation times and have indicated their range of validity. 
Equations (60)-(62) are supposedly valid for all droplet 
Knudsen numbers from the continuum to the free mole- 
cule regime. For example, for small slip Reynolds numbers 
and continuum flow (Re( 1, Kn( 1) Eq. (60) reduces to 
the Stokes drag formula for a sphere. For free molecule 
flow (Kn%l) an expression derivable from kinetic theory 
is obtained. The expression within the bracket in Eq. (60) 
provides a simple interpolation formula for intermediate 

Knudsen numbers. Similarly, for small Kn, Eq. (62) re- 
duces to the continuum expression for steady-state heat 
transfer from a sphere. For large Kn the kinetic theory 
(free molecule) result is regained. The method of analysis 
presented in this article is not dependent on the forms of 
Eqs. (60)-(62), however, and other, possibly more suit- 
able, expressions could easily be incorporated if desired. 

As a result of our assumption that each individual 
droplet retains its identity (Sec. I), the number of droplets 
is conserved (in non-nucleating flow). The conservation is 
expressed by 

(64) 

Inside the nucleation zone, obviously Eq. (64) is not valid 
and one needs an equation specifying the rate of formation 
of new droplets. Note that, while writing Eqs. (54)-( 64)) 
we have tacitly assumed that the droplets are monodis- 
persed. A polydispersed droplet population is normally 
represented by discretizing the distribution into a number 
of droplet groups. One would then require one equation set 
(57)-( 64) for each droplet group, and the contribution 
from all the droplet groups have to be summed over while 
writing the conservation equations (54)-( 56). 

Equations (54)-( 64) may be combined (after neglect- 
ing second order small terms involving the products of any 
two of AV/V,, AT/T,, and AT/T,) to give explicitly the 
variation in different vapor properties: 

-(y-l)M~ll+cY-lbk+, (67) 

where the shorthand notation D=d/dx is used for conve- 
nience. The variables 0, II, and (+ represent the contribu- 
tions from three relaxation phenomena and are given by 

(68) 

(69) 

Y ~7s ATi 
O-=--- 

1 --y hfg VurDT, ’ (70) 

Here, 0 is associated with vapor thermal relaxation, II 
with inertial (or velocity slip) relaxation, and (T with drop- 
let temperature relaxation. [If the capillary subcooling, 
AT cap, is not negligible, then AT and AT1 in Eqs. (68) and 
(70) should be replaced by (AT-AT,,) and 
(AT*-- AT,.,,), respectively.] It is easy to draw from Eqs. 
(65)-(67) a table of influence coellicients for nonequilib- 
rium condensing flow (Table I). Comparison of Eqs. 
(65)-(67) with Eqs. (Al)-(A3) shows the similarities 
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TABLE I. Sign of influence coefficients in condensing flow. In a contin- 
ually expanding flow, in general, 0 > 0, II > 0, and (T <O. 

Mf<l Mf> 1 
Contribution from Contribution from 

DA/A 0 rl CT DA/A 0 II u 

DVJV, + + + + z&a - - - 

DP/P *a - - - ;fa + + + 

DTJTu fa + if Mf<M*b - - 7’ + + + 
- if M,>M* 

Wpper sign if DA > 0, lower sign if DA < 0. 
“In an ideal gas Me= l/Jr. frtion (67) shows that in a condensingflow, 
M*=Cy[l- UW/h/,)ll- . 

and differences between the characteristics of a condensing 
flow and the flow of an ideal gas with external heat addi- 
tion. In particular, note that the mass depletion due to 
condensation and the use of the Clausius-Clapeyron equa- 
tion (to obtain the vapor temperature) result in terms like 
[l - (cp,TJhn)] and [l - (R,TJhfJ] in the flow equa- 
tions. (These could give unusual results in fluids with 
cpuTJhfg> 1, or, R,T,Jhfg> 1.1 

The general expressions for the variation of the sub- 
cooling, AT, and the frozen Mach number, Mf, can be 
derived from Eqs. (65)-(67): 

1 d&Q 
Cl--@I Ff---&- 

(71) 

(72) 

where LICK is the frozen Mach number. M, in Eq. (71) is 
given by 

M+ =a+/af, (73) 

(5$2+V( l-2~+~5]-1. (74) 

Equation (74) shows that the ratio a+/af is a weak func- 
tion of pressure and does not depend on the wetness frac- 
tion. For wet steam, a+/af _ -0.92 over a rather wide range 
of conditions (the ratio varies from 0.919 at 0.1 bar to 
0.934 at 2 bars). Note that 

a+- -aAG= 47&f, (75) 

where the equilibrium speed of sound, a,, and the equilib- 
rium isentropic index, ye, are given by Eqs. (27) and (25 ), 
respectively. 
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Equations (7 1) and (72) show that, depending on the 
shape of the flow passage and the flow conditions, quite 
complicated variations in AT and Mf are possible. (We, 
however, discuss, in the next section, only those cases 
which are found to occur in numerical calculations in noz- 
zles of ordinary shapes. More exotic cases are left as a 
mathematical fun.) Equation (72) also shows that, when 
all the nonequilibrium processes are properiy taken care oj 
the condition of thermal choking is obtained when the frozen 
Mach number is unity. Simplifications of the flow equations 
may lead to misinterpretations. For example, if droplet 
temperature equilibration (with frozen interphase momen- 
tum and heat transfer) is assumed and then the differential 
equations are rederived systematically, the common factor 
( 1 -I$-) appearing in the left hand side of Eqs. (65)- 
(67), and (71)-( 72) is replaced by another common fac- 
tor ( 1 - VE/a”), where the characteristic speed of sound 
a’ is given by Eq. (B2). Similarly, the assumption of equi- 
librium droplet temperature and velocity slip (with frozen 
heat transfer) results in a common factor (l- V:/a”2), 
where the characteristic speed of sound a” is given by Eq. 
(B5). Finally, the assumption of full equilibrium results in 
a common factor ( 1 - Vi/&!), where a, is the equilibrium 
speed of sound, Clearly, although these simplz$ed models 
give mathematical singularities when the J?OW velocity 
equals a’, a”, and a,, respectively, they do not correspond to 
the physical condition of choking. [Note that many equa- 
tions found in the literature are prone to misinterpreta- 
tions. For example, compare Eqs. (4)-(7) given by 
Barschdoti and Fillipo@ with Eqs. (65)-(67) derived 
here.] 

2. Calculation of different types of condensation 
shock waves in nozzles and discussion 

Equations presented in Sec. V B 1 are general and 
should be used for accurate solutions. Mathematical equa- 
tions in this full form must be considered for drawing cor- 
rect physical conclusions such as determining the condi- 
tion of thermal choking. However, the size of the droplets 
formed through homogeneous nucleation is very small 
(usually less than 1 pm). Equations (60) and (61) show 
that the relaxation times ~~ and 7D for tiny droplets are 
very small,‘* and any practical computational scheme 
based on these full equations consumes unacceptably large 
amount of CPU time. A compromise is usually made by 
assuming complete equilibration of velocity slip and drop- 
let temperature relaxation. The slip velocity for small drop- 
lets is generally negligible andfinite volume formulation of 
the resulting equations can capture many overall flow fea- 
tures. (However, the full equations should be kept in mind 
and the effects of any approximation appreciated. Some- 
times the approximations, e.g., of velocity slip equilibra- 
tion, may lead to great inaccuracies. This would be the case 
if, for example, the droplets are large and the vapor is 
substantially wet at the nozzle inlet.) 

A direct result of the assumption of equal phase veloc- 
ity is that the continuity, momentum, and energy equations 
become similar to their single-phase counterparts, if the 
mixture density pm and the mixture specific enthalpy K are 
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used. The mixture density is connected to the vapor density 
[neglecting the volume of the liquid phase as before, with 
g=O in Eq. (l)] 

P?n=PJ(1-Y) (76) 

and the mixture specific enthalpy is 

z= (1 -y)h,+yhl, (77) 

where h, and hl are the specific enthalpies of the vapor and 
the liquid phase, respectively. With these definitions and 
the assumption of no velocity slip, the gasdynamic equations 
for inviscid adiabatic unsteady two-phase flow becomes 

continuity 
ah 
at+ V 9 ( pmV> = 0, 

av VP momentum at+ (V-V)V+pm=O, (79) 

energy g[ pm( if+:)] +v- [ p,v( J+f)] =o, 
(80) 

where the vector quantity V is the common velocity of the 
two phases and Fis the specific internal energy of the mix- 
ture. Equations (78)-(80) are identical to those describing 
the adiabatic flow of an inviscid single-phase fluid and are 
valid for unsteady, three-dimensional flow, The dl@@rences 
are apparent, however, when it is recaIled that the wetness 
fraction y in Eqs. (76) and (77) is not necessarily the equi- 
librium value and that h, and hl in Eq. (SO) are evaluated at 
temperatures T, and T, which are not necessarily equal to 
the local saturation value T,. Departure from thermody- 
namic equilibrium must be allowed in calculations for non- 
equilibrium condensation. One needs a nucleation rate 
equation specifying the production rate of new droplets 
and a droplet growth law [e.g., Eq. (59)] specifying the 
rate of condensation (or evaporation) on existing droplets 
Lproviding the nonequilibrium value of y to be used in Eqs. 
(76) and (77)]. Both the rates of nucleation and droplet 
growth depend on the local subcooling. 

[In passing, it should be noted that if the conservation 
equations were expressed in terms of vapor density pu and 
vapor enthalpy h,, then mass depletion due to condensa- 
tion, interphase drag force, and condensational heat release 
should appear as source (or sink) terms, respectively, in 
the continuity, momentum, and energy equations for the 
vapor phase. Sometimes the equations found in the litera- 
ture mix the above two approaches and, therefore, consti- 
tute an inconsistent formulation (e.g., Ref. 10) .] 

One of the most effective methods of calculation is to 
write a computational “black box” which contains the nu- 
cleation and droplet growth equations, and the energy 
equation in its thermodynamic form. [The equation 
d&--dp/p,=O, derivable from Eqs. (78)~(80), does not 
necessarily impIy zero entropy increase in multiphase flow.] 
Together they furnish the full set of equations that describe 
completely the formation and growth of liquid droplets in 
a fluid particle (from a Lagrangian viewpoint) if the 
pressure-time variation is specified. The pressure-time 

variation is obtained by the time marching solutions of the 
conservation equations such as Denton’s method,32 exten- 
sively used for single-phase calculations in turbomachinery 
blade rows. In this respect, the thermodynamic aspects of 
phase change can be completely divorced from fluid dy- 
namical considerations so that the use of the “black box” is 
effectively independent of any particular computational 
fluid dynamics (CFD) application. Thus established 
single-phase CFD codes can, rather easily, be modified to 
deal with nonequilibrium two-phase flow with the above- 
mentioned modular approach. (The flexibility of this 
scheme may be appreciated from Ref. 33 where the same 
“black box” has been grafted into a streamline curvature 
calculation procedure. ) 

The development of the computational routines within 
the “black box” represents a comparatively major under- 
taking and has been fully described by Guha and Young.’ 
The routines are sufficiently general and robust to deal 
with any type of nucleating or wet steam flow and (in 
contrast to many procedures reported in the literature) full 
details of the droplet size spectrum folIowing nucleation are 
retained in the calculations. The last aspect is essential for 
accurate modeling of the nucleation zone. Successive nu- 
cleations after the primary are dealt with as a matter of 
course should the expansion be sufficiently rapid to gener- 
ate the high levels of subcooling required. The computa- 
tional scheme has been validated against measurements of 
steady (both sub- and supercritical) and unsteady conden- 
sation shock waves.’ Here, we present calculations for dif- 
ferent types of steady condensation shock waves in pure 
steam. 

Figure 12 shows condensation in a one-dimensional 
convergent-divergent nozzle for five different inlet condi- 
tions. For all cases, the inlet total pressure p,, is kept con- 
stant while the inlet total temperature Z’, is varied. The 
back pressure is kept sufficiently low so that the flow is 
supersonic over (at least) some part of the diverging sec- 
tion. The figure gives the variation of static pressure, de- 
gree of subcooling, and frozen Mach number along the 
nozzle axis. As discussed in Sec. V A (see also Appendix 
A), the variation of the flow properties of the vapor phase 
can be explained approximately by considering the (often 
competing) effects of change of area and external heat 
transfer. The position and structure of the condensation 
shock depends on the shape of nozzle and the stagnation 
conditions, which together determine the flow conditions 
and the heat release rate due to condensation. 

Consider Fig. 12. If the stagnation temperature To is 
very high, then no appreciable nucleation takes place over 
the length of the nozzle and dry steam expands similar to 
the isentropic expansion of a perfect gas (even though 
steam might have become subcooled at the exit of the noz- 
zle). The corresponding variation of pressure and frozen 
Mach number have been marked as “isentropic” in Fig. 12, 
and constitute the datum line for understanding the effects 
of nonequilibrium condensation. 

If the initial superheat at nozzle inlet is decreased (by 
lowering T,), the “condensation shock” occurs somewhere 
in the diverging section of the nozzle (curve a in Fig. 12). 
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FIG. 12. Time-marching solution of different condensational flow regimes in steady nozzle flow of pure steam (pc=O.3514 bar for aU curves): (a) 
To=362 K, (b) To=354 K, (c) Tc=352 K, (d) To=332 K) (i) Dimensions of the nozzle, (ii) variation of pressure ratio, (iii) variation of frozen 
Mach number, and (iv) variation of subcooling. 

The flow has become supersonic at the onset of condensa- 
tion. Inside the condensation zone the effect of heat addi- 
tion exceeds that of area change, and so the flow velocity 
decreases. The velocity remains, however, above the local 
frozen speed of sound. Downstream of the zone of conden- 
sation the area change becomes dominant and so the Mach 
number increases again (the flow being supersonic). This 
is the regime of the so-called subcritical heat addition 
(Mf, > l,Mfl) 1) which involves continuous variation in 
flow properties. 

It can be seen (curve a, Fig. 12) that, at first, AT 
increases continuously due to expansion. The steam is su- 
perheated at the nozzle inlet, passes through the saturation 
temperature (AT = 0) , and becomes highly subcooled until 
the total surface area of the freshly nucleated droplets is 
sufficient to give rise to a significant rate of heat transfer. 
At this point, the liberated latent heat starts heating the 
vapor and the subcooling drops very fast (rapid condensa- 
tion zone). The heat transfer rate is proportional to the 
prevailing subcooling. Therefore, as the subcooling de- 
creases, the heat transfer rate also simultaneously de- 
creases and, at some point, the effects of area change as- 
sume dominance. The point of maximum subcooling is 
termed the Wilson point. It represents the practical end of 
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the nucleation process, as according to classical nucleation 
and droplet growth theory no embryo can grow against a 
negative gradient of subcooling. Figure 12 also shows that 
the. frozen Mach number at the Wilson point is only 
slightly different from the Mach number at the same loca- 
tion in the isentropic case. 

If TO is reduced further (keeping p0 constant), the 
steam would attain saturation earlier in the nozzle and 
consequently the condensation shock wave would appear 
closer to the throat. The frozen Mach number at the Wil- 
son point decreases and the change in flow properties, e.g., 
pressure, becomes steeper [primarily because of the 
(1 -Mj) terms in the denominator of Eqs, (AI)-(A4)]. The 
frozen Mach number at the end of the condensation zone 
comes closer to unity. By extrapolation of this reasoning it 
can be argued that, for a particular inlet superheat, the 
Mach number at the end of the condensation zone will be 
exactly equal to unity (MfL= 1). The Aow is then said to 
be thermally choked. There are two sonic points in this 
case: one at the geometric throat of the nozzle and the 
second at the point of thermal choking. If the inlet super- 
heat is reduced any further than this critical value, no 
continuous variation of flow parameters is possible. 

However, a steady solution may arise under these con- 
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x 

HC3. 13. Schematic structure of a  supercritical condensat ion shock wave. 

ditions by the formation of a Rankin+Hugoniot aerody- 
namic shock wave inside the condensation zone. Conden- 
sation with this type of inbuilt frozen shock is generally 
called supercritical condensation shock. Curves b and c in 
Fig. 12 illustrate two examples of supercritical condensa- 
tion. The frozen shock takes the velocity below the frozen 
speed of sound, the flow then accelerates due to the re- 
maining heat release, and, once Mf is unity, accelerates 
further due to the diverging flow area. Equations (7 1) and 
(72) specify the continuous variation of subcooling and 
frozen Mach number in the nozzle. It may be seen that the 
effects of area change and heat transfer are very delicately 
balanced when the Mach number is close to unity. The 
flow adjusts the location of the frozen shock so as to give 
rise to a stable structure. 

Figure 13 schematically shows a limiting case of su- 
percritical condensation where the frozen shock occurs im- 
mediately after the W ilson point. A study of Eq. (71) 
reveals that the subcooling shows unstable behavior 
( ] AT ] grows irrespective of the magnitude of the relax- 
ation time) when the flow velocity lies between af and a+ . 
Because of this inherent instability, the downstream con- 
dition of the frozen shock cannot lie within af and a+ with 
a substantial residual AT. The frozen Mach numbers up- 
stream (subscript 1) and downstream (subscript 1’) of the 
frozen shock wave are related by the classical Rankine- 
Hugoniot relations 

(81) 

The decrease in subcooling across a frozen shock (with 
upstream Mach number Mfl) can be calculated from stan- 
dard Rank&-Hugoniot relations and the Clausius- 
Clapeyron equation. Hence 

AT1,=AT1--Tl 5 (M&l) 

x[s (‘+$,&~]- (82) 

It is normally argued3P4*6’31,34 that the frozen shock 
wave occurs when q>qCti,, where the critical amount of 
heat qcet is given by Eq. (A5). However, this argument is 
somewhat fallacious. First of all, this argument is derived 
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by analogy with external heat transfer to a single-phase 
ideal gas and Eq. (A5) is valid only for such tlows in 
constant area ducts. A vapor-droplet medium is compli- 
cated because there is no unique sonic speed” and the 
amount of heat addition is not an independently control- 
lable variable. Further complexities arise because of inter- 
phase mass and momentum transfer. [Compare Eqs. (65)- 
(72) with (Al)-(A4).] Hence the results from 
gasdynamics of a single-phase ideal gas [Eq. (A5)] cannot 
be applied directly to vapor-droplet flow. Second, the as- 
sumption of constant area while deriving Eq. (A5) may 
not correspond well to the case of supercritical condensa- 
tion where there is a very delicate balance between the 
effects of area change and the heat release. (An expression 
for qCtit in condensing flow, taking into account the mass 
depletion and the area variation, is given in Ref. 35.) Fi- 
nally, the conclusion that q> qcrit would give rise to an 
adiabatic shock wave is not true even for the flow of an 
ideal gas. The analysis of Appendix A shows clearly that 
the presence of an inbuilt shock wave does not increase the 
heat absorption capacity. [According to Eq. (A5), qCrit at 
Mfl (Mf> I) is exactly the same as qcrit at Mg (MG < I) if 
Mfl and II$ are related by the classical Rankine-Hugoniot 
equations.] 

The mass fraction of the liquid phase downstream of 
the condensation shock, y2, depends on the integral 
sATdx/V [Eq. (59)]. Since AT decreases discontinuously 
across a frozen shock [Eq. (82)], the magnitude of the 
above integral decreases when a frozen shock wave is 
present, thereby decreasing the amount of liquid con- 
densed. The amount of heat addition in a condensation 
shock wave is approximately given by h, y,. The presence 
of a frozen shock inside the condensation zone, therefore, 
actually decreases the release of latent heat. The resulting 
decrease in the rise in entropy counteracts the additional 
source of entropy generation due to the frozen shock. This 
is why the total rise in entropy across a supercritical con- 
densation shock is comparable to that across a subcritical 
one (as reported by Skillings34). 

Under certain conditions the frozen shock described 
above may become unstable and propagate towards the 
nozzle throat. The compressive wave ultimately interferes 
with the nucleation zone causing a reduction in nucleation 
rate and hence heat release rate. W ith the cause of its 
inception removed, the strength of the wave decreases and 
the flow again expands through the throat in a shock-free 
manner thus allowing the whole process to repeat itself. 
Such unsteady flow is normally observed in pure steam 
when the inlet stagnation temperature TO is close to the 
saturation temperature at the the inlet stagnation pressure 
po. Numerical calculations of oscillating flows and compar- 
ison with experiments may be found in Ref. 5. Here we do 
not consider this unsteady flow behavior any further. 

If T,, is reduced sufficiently (below the saturation tem- 
perature), a steady flow is obtained but the flow structure 
changes completely (curve d in Fig. 12). The flow is un- 
choked at the nozzle throat, as is evident from the Mach 
number distribution. Changes in the flow variables have 
thus been affected all the way up to the inlet thereby alter- 
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TABLE II. Variation of MJ and AT in condensing nozzle flow. 

Converging section 

M/C""+ 
Area decrease Heat addition 

M/T M/T 
ATT AT1 

Diverging section 

M f<M B , 
Area increase Heat addition 

M, <Mf< la 

Area increase Heat addition 

M/3 1 

Area increase Heat addition 

M/l M/r Mf1 MfT Mft M/L 

AT1 AT& AT1 ATt AT? AT& 

“M, is given by Eq. (73). 

ing the mass flow rate. (Note that in all the previous cases 
the pressure profile upstream of the throat remains the 
same.) The usual pressure “hump” due to the condensa- 
tion shock has disappeared and the pressure decreases 
monotonically. The frozen Mach number crosses unity 
somewhere in the diverging section and there is now only 
one sonic point in the whole field (compared to two in the 
supercritical case). The variation of subcooling is more 
interesting in the sense that although the inlet stagnation 
temperature is substantially lower than the steady super- 
critical case (in the present example the difference in To 
between curves c and d is 20 K), the location where the 
maximum subcooling occurs has not changed significantly. 
This somewhat surprising result can be explained by the 
unintuitive laws of compressible fluid dynamics (for exam- 
ple, Table I shows that heat addition decreases vapor tem- 
perature if 1 > Iwf> Me). We may construct Table II to 
explain the variation of Mach number and subcooling in a 
condensing flow from the information given in Table I. 

work extraction in the previous stages. (Reference 33 de- 
scribes a new theory of nucleation of water droplets in 
multistage steam turbines.) 

C. Flow map for different regimes of condensation 

We have mentioned that the occurrence of a particular 
type of condensation wave depends on the supply condi- 
tions, the mechanism of condensation (homogeneous or 
heterogeneous), and the exact geometry of the nozzle em- 
ployed. (The rate of heat release and the variation of flow 
passage area are very delicately balanced especially when 
condensation takes place close to the nozzle throat.) A 
practical guide may, however, be obtained from the control 
volume analysis presented in Sec. VA. Figure 14 plots 
different regimes of condensation on a Mach number- 
subcooling plane for pure steam. 

Thus the heat release adjusts itself such that, in the 
region M, <Mf< 1, only a part of the condensation takes 
place and AT still decreases as a result of increasing fiow 
area. The resulting heat release is, however, sufficient to 
raise the Mach number to unity, which then increases fur- 
ther because of the diverging flow area. [Theoretically, the 
flow region M, < Mf< 1 could occur in the converging 
section if the condensational heat release was practically 
over before Mf reached M, . Equations (7 1) and (72) 
give the general expressions for the variation of subcooling 
and frozen Mach number and suggest the possibilities of a 
quite complex variation depending on the shape of the 
channel, stagnation conditions, and the properties of the 
fluid.] 

The limiting case for subsonic condensation is calcu- 
lated from Eq. (53), subject to the condition Mfl < 1, 
iM,,=l (i.e., downstream eqdibrium Mach number is 
unity). The limiting case of the subcritical condensation 
shock is calculated from Eq. (53) again, subject to the 

Subcritical 

Homogeneous condensation in steam at subsonic ve- 
locities requires a subcooled vapor at the nozzle inlet. This 
is not realizable in a conventional nozzle experiment with 
the vapor generated in a boiler. Hence this type of wave has 
not been observed in the usual laboratory experiments and 
is not reported in the literature. However, in a multistage 
steam turbine used for electricity generation, steam ex- 
pands through a series of blade passages and may become 
subcooled at the inlet of the nucleating stage because of 

1.0 Supercritical, 

Mfl 
Oscillatory or no solution 

0.5 Subsonic I 

0. 10. 20. 30. 40. 

ATI (Q 

FIG. 14. Flow map for different condensation regimes in low-pressure, 
pure steam in terms of the frozen Mach number and subcooling at the 
Wilson point (results from the control volume analysis of Sec. V A). 
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condition that the downstream frozen Mach number is 
unity (1Mf~= 1, Mf, > 1). If a particular combination of 
subcooling and frozen Mach number at the Wilson point 
falls above the top line in Fig. 14, one certainly obtains 
supersonic, subcritical condensation. If the point lies below 
the bottom line, one obtains subsonic condensation. An 
operating point within the two limiting lines indicates the 
possible occurrence of a supercritical condensation wave 
(with embedded frozen shock), or unsteady flow. The ef- 

feet of heat release is very pronounced when the Mach num- 
ber lies approximately between 0.8 and 1. I, and a small 
amount of condensation may alter the flow velocity, etc., 
quite dramatically. 

VI. SUMMARY OF AERODYNAMIC SHOCK WAVES 

Depending on the flow conditions, four different types 
of aerodynamic shock wave structures may be obtained in 
a gas-vapor-droplet flow. 

(i) Equilibrium partly dispersed: The fluid is at two- 
phase equilibrium both upstream and downstream of the 
shock wave. There is a frozen shock wave followed by a 
relaxation zone. This occurs when Mfl > 1 and y1 >y,,lim. 
Equations (36)-( 38) provide approximate jump condi- 
tions, while Fq. (40) provides an exact jump condition. 
The value Of yt,li, is determined from E?q. (41). The form 
of the approximate equations (36)-(38) is similar to the 
well-known Rankin+Hugoniot relations for ideal gas and 
the shock relations are explicitly written in terms of the 
upstream parameters only. 

(ii) Equilibrium fully dispersed: The fluid is at two- 
phase equilibrium at both ends of the shock wave. How- 
ever, there is no frozen shock involved. This occurs when 
Mfl < 1,1M,, > 1, and y, >yl,rm. Equations (36)-(38) pro- 
vide approximate jump conditions, while Eq. (40) pro- 
vides an exact jump condition. 

(iii) Partly dispersed with complete evaporation: A 
frozen shock is involved. The vapor is superheated down- 
stream of the relaxation zone. This occurs when MB > 1 
and y1 <yl,ii,. Equation (47) or the equation set (48) and 
(49) provide exact jump conditions. Of these, Eq. (47) 
provides the shock relations in terms of the upstream pa- 
rameters only. 

(iv) Fully dispersed with complete evaporation: The 
vapor is superheated downstream of the dispersed wave but 
there is no frozen shock. This occurs when MY, < 1, 
iw,, > 1 and y1 <yl,ri,. Equation (47) or the equation set 
(48) and (49) provide exact jump conditions. 

It should be noted that equations of the form of the 
classical Rankin~Hugoniot relations [Eqs. (36)-( 39) 
with ye replaced by some suitable ~1 are exact and hold 
unconditionally for ideal gas or even for a two-phase mix- 
ture of solid-particle-laden gas. They are only approximate 
and apply conditionaly in the case of vapor-droplet flows. 
Interphase mass transfer renders a vapor-droplet medium 
more difficult to analyze, and complete evaporation 
through which a two-phase medium turns into a single- 
phase one must be taken into account. Thus one should be 
extra careful while borrowing ideas from relaxation gasdy- 
namics and applying them directly to vapor-droplet flow. 

VII. SUMMARY OF CONDENSATION 
DISCONTINUITIES 

Four different types of condensation discontinuities 
may occur: subcritical, supercritical, subsonic, and peri- 
odic. The flow conditions for their occurrence are pre- 
sented as a flow map in Fig. 14. The actual combination of 
subcooling and frozen Mach number at the Wilson point 
depends on the stagnation conditions and on the nozzle 
geometry for homogeneous nucleation, and additionally on 
the number and size distribution of impurity particles for 
heterogeneous condensation. The jump conditions across 
subcritical and subsonic condensation zones in a constant 
area duct, both for homogeneous as well as heterogeneous 
condensations, are given by Eq. (53), which is exact and 
explicit. However, Fq. (53) also gives some solutions (the 
sections between the marks X and + in Figs. 7-l 1) where 
the predicted downstream velocity lies in the range a,-af, 
where the vapor-droplet mixture cannot be at equilibrium, 
and hence these solutions are not physically realistic. 

VIII. SUMMARY OF THE DIFFERENTIAL ANALYSIS 

Isentropic exponents for a gas-vapor-droplet flow un- 
der frozen and equilibrium conditions are derived [Eqs. 
( 13) and (24)-j. It is shown that although the energy equa- 
tion for a gas-vapor-droplet mixture can be written in the 
form of Fq. (35) which is analogous to its single-phase 
counterpart, it is applicable only under isentropic condi- 
tions. 

Gasdynamic equations for vapor-droplet flow, includ- 
ing area variation and interphase transport of mass, mo- 
mentum, and energy, are derived [Eqs. (65)-(72)]. Equa- 
tions in this full form are to be considered for making 
correct physical interpretations, e.g., determining the con- 
ditions for thermal choking. These equations also indicate 
to what extent the effect of the interphase transport pro- 
cesses can be modeled by external heat addition to a single- 
phase fluid [compare Eqs. (65)-(72) with (Al)-(A4)]. 
The time-marching solution of the gasdynamic equations 
can predict the proper variation of different flow variables 
within any type of condensation wave in a nozzle (Fig. 12, 
see also Ref. 5 ) . 
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APPENDIX A: EFFECTS OF EXTERNAL HEAT 
TRANSFER TO AN IDEAL GAS 

If dq is the rate of external heat transfer to the flow of 
an ideal gas and if A is the flow area, then it is easy to find 
the rate of change of different flow parameters. The result 
is 

(Al) 

(AZ) 

Phys. Fluids, Vol. 6, No. 5, May 1994 Abhijit Guha 1911 

Downloaded 02 Jul 2001 to 137.222.181.189. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



(-43) 

(A4) 

The sign of the rate of change of different flow properties 
thus depends on the (often competing) effects of area 
change and heat addition. [The 1 -M2 terms in the denom- 
inator of Eqs. (A 1 )-( A4) indicate that the flow is sensitive 
to heat transfer or area change particularly when the Mach 
number is close to unity.] One may consider a constant- 
area duct in order to study the effects of heat addition 
alone. Equation (A2) shows that heat addition results in a 
rise in pressure in supersonic flow and a decrease in pres- 
sure in subsonic flow. Equation (A3) shows that for flow 
conditions such that 1 >M> l/,/r, heat addition results in 
a decrease in temperature, which is counterintuitive. Equa- 
tion (A4) shows that heat addition always drives the flow 
to sonic conditions. Therefore, there is a maximum quan- 
tity of heat, qCtit, that the flow can absorb before becoming 
thermally choked (M= 1) . It can easily be shown that 

(M2- 1>2 
4”“t=2(y+l)M2{l+[(y-l)/2]~~}’ (A5) 

Now, the Mach numbers upstream and downstream of a 
shock wave are related by 

M2=l+W1)/2]Mf 
2 YM:-[(y-1)/2] * 

Substitution of Eq. (A6) in Eq. (A5) shows that 

(lq- 1)2 

qc”t=2(y+l)~~(l+[(y-l)/21~~) 

@f;- 1)2 

=2(y+l)M~(l+[(y-l)/2lM~) * (A7) 

It can be seen that a shock wave (across which the total 
enthalpy ho remains constant) does not change the magni- 
tude of the critical quantity of heat in an ideal gas. This fact 
can also be appreciated by plotting the Rayleigh line in the 
(ho, V) plane. 

APPENDIX B: INSTABlLlTlES OF NONEQUILIBRIUM 
VARIABLES IN PURE VAPOR-DROPLET FLOW 

It is possible to derive the equations for the variation 
nonequilibrium variables such as AV and ATI [similar to 
Bq. (71) for the variation of AT] from the conservation 
equations given in Sec. V B 1. However, the qualitative 
behavior may be appreciated by assuming a constant-area 
duct and that the three relaxation processes take place in 
three separate stages (which is only approximately true). 
The justification for this assumption rests on the disparity 
of the magnitude of the different relaxation times. It has 
been shown that, in general, for a pure vapor-droplet flow 

rD~rl <rr- .18 (i) The first stage of relaxation: frozen mo- 
mentum and heat transfer (mathematically, r,-t 00, 
7-T-00). 

The conservation and interphase equations in a 
constant-area duct simplify to 

d(ATI) 
dt ’ 031) 

where M’= Vu/a’, V, is the vapor velocity and the inter- 
mediate sound speed a’ is given by 

a’2/a+={1 + [v/C 1 -Y) 1 (y&R,) W,Tdhfg)21s1. 
U32) 

Usually a’ is very close to af. Equation (Bl ) shows that 
ATI shows instability (i.e., any perturbation in ]ATl] 
grows and takes the system further away from equilib- 
rium) when the flow velocity lies in the range a’ < V, < af. 
(ii) The second stage: equilibrium droplet temperature 
and frozen heat transfer [mathematically, 
ATl/rD+ V[(dTJdx), rT+ co]. 

The conservation and interphase equations in a 
constant-area duct simplify to 

&AU 
dt ’ (B3) 

where M” = VJa” and the intermediate sound speed a” is 
given by 

am2/2f= ( 1 -y){l + Ey/( 1 -y) 1 (y&&J 
x (~,TJ~fg)2F’ (B4) 

or 

a n2= (1 -y)a'2. (B5) 
Equation (B3) shows that A V shows instability when the 
flow velocity lies in the range a” < V, < a’. (iii) The third 
stage: equilibrium droplet temperature and momentum 
transfer [mathematically, AT#rn+ (dTJdt), 
AV/r,+ (dVJdt)]. 

The conservation and interphase equations in a 
constant-area duct simplify to 

&AT) 
dt ’ (B6) 

where M,= VJa, and a, is the equilibrium speed of sound. 
Equation (B6) shows that AT shows instability when 

the flow velocity lies in the range a, < V”<a”. All this 

AT is unstable 

FIG. 15. Instability of nonequilibrium variables in pure vapor-droplet 
flow. 
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behavior has been schematically shown in Fig. 15. (Similar 
behavior would be observed when a carrier gas is present as 
well.) The relationship of the four sound speeds to each 
other is of great importance. As a typical example, for 
steam at 1 bar pressure and wetness fraction 0.1 

a~:a’:a”:a,= 1:0.997:0.945:0.878. 
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