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A numerical and analytical study has been made to reveal the internal structures of partly 
dispersed shock waves in pure vapor-droplet media. The results clearly demonstrate 
the effects of different relaxation phenomena present and their associated time scales on the 
structure. The study systematically analyzes the relative effects of different flow 
parameters on the structure and thickness of the shock wave. Wherever possible, the 
structure in a vapor-droplet medium is contrasted against similar structures in more familiar 
solid particle-laden gas flow. The case of complete evaporation through which a two- 
phase vapor-droplet medium reverts to a single-phase nonrelaxing one is discussed. Although 
linearized analyses are often presented for relaxing flows downstream of frozen shocks, 
they are of limited applicability to vapor-droplet flows. The paper gives many examples of why 
a linearized analysis is unlikely to be successful in such cases. 

I. INTRODUCTION 

A. partly dispersed shock wave can be described as a 
steep-fronted discontinuity, dominated by viscous dissipa- 
tion and thermal conduction, followed by a continuous 
relaxation zone.’ (The fluid goes out of equilibrium as it 
passes through the near discontinuity, called the frozen 
shock, and gradually returns to equilibrium in the relax- 
ation zone. See Appendix A.) These type of waves in 
vapor-droplet flows are of great importance, both from the 
theoretical and practical point of view, as they often appear 
in the flow field if the upstream velocity is higher than the 
local frozen speed of sound2 [which is the speed of sound 
in the vapor phase alone when all interaction with the 
liquid droplets are frozen). In converging-diverging nozzle 
flows with certain inlet conditions, such shock waves in- 
teract with the nucleation zone and give rise to an oscilla- 
tory flow pattern.3,4 It is probable that similar unsteadiness 
is also present in the last few stages of a real steam turbine 
used for electrical power generation where the maximum 
Mach number might be about 2. Such unsteadiness sug- 
gests a possible aerodynamic origin of the extra “wetness 
loss” observed in the nucleating stage of a turbine. Thus it 
is important to understand the detailed physics involved in 
the processes controlling the formation of such shock 
waves and this constitutes the subject of the present paper. 

In this context, a vapor-droplet medium is considered 
to be a homogeneous, two-phase mixture of the continuous 
vapor phase and a large number of very small droplets 
(typically of radii less than 2 pm). The mixture is assumed 
to be pure, which means that the vapor and the liquid 
phases are of the same chemical species. The small size of 
the droplets ensures that surface tension maintains droplet 
sphericity in most situations. Sufficient number density and 
uniform distribution of the droplets make their interaction 
with the vapor describable by a continuous variation. Thus 
two-phase flows of this type respond well to mathematical 
modeling and the analysis applies to most wet vapor flows 

formed initially by homogeneous nucleation and having 
wetness fractions less than about 0.2. 

The general behavior of condensing flows were exam- 
ined by Marble’ and Jackson and Davidson.6 Partly dis- 
persed waves were discussed by Konorski’ and Bakhtar 
and Yousif,’ although these authors did not include any 
attempt at generalization. The relaxation processes in pure 
vapor-droplet flows and the structure of fully dispersed 
waves (which results when the upstream velocity lies be- 
tween the frozen and equilibrium speed of sound) were 
studied by Young and Guha.g Guha’* gave the Rankine- 
Hugoniot relations applicable to normal shock waves in 
vapor-droplet tlows and analyzed the unsteady processes 
through which the shock waves attain their stable 
structure.2 Reference 2 also contains a lucid and fairly de- 
tailed overview of the complex physics governing the 
shock-wave phenomena in vapor-droplet systems. There 
are also many references on the structure of dispersed 
waves in other types of flow. For example, Becker and 
Bohme” studied the structure of shock waves in relaxing 
gases for general thermodynamic behavior, Johannesen et 
aI.‘* discussed vibrational relaxation regions in carbon di- 
oxide, Nayfeh13 analyzed shock structure in a gas contain- 
ing ablating particles, and Rudinger14 discussed the same 
for gas flows carrying small solid particles. Measurements 
of shock propagation in a shock tube have also been per- 
formed by Goossens et al.” in the case of moist air and by 
Roth and Fischer16 in the case of aerosol droplet evapora- 
tion in argon. 

Linearized analyses are often presented for relaxing 
flows downstream of frozen shocks (e.g., Ref. 1). The fol- 
lowing results amply demonstrate why such a linearized 
analysis does not work well for vapor-droplet flows. Al- 
though the numerical calculations have been performed 
here specifically for wet steam, the formulas derived and 
the conclusions deduced are also valid for other vapor- 
droplet mixtures. 
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II. CONSERVATION EQUATIONS AND SOLUTION 
PROCEDURE 

The basic one-dimensional gas-dynamic equations for 
steady, non-nucleating, constant-area-duct flow for a 
vapor-droplet system can be written in the usual way: 

droplet number conservation: 

& (NiV,) =O, for each droplet group; 

continuity: 

-g QJgVg) + c g (Nim fVli) =O; 

momentum: 

dp d 
z+-& (p,Vi> + C 2 CNimivfj> =O; 

energy: 

(2) 

~[(hg+$)pgVg]+~ $[(hli+$)N,mivl[]=09 

(4) 

where p is the pressure, p is the density, h is the specific 
enthalpy, V is the velocity, and x is the distance along the 
flow direction. The subscript g denotes the vapor phase and 
subscript I refers to the liquid properties, neither of which 
are necessarily at saturation conditions. The summation 
sign here indicates summation over all the droplet groups, 
where the continuous distribution of droplet sizes is dis- 
cretized into a number of groups such that the ith group 
contains Ni droplets of mass mi per unit volume of the 
mixture. Since a monodispersed droplet spectrum will be 
assumed in the present analysis, there is only one droplet 
group present, and for convenience the subscript i will be 
dropped henceforth. However, since the algebra remains 
exactly the same, all the conservation equations that follow 
can be converted to deal with a polydispersed droplet spec- 
trum simply by inserting a summation sign before each 
term that contains a contribution from the droplets. 

The analysis is restricted to pure substances (so that 
phase change is heat transfer rather than diffusion con- 
trolled) and to low wetness fractions (y < 0.2) so that the 
volume occupied by the liquid phase is negligible. Also 
neglected is the partial pressure of the droplet cloud. The 
temperature T, is assumed uniform throughout a droplet. 
(For well-established droplets, T, at equilibrium, is close 
to the saturation temperature T, For example, the Kelvin- 
Helmholtz equation shows that, in a steam-water mixture, 
T, - T, = 0.43 “C if the droplet radius r is 0.05 ,um, T, 
- T, = 0.01 “C if r=2.0 pm.) We adopt the usual “two- 
fluid” model and view the droplets as providing sources or 
sinks of mass, momentum, and energy for the vapor, each 
source term varying continuously in the x direction. Coag- 
ulation as well as fragmentation of droplets is neglected. 
Indeed, for the types of flow considered here, the Weber 
number criterion for stability against fragmentation is well 
satisfied even for strong shock-wave deceleration. In pass- 
ing through a shock wave, each droplet is therefore as- 

sumed to retain its identity and individual droplet radii 
change solely by pure evaporation or condensation. 

The wetness fraction y is then given by 

y=n*m, (5) 

where there are n droplets of mass m  per unit mass of the 
mixture. The mass of an individual droplet is connected to 
its radius r, and the liquid density pl via m  = 4/3w 3pl. If 
the vapor density is pP the mixture density (neglecting the 
volume of the liquid phase) is pg/( 1 - y) and the number 
of droplets per unit volume is given by 

N=np$( 1 -y). (6) 

We assume that the vapor phase behaves as a perfect gas 
with constant isobaric specific heat capacity cP Thus 

(7) 

and 

(8) 

where R is the specific gas constant and Tg is the temper- 
ature of the vapor. The perfect gas approximation is not 
crucial to the analysis (although this assumption is not far 
from reality for steam at low pressure, which is of more 
interest here). More realistic equations of state can be in- 
troduced if desired but these tend to complicate the alge- 
braic development and do not provide any further physical 
insight. 

Later, we shall specify the thermal equilibrium state by 
the saturation temperature T, rather than the pressure. 
The two are related by the Clausius-Clapeyron equation. 
Neglecting the specific volume of the liquid and introduc- 
ing the perfect gas equation for the vapor phase, we have 

(9) 

where hfg is the specific enthalpy of evaporation and is a 
known function of temperature. 

After considerable algebraic manipulation, the above 
continuity, momentum, and energy equations (2)-(4) can 
be put into the form (in the same order) 

4 dhl dp 
PgV.~+~mvI~-J?qg 

dm (AV)* 
=(hg--hl)NVI~--7 NVl$+NmAVVlz, 

(12) 
where AV is the slip velocity given by AV = V, - VI. 

Substituting Eqs. (7), (8), and the relation dh/dx 
= cdT/dx, Eqs. (lo)-( 12) may be recast as three linear 

1567 Phys. Fluids A, Vol. 4, No. 7, July 1992 A. Guha 1567 



simultaneous differential equations involving the three 
quantities dV/dx, dp/dx, and dTddx. The latter may be 
solved for by a Gaussian elimination procedure if all other 
terms are known. However, as it stands, the equation set 
(1) and (lo)-( 12) is incomplete and must be supple- 
mented by three equations representing the interphase 
transport of mass, momentum, and energy. The interphase 
transfer mechanisms are quantified in terms of relaxation 
times that represent the rates at which the two-phase sys- 
tem reverts to equilibrium following a disturbance. Three 
different relaxation processes can be identified in a vapor- 
droplet mixture.2 As nonequilibrium variables, we choose 
AV = Vg - V, to represent velocity (or inertial) relax- 
ation, ATl = T, - Tlto represent droplet temperature relax- 
ation, and AT =-T, - Tg to represent vapor thermal relax- 
ation. (Note that AT represents the negative of the vapor 
superheat.) It is shown in detail in Ref. 9 that the inter- 
phase transfer equations can then be written, 

dV/ AV -=- 
dtl 7I ’ 

dTl AT, 
-zz- 
dt, ?-D ’ 

(13) 

(14) 

dm ( 1 -y)c,AT+yc~AT~ 
w,-h)n;l;tr= rT - 

71) ’ 
(15) 

where d/dt[ = VI d/dx is the substantive derivative follow- 
ing the droplets and cp and cl are the vapor and liquid 
isobaric specific heat capacities. Equation ( 1) may also be 
written explicitly as 

dN N dVl -=-----~ 
dx F/i dx (16) 

The three relaxation times, viz., the inertial relaxation time 
rI, the droplet temperature relaxation time rD, and the 
vapor thermal relaxation time rr are given by9 

rI= (2r2pJ9pg) [$(Re) $4.5 Knl, (17) 

rD=(E5)l (TE) L!!zf3, (18) 
TV= [ (1 -y)cpo+ 2/3;lg] (1+4.5 KdPr), (i9) 

where #(Re) is an empirical correction for large slip Rey- 
nolds numbers (Re = 2~81 A V 1 /pg) given by 

+(Re)=[l+O.lS Re”.687]-1 (20) 

and /2-g and pu, are the vapor thermal conductivity and dy- 
namic viscosity, respectively. Here, Pr is the vapor Prandtl 
number and Kn = ld2r is the droplet Knudsen number, 
1, being the molecular mean-free path of the vapor and Y 
the radius of the droplet. Young and Guha’ have dis- 
cussed, at length, the assumptions involved in the deriva- 
tion of the relaxation times and have indicated their range 
of validity. Equations (17)-( 19) are supposedly valid for 
all droplet Knudsen numbers from the continuum to the 
free-molecule regime. For example, for small slip Reynolds 
numbers and continuum flow (Re<l, Kn<l), Eq. (17) 

reduces to the Stokes drag formula for a sphere. For free- 
molecule flow (Kn, 1) an expression derivable from ki- 
netic theory is obtained. The expression within the brack- 
ets in Eq. ( 17) provides a simple interpolation formula for 
intermediate Knudsen numbers. Similarly, for small Kn, 
Eq. ( 19) reduces to the continuum expression for steady- 
state heat transfer from a sphere. For large Kn, the kinetic 
theory (free-molecule) result is regained. The method of 
analysis is not dependent on the forms of (17)-( 19), how- 
ever, and other, possibly more suitable, expressions could 
easily be incorporated if desired. 

Note that the equilibrium temperature in pure vapor- 
droplet flow is given by the saturation temperature T, 
Hence the temperatures of both phases have ultimately to 
fall or rise to the saturation value but they do so with 
different time scales. The droplet temperature approaches 
T, with a time constant rD, whereas the vapor temperature 
approaches T, with a time constant rr. Thus the reversion 
to thermal equilibrium following a disturbance usually 
takes place in two, almost independent, stages. Comparing 
the magnitudes of the three relaxation times given by Eqs. 
(17)-(19), it can be shown” that, in general, for a pure 
vapor-droplet mixture, ro < r[ & rr. Therefore, following a 
disturbance, on a very short time scale the droplet temper- 
ature reaches equilibrium, then the velocity slip and finally 
the vapor temperature relaxes to the equilibrium value. 

Equations ( lo)-( 16) give the spatial derivatives of the 
seven unknowns, viz., V, p, TP V, T, m, and iV lj~ and n 
in the above equations may be calculated from Eqs. (5) 
and (S)]. They are integrated simultaneously by a fourth- 
order Runge-Kutta scheme until the departures from equi- 
librium become negligibly small (i.e., AT-O, AV-0). 
This equilibrium state then stands for the downstream con- 
dition of the entire shock wave. it should be noted that, for 
a polydispersed droplet spectrum, Eqs. ( 13)-( 16) repre- 
sent one set of four equations for each group of droplets. 

At every step of the numerical integration procedure, 
Eqs. (13)-( 16) are evaluated to give the values of 
d V/dx, dT/dx, dm/dx, and dN/dx as the nonequilibrium 
variables like AV, AT, etc., are known at the start of that 
step either from the calculations of the previous step or 
from a prescribed initial condition. Then the values of 
dV,/dx, dp/dx, and dT,/dx are determined by Gaussian 
elimination from Eqs. (lo)-( 12). Once the spatial deriv- 
atives of all the variables are known, they may be inte- 
grated numerically to calculate their respective values at 
the end of the step in consideration. This procedure is then 
repeated until equilibrium is established. 

Out of the three relaxation processes, the droplet tem- 
perature equilibration is the fastest and hence is associated 
with the smallest relaxation time. Because of this small 
relaxation time, the step size required for accurate and 
stable explicit numerical integration is very small. Thus, to 
save computation time, as the droplet temperature be- 
comes almost equal to its equilibrium value, T, is set equal 
to the saturation temperature T,. Equation (14) may then 
be dropped from the system of equations and Eq. ( 15) 
approximately becomes 
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dm (1 -y&AT 
dx=(hg-hl)nv~r’ C2l) 

For other details of the solution procedure, one may refer 
to Ref. 17. 

Ill. INITIAL CONDITIONS FOR NUMERICAL 
CALCULATION 

For a computational procedure that marches forward 
in space, it is necessary to start from some initial condition 
that represents a deviation from equilibrium. Otherwise, 
out of the two possible downstream conditions that main- 
tain the conservation of mass, momentum, and energy, the 
numerical procedure will give the trivial solution such that 
the far downstream condition is equal to the far upstream 
condition. For a partly dispersed wave (the upstream fro- 
zen Mach number being greater than unity), the initial 
condition for the above numerical integration procedure is 
straightforward. There is a frozen shock wave at the be- 
ginning and the vapor conditions just downstream of this 
frozen shock can be determined by applying the Rankine- 
Hugoniot relation for the vapor phase alone corresponding 
to the upstream frozen Mach number Mf,. [Frozen Mach 
number M,== Vs/af, where the frozen speed of sound 
af is given by af = dm, and y, for an ideal gas, is the 
ratio of two specific heats. The far upstream condition is 
denoted by the subscript 1.1 The droplet parameters, e.g., 
radius, temperature, and velocity, are kept fixed at their 
respective upstream values (as the extent of the frozen 
shock is very small, the droplet parameters do not change 
appreciably as the droplets pass through the frozen shock). 
This gives the finite departure from equilibrium, which is 
necessary to start the numerical integration, at the down- 
stream end of the frozen shock. 

IV. AN ANALYTICAL STUDY OF THE EFFECTS OF 
DIFFERENT RELAXATION PHENOMENA 

This section describes the qualitative variation of dif- 
ferent thermodynamic properties of the vapor phase in the 
relaxation zone following a frozen shock, under the as- 
sumption that the departure from equilibrium is not too 
great. 

If the second-order terms containing the products of 
the small quantities like AV/V, AT/T, AT/T, are ne- 
glected, Eqs. ( lo)-( 12) can be rearranged as 

TX dx 
l ~~~(1-~~)=[1-~~(1-~~)] @ 

f‘ I; 0s v2 -- 
+cpTg hfg ?;-$ *’ (24) 

TABLE I. Influence table. 

Contribution from 

0 II u 

d Vgdx negative negative negative 
dp/dx positive positive positive 
dTddx neg./pas.” positive positive 

‘POSitiVe for ( VPRT,) ( 1 - R TB/h.f.J > 1, negative for ( VPRT,) ( 1 
- RT@J < 1. 

where, 

0 = A T/ VgrTTp (25) 

IT= [y/(1--Y)l (A.V/VgVg), (=I 

a=[y/(l-~11 CATdVgr,TJ. (2-V 

The different variables 0, II, and cr represent the contri- 
butions from three relaxation phenomena taking place be- 
hind the frozen shock. Here, 0 is associated with vapor 
thermal relaxation, II with inertial (or velocity slip) relax- 
ation, and o with droplet temperature relaxation. In a com- 
pression wave we have, 0 < 0, Il < 0, LT > 0. In the relax- 
ation zone following a discontinuity, Vg < ap Therefore we 
may construct the influence table as shown in Table I. 
Thus Vg always decreases and p always increases in the 
relaxation zone. (However, the conclusion regarding the 
variation of Vg may alter if nonlinear effects are taken into 
account, see Sec. V A and Appendix B. ) If at the beginning 
of the relaxation zone ( VPRT,) ( 1 - RTgihfR) < 1, Tg 
first increases as velocity slip dominates and then decreases 
as heat transfer takes over. The peculiar behavior of the 
vapor temperature with respect to heat transfer (variable 
0) bears close resemblance to the fact that, in single-phase 
ideal gas, heat removal results in an increase in the gas 
temperature in the flow regime 1 > M> l/ &. 

V. RESULTS OF NUMERICAL CALCULATION AND 
DISCUSSION 

A. Variation of different flow parameters within the 
dispersed shock wave 

Figure 1 shows the variation of different flow variables 
within a typical partly dispersed shock wave in wet steam, 
for upstream conditions given in the figure. After the fro- 
zen shock, the pressure continues to rise in the relaxation 
zone, at first quite rapidly and then at a decreasing rate. 
Since the pressure approaches asymptotically its far down- 
stream equilibrium value, it actually takes quite a long 
distance before complete reversion to equilibrium is 
achieved. The vapor-phase velocity behaves in the same 
way as the pressure but in the opposite sense. It decreases 
discontinuously across the frozen shock and then continues 
to do so until it reaches the equilibrium value far down- 
stream. The droplet velocity, on the other hand, does not 
change at all as it passes through the frozen shock and is 
always higher than the vapor-phase velocity inside the re- 
laxation zone. The velocity slip equation [Eq. ( 13)] there- 
fore indicates that the droplet velocity decreases monoton- 
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FIG. 1. Variation of different flow variables through a partly dispersed shock wave in wet steam (Mfl = 1.5, r, = 0.1 pm, yt = 0.1, pt = 0.35 bar). 

ically. However, it is interesting to note that, although the 
droplets move faster than the vapor, their drag does not 
accelerate the latter, and the vapor-phase velocity, in gen- 
eral, also decreases monotonically in the relaxation zone. 
This somewhat surprising result stems from the fact that, 
in compressible flow, all the conservation equations to- 
gether with the equation of state have to be satisfied simul- 
taneously. In doing so, the decrease due to pressure, for 
most cases, happens to exceed the increase due to droplet 
momentum transfer, so that the vapor-phase momentum 
also decreases. Of course, the vapor velocity has to de- 
crease ultimately to a lower value, as the final equilibrium 
velocity is always less than the vapor-phase velocity just 
after the frozen shock,l’ but that does not necessarily im- 
ply that it could not pass through an intermediate maxima. 
It can be shown (see Appendix B) that the vapor-phase 
velocity does decrease monotonically, at least so long as 
&$ < 2y/(y - 1 ), a condition that is satisfied for most 
practical cases. (The subscript 1 refers to the far upstream 
condition before the frozen shock.) 

Appendix B that such a situation would arise if the up- 
stream frozen Mach number is less than a limiting value, 
given by 

M~,<[Y+l+Yl(Y--l)l/(Y+l--2Yl). (28) 

As a typical example, if we take y= 1.32 and-v, = 0.1, then 
the above relation gives Iw, < 1.053. A direct corollary of 
this condition is that the velocity slip and hence the drag 
continues to increase after the frozen shock and passes 
through an intermediate maximum. This surprising result 
is attributable to the fact that, within a range of Mach 
number, the inertial relaxation shows unstable behavior.’ 
(See, for example, in Ref. 2 that this instability is the rea- 
son for the existence of Type II fully dispersed shock 
waves.) If the frozen shock is weak, then the vapor velocity 
just downstream of it may lie in this unstable region. Fig- 
ure 2 clearly demonstrates the behavior of velocity slip for 
three different upstream frozen Mach numbers. 

In general, the droplet velocity decreases much faster 
than the vapor-phase velocity so that the slip velocity is 
progressively reduced. However, after a weak frozen 
shock, the vapor-phase velocity might decrease much more 
rapidly than the droplet velocity. It has been shown in 

The vapor-phase temperature, on the other hand, does 
not show the monotonic behavior of the vapor-phase ve- 
locity and pressure. Initially, it increases (Fig. 1) as the 
pressure increases because of inertial relaxation and the 
fact that no significant interphase heat transfer has taken 
place so far. Physically, this might be attributed directly to 
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FIG. 2. Change in slip velocity through partly dispersed shock waves. 
FIG. 3. Variation of wetness fraction through partly dispersed shock 
waves. 

the frictional heating resulting from velocity slip (Sec. IV). 
Subsequently, however, the heat removed to supply the 
latent heat for the evaporation of the liquid droplets dom- 
inates and the vapor temperature starts to decrease until it 
reaches the saturation value corresponding to the pressure 
far downstream. In contrast, the droplet temperature in- 
creases monotonically as there is no mechanism that can 
bring its temperature above the saturation level (at least by 
the mathematical model of the droplet growth process we 
use). Initially, it starts with the saturation temperature 
corresponding to the pressure upstream of the frozen shock 
and, owing to the very short relaxation time involved, very 
quickly rises to the local saturation temperature. That 
means, in the whole relaxation zone, the vapor remains 
superheated and therefore the droplet radius decreases 
monotonically, as is evident from the droplet growth law 
[Eq. (2 1 >]. However, inside the droplet temperature relax- 
ation zone, Eq. (21) is not valid. There, both the heat 
transfer and mass transfer equations [Eqs. (14) and ( 15)] 
must be solved simultaneously. In fact, inside that zone, 
the molecular condensation rate exceeds the molecular 
evaporation rate. The resulting release of latent heat raises 
the droplet temperature to the local saturation value. Thus, 
within a very short zone, the radius increases slightly and 
from there onward decreases monotonically. 

The variation of wetness fraction (Fig. 1) is more sub- 
tle in nature. Across the frozen shock, it decreases abruptly 
corresponding to the sudden jump in vapor density. This 
follows directly from the expression y = Nm/(p, 
+ Nm), which is derivable from Eqs. (5) and (6). Across 
the frozen shock, m has not changed because no mass 
transfer has taken place, N also remains unchanged as the 
droplet velocity has not yet changed (droplet number con- 
servation law). Therefore the wetness fraction decreases as 
px increases. Differentiating the expression for y, it can be 
shown that 

dy=(mpgdN+iVpgdm-Nm dpg)/(pg+Nm)2. 

As the droplet velocity always decreases in the relaxation 
zone, the droplet concentration per unit volume increases 
monotonically (physically, this means that the faster mov- 

ing droplets are continually overtaking the slower moving 
vapor particles and also moving into a zone of higher vapor 
density). Thus, in the relaxation zone, dN> 0, dm < 0, 
dp, > 0. Initially, the change of radius will be negligible, as 
that process is governed by a relatively large relaxation 
time. Therefore there are two opposing effects in the iner- 
tial relaxation zone (the zone of equilibration of the veloc- 
ity slip): the change in droplet concentration trying to in- 
crease the wetness fraction and the change in vapor density 
tending to reduce it. To find the dominating process, set 
dmz0, both in the continuity equation and also in the 
above expression for dy. Substituting dp, = - (pg/ 
Vg)dVg ]from continuity, Eq. (2)] and dN = -(N/ 
Vl)dVI [droplet number conservation, Eq. (16)] in the ex- 
pression for dy, it can be shown that the wetness fraction 
will increase, i.e., dy> 0, if dV,/V, > dV/V[ (note both 
d Vx and d V, are negative in general). 

In Appendix B, it is shown that the critical Mach num- 
ber for this condition to hold is given by the root of the 
equation 

(Y--~)M~~~+[(~--Y~(~-Y,~--;?Y,YI~~--~~~-Y~~=O. 

For y= 1.32 and a typical upstream wetness fraction of 0.1, 
this critical Mach number is found to be 1.058. Thus, if 
Mfl > 1.058, the wetness fraction increases downstream of 
the frozen shock; if Mfl < 1.058, the wetness fraction con- 
tinues to decrease farther downstream of the frozen shock 
(Fig. 3). However, in the latter case, it soon passes 
through a local minimum, and increases again before de- 
creasing ultimately because of interphase heat transfer. 
That, within the inertial relaxation zone where the velocity 
slip is equilibrated, there will be a region where the wetness 
fraction rises, can be seen by integrating the condition 
d Vs/ Va > d VI/ V, between the position just after the frozen 
discontinuity (denoted by subscript d) and that where ve- 
locity equilibrium is achieved (denoted by subscript u). 
Since Id V,J VgJ > In ( VdV,> (as VM > Vgd and V, 
= r/su) , the net change in wetness fraction across the iner- 
tial relaxation zone is positive. In fact, if it were possible to 
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freeze the change in droplet radius altogether, then the 
above process would bring the wetness level exactly to its 
initial value before the frozen shock. (This can be verified 
by applying the conservation laws across the frozen shock 
plus the inertial relaxation zone.) However, the above 
analysis is not valid throughout the inertial relaxation 
zone. After some distance downstream of the frozen shock, 
the change in radius becomes increasingly important (ra- 
dius decreases because of evaporation). The wetness frac- 
tion therefore passes through a maximum and subse- 
quently falls. It is important to realize that, although the 
wetness fraction changes in a complicated manner as a 
result of the slip between the two phases, the far upstream 
equilibrium wetness fraction is related to the far down- 
stream equilibrium wetness fraction simply by the ratio of 
the mass of the droplets at the respective locations, as for 
steady flow, the number of droplets per unit mass of the 
mixture has to be the same at both locations (i.e., 111 
= n2). This can be shown by writing the conservation 
equations between the far upstream (subscript 1) and far 
downstream (subscript 2) condition where full equilibrium 
is reestablished: 

continuity: 

&I Y,/( 1 -v1) --pg2v20 1 -Y2); 

droplet number: 

N1 V1 = N2 V2; 

by definition: 

NI =YI&~I ( 1 -VI>, N2=~2p,z/m2( l-~2). 

Combining these expressions and neglecting change in liq- 
uid density, yt/yz = ml/m2 z (Y~/Y~)~. Thus the overall 
change in wetness fraction is due only to the evaporation of 
the droplets. All of these different types of variation of 
wetness fraction through a partly dispersed shock wave are 
shown clearly in Fig. 3. 

Figure 4 shows the variation of all the important vari- 
ables (for the particular example of Fig. 1) suitably non- 
dimensionalized for plotting on the same graph. It clearly 
brings out the three relaxation processes involved and the 
associated time scales. The droplet temperature equilibra- 
tion is accomplished over a very short distance and, in fact, 
could be merged together with the frozen shock, in the 
same way as the frozen shock was treated as a mathemat- 
ical discontinuity ignoring the effects of viscosity and ther- 
mal conductivity. The velocity relaxation is practically 
complete within 1 .O mm of the frozen shock, whereas, even 
after 4 mm, there is a significant amount of residual super- 
heating. This is, of course, expected, since the vapor ther- 
mal relaxation time is one order of magnitude higher than 
the inertial relaxation time in this example [rr/rr 
- 0( l/y), y=O.l]. If the situation in vapor-droplet sys- 
tems as discussed here is compared with a typical partly 
dispersed shock wave in a solid-particle-laden gas,14 one 
may at once find at least four qualitative differences: 

( 1) In solid-particle-laden gases, there are only two 
relaxation zones (velocity and temperature) compared 
with three in vapor-droplet system. 

Pressure far downstream 

Vapour phase velocity (V,/a,,) 
; 

s i- 

-c:. 
“2 
$ 

-zl;+i- 

i, 

vroplet temp. relaxation*“‘- - ---- 
5 ii.6 Inertial 

------ ---_________ 
z relaxation ---I ,i 

Velocity far downstream 1 

n 0:s 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

FIG. 4. Variation of different flow variables through a partly dispersed 
shockwaveinwetsteam (M,-, = 1.5, rt = O.l~m,yl = O.l,p~ = 0.35bar). 

(2) In solid-particle-laden gases, no mass transfer is 
involved and the particle size remains constant. The relax- 
ation process in wet vapor gets more complicated as the 
size of the droplets change continuously due to net evapo- 
ration. Thus the different relaxation times may vary signif- 
icantly in the relaxation zone in the latter case. 

(3) In solid-particle-laden gas flow, the inertial and 
thermal relaxation times are normally of the same order of 
magnitude, and hence the extent of the temperature and 
velocity relaxation zones are comparable. 

(4) In wet vapor, the droplet temperature (and the 
final equilibrium temperature) is governed by the satura- 
tion temperature corresponding to the prevailing pressure. 
Hence, after the frozen shock, the major change occurs in 
the vapor temperature as it has to decrease to the satura- 
tion value. This is possible, even though the mass fraction 
of the vapor phase is much more than that of the droplets, 
because the latent heat of evaporation h, is very high com- 
pared to terms like cpATg. Thus the large amount of heat 
liberated by the cooling down of vapor can be absorbed by 
the evaporation of only a part of the liquid phase. In a 
solid-particle-laden gas, on the other hand, the gas temper- 
ature changes only slightly after the frozen shock (since 
the mass fraction of the gas phase is greater than that of the 
particles). The major change therefore occurs in the par- 
ticle temperature, which has to rise to the level of the gas 
temperature by interphase heat transfer (Ref. 14, Fig. 1). 
(This may alter if the specific heat of the particles is sig- 
nificantly higher than that of the gas.) 

B. Effects of different upstream parameters 

The structure and thickness of partly dispersed shock 
waves depend on the various upstream parameters. The 
effects of each important upstream variable have been stud- 
ied below in isolation while keeping the remaining vari- 
ables fixed at specified average values. Some representative 
results are tabulated in Table II, the conclusions being 
summarized in Table III. In the following discussion we 
define shock thickness as the length over which the thermal 
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TABLE II. Illustration of typical numerical calculations. 

Compare the 
effect of 

Upstream Length of inertial Shock Average thermal 
variables relaxation zone thickness Just after the frozen shock Far downstream relaxation time 

-- 
0 rr,j/10-6 r,d/lo-’ r&10-6 

M~I bm) yI (mm) (mm) Y, Kn (set) (=I (set) Y2 r2/rl [(p-d+ rrz)/2]/10-6 (set) 

1.5 0.1 0.1 0.87 9.08 0.055 0.566 9.33 3.49 7.88 0.038 0.727 8.61 
Radius 1.5 0.5 0.1 10.83 104.62 0.055 0.113 100.44 33.19 89.84 0.038 0.727 95.12 

1.5 1.0 0.1 36.17 384.77 0.055 0.057 362.50 92.25 331.70 0.038 0.727 347.10 

1.5 0.1 0.08 0.84 15.26 0.043 0.566 11.93 3.49 15.06 0.016 0.582 13.49 
Wetness fraction 1.5 0.1 0.1 0.87 9.08 0.055 0.566 9.33 3.49 7.88 0.038 0.727 8.61 

1.5 0.1 0.13 0.89 5.64 0.072 0.566 6.44 3.49 3.49 0.067 0.802 4.97 
1.5 0.1 0.2 0.86 2.74 0.115 0.566 4.15 3.49 2.2 0.14 0.887 3.17 

1.2 0.1 0.1 2.44 12.31 0.076 0.746 9.64 5.02 7.33 0.07 0.887 8.49 
Frozen Mach no. 1.5 0.1 0.1 0.87 9.08 0.055 0.566 9.33 3.49 7.88 0.038 0.727 8.61 

1.7 0.1 0.1 0.65 11.96 0.046 0.495 9.04 2.87 17.17 0.008 0.439 13.10 

nonequilibrium AT has decreased to 1% of the initial de- 
parture. Similarly, the inertial relaxation length is defined 
as the distance over which A V has decreased to 1% of its 
initial value. 

1. Effect of droplet radius 
The relaxation times depend strongly on the droplet 

radius. From common sense, it can be argued that if a 
droplet is bigger, it will have more inertia to retain its 
current properties and hence deviations from equilibrium 
will be greater. An alternative, but equivalent, view is that 
a larger droplet radius (for the same wetness fraction) 
implies a smaller number of droplets and less total surface 
area through which momentum and heat transfer take 
place. The consequence is that, for the same initial depar- 
ture from equilibrium, larger droplets require a longer dis- 
tance to return to equilibrium, and hence the shock thick- 
ness is larger. To ascertain the exact dependence, consider 
the expression [Eq. ( 19)] for the vapor thermal relaxation 
time (which has the strongest influence in determining the 
shock thickness) : If Kn+ 1 (free-molecular regime), 

q-ccr (if y is const); 

if Kn( 1 (continuum regime), 

7pxr2 (if y is const). 

Thus the shock thickness is approximately propor- 
tional to the initial droplet radius in the free-molecule re- 
gime and is proportional to the square of the initial droplet 
radius in the continuum regime. Since in the illustration 
(Table II) Kn- 1, the dependence of shock thickness on 
radius lies between that for the free-molecule and the con- 
tinuum regime. 

Since the thermal and inertial relaxation times depend 
on the droplet radius, more or less, in the same way, the 
relative magnitudes of the inertial relaxation zone and the 
thermal relaxation zone remain almost the same. While 
writing the conservation equations between the far up- 
stream and the far downstream equilibrium conditions, no- 
where in the equations does the droplet radius occur as an 
independent parameter.” Overall, changes across the 
shock wave depend only on the total quantity of the liquid 
phase present (viz., the wetness fraction) and not on its 
distribution. Hence the far downstream condition of the 
shock wave remains exactly the same independent of the 
radii of the droplets. 

TABLE III. Summary of the influence of the different upstream parameters on the structure of shock wave. 

Increase in 
upstream 
variables 

Initial 
departure 

from 
equilibrium 

Final 
equilibrium 
conditions 

Shock 
thickness 

Inertial relaxation 
length/thermal 

relaxation Iength 

Frozen 
Mach no. 

Droplet 
radius 

increases 

no change 

changes 
pressure T 
velocity 5 

no effect 

might decrease 
or increase 

Increases 
free molecule: cc r 
continuum: UL r2 

genera& decreases 
as the inertial relaxation 

length decreases 

no 
appreciable change 

increases 
changes inertial relaxation 

Wetness pressure t decreases tends to become as 
fraction no change velocity 1 faster than cx I/y important as thermal 
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2 Effect of wetness fraction 16. 

Since rT/rl = O( l/y), a change in wetness fraction im- 
plies a change in the relative magnitudes of the two relax- 
ation times. Since the inertial relaxation time is indepen- 
dent of the wetness fraction, inertial equilibrium is attained 
almost at the same place irrespective of the upstream wet- 
ness fraction. However, although 7T a l/y, the overall 
shock thickness does not vary according to the same rela- 
tion. Table II shows that, as the wetness fraction is de- 
creased by 2.5 times (from 0.2 to O.OS), the shock thick- 
ness increases by 5.5 times (from 2.74 to 15.26 mm). There 
are two reasons for this: 

14. 

.g 12. 

8 10. 

4 8. 
t.2 

2 6. 

-2 & 4. initial decrease. in ~~ 

( 1) 7T varies significantly through the shock wave, as 
shown in Fig. 5. (Incidentally, this is one of the reasons 
why a linearized analysis of the relaxation zone does not 
give good results, which assumes ~~ to be constant. The 
variation of different relaxation times from point to point 
in the flow field, on the other hand, can easily be accom- 
modated in a numerical integration procedure. Another 
major reason for the failure of linear analysis is given in 
Appendix C.) The initial decrease of 7T after the frozen 
shock is due to the increase in wetness fraction as a result 
of inertial relaxation. Subsequently, 7T increases as a result 
of evaporation. It can be easily shown [from Eq. (19)] 
that, after velocity equilibrium is obtained [when Vg 
= V, Eqs. ( 1 ), (2)) and (6) together would give dn/dx 
= 01, the rate of change of 7T in the relaxation zone is given 
by: 

FIG. 5. Variation of vapor thermal relaxation time 7T through shock 
waves. 

point. As a result of this large increase in ?-T due to evap- 
oration, the average relaxation time over the whole relax- 
ation zone may be significantly higher than its initial value. 
Thus, for decreasing initial wetness fraction yl, the shock 
thickness increases at a faster rate than l/yl. (Note that 
the ratio r2/r1 does not depend on the initial radius rl, and, 
consequently, rE/rTd is also almost independent of rl.) 

In contrast to the effect of droplet radius, the down- 
stream equiiibrium condition does depend on the upstream 
wetness fraction. Since, for the same upstream frozen 
Mach number, an increase in wetness fraction means a 
higher upstream equilibrium Mach number, the down- 
stream pressure increases with a corresponding decrease in 
velocity. *O 

drT d 1 
dxaz J 0 

in continuum flow (Kn(l), 

in free-molecule flow (Kn, 1). 

Thus the variation of ?-T depends on how fast the droplet 
radius changes as a result of evaporation. 

(2) As y increases, the thermal relaxation zone be- 
comes comparable with the inertial one and it is no longer 
the thermal relaxation time alone that controls the overall 
thickness but a complicated combination of rT and rr that 
governs the relaxation length. 

It has been shown by Guha17 that, in the continuum 
regime ?-12/7Td z pgl/pgd*~l/r2, and in the free-molecule re- 
gime r/7Td z pgl/pgd- (r,/~~)~, where the suffices 1, d, 
and 2 refer to “far upstream,” “just after the frozen dis- 
continuity” and “far downstream,” respectively. From 
classical Rankine-Hugoniot analysis, the ratio p&pgd is a 
function of upstream frozen Mach number MO only. The 
radius ratio across the shock, rl/r2, is given by rl/r2 
= 3dw~, h w ere the net evaporation Ay is also 
predominantly a function of Mfl. (This can easily be seen 
from Table II. A theoretical argument for why it is so is 
given in Ref. 10.) Since the wetness fraction varies as 
(radius)3, for the same net change of wetness fraction 
(constant Ay = y1 - yZ), the ratio r/r1 decreases rapidly 
for values ofyl of the order of Ay, as shown in Fig. 6. Thus, 
keeping n/pfl fixed, if y1 is lowered sufficiently, r2/r1 may 
attain a very low value and rn may increase greatly over 
rTd (Fig. 5). A study of Table II will also illustrate this 

0. 2. 4. 8. 8. 10. 12. 14. 16. 

Distance (mm) 

3. Effect of upstream frozen Mach number 
The initial departure from equilibrium varies as the 

strength of the frozen shock alters due to a change in up- 

1.0 y---J-- l- 

‘I: 0.6 -j IL/P/ 
F-.J 1 I h’ / --r / 

F 

I ,, 1 ( iy....,= 1 
0.1 I ! Net evaporation - 

0.0 , ’ , ’ , ’ , ’ , ’ 1 , 
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Initial wetness fraction, yi 

FIG. 6. Change in droplet radius across shock waves. 
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stream frozen Mach number Mfl. For a solid-particle- 
laden gas flow, a stronger frozen shock is normally associ- 
ated with a reduction in shock thickness. This is because, 
for the same upstream pressure and temperature, a stron- 
ger frozen shock means a lower downstream velocity. 
Therefore the shock thickness, which is proportional to 
(velocity X relaxation time), decreases. Thus, although 
reversion to equilibrium (say, within 1% of initial depar- 
ture) takes the same amount of time, it occurs over a 
shorter distance because of the lower velocity. For a vapor- 
droplet flow, however, the situation is more complicated as 
the relaxation times are not independent of the strength of 
the frozen shock. Consider first the inertial relaxation time. 
Since this depends on the Reynolds number corresponding 
to the slip velocity, it decreases with increasing frozen 
Mach number. This further strengthens the effect of lower 
downstream velocity, and hence the inertial relaxation 
length is always less for higher upstream frozen Mach 
numbers. Similar effects would be observed in solid- 
particle-laden gas flow as well. 

A very different picture exists for the vapor thermal 
relaxation time. Although the wetness level just down- 
stream of the frozen shock decreases substantially with 
increasing frozen Mach number MB, the vapor thermal 
relaxation time jUSt after the frozen shock, rTd, may not 

change appreciably as the Knudsen number also decreases 
(Zg decreases because of the higher pressure) and, conse- 
quently, the dependence of rT on radius changes. [Other 
properties in Eq. (19) also change slightly depending on 
the strength of the frozen shock. In either of the limits 
Kn( 1 or Kn) 1, the above effect of varying Knudsen num- 
ber would be negligible and rTd would increase with rising 
MD.] However, since a stronger frozen shock leads to in- 
creased evaporation, the far downstream wetness fraction 
is lower for higher values of Mfl (the initial wetness frac- 
tion remaining the same). As already explained, this may 
give rise to a higher value of rn downstream. There are, 
therefore, two opposing effects as Mfl increases. The lower 
downstream velocity tends to decrease the shock thickness 
whereas the increased rn tends to increase it. Thus, as 
Mfl increases, the overall shock thickness may decrease or 
increase, depending on which of the above two effects pre- 
dominate. Table II shows that, for My, = 1.5, rl = 0.1 ,um, 
and y1 = 0.1, the shock thickness is 9.08 mm. Keeping r1 
and y1 fixed, as Mfl is either decreased to 1.2 or increased 
to 1.7 (in this case almost complete evaporation takes 
place, as is evident from the value of y2 far downstream), 
the shock thickness increases to 12.31 and 11.96 mm, re- 
spectively. 

C. Complete evaporation within the dispersed shock 
wave 

It is possible to establish the minimum upstream wet- 
ness level required for a given upstream frozen Mach num- 
ber so that, after the dispersed shock, the vapor-droplet 
mixture remains marginally wet. For this, the different 
conservation equations must be applied across the shock” 
and solved iteratively, subject to the boundary condition of 
y2 = 0. This boundary line for wet steam is shown in Fig. 7. 
Although it was calculated for an initial Ijressure of 0.35 
bar, it is quite insensitive to the absolute pressure level. For 
initial wetness fractions above this curve, the steam will be 
an equilibrium two-phase mixture at the downstream end 
of a partly dispersed shock wave. For initial wetness frac- 
tion below this curve, complete evaporation will take place 
inside the shock wave. It is to be noted that the minimum 
wetness fraction is not zero at Mfl = 1, in contrast to what 
has been shown by Konorski.7 This is because fully dis- 
persed shock waves may exist for Mfl i 1, leading to evap- 
oration of the liquid phase. 

So far, we have discussed partly dispersed shock waves It is known that the same form of Rankine-Hugoniot 
where both far upstream and far downstream, the vapor- relations as used for ideal gas can be applied to solid- 
droplet mixture was in equilibrium. However, if the up- particle-laden gas flow if the upstream equilibrium Mach 
stream wetness fraction is insufficiently high, then, after a number and a suitable y for the mixture are used for such 
strong frozen shock, the liquid phase may evaporate com- calculations.‘4 However, it has been shown in Ref. 10 that, 
pletely within the relaxation zone. A peculiar situation although similar relations may be devised for weak shock 
thus arises: the two-phase system before the shock has been waves in vapor-droplet flow, they cease to apply if com- 

converted to a single-phase system downstream of the 
shock! (This situation does not arise in the case of solid- 
particle-laden gas flow.) This is another example of the 
fact, which has already been stressed many times, that 
vapor-droplet flows, while retaining the major characteris- 
tics of a relaxing two-phase medium, is quite unique in its 
behavior. What happens in this case’? After the frozen 
shock, the two-phase system relaxes in the usual way and 
the same numerical marching technique can be employed 
to find the variation of flow properties until there is no 
liquid phase left. There cannot be any further change in the 
vapor properties and therefore this constitutes the down- 
stream condition of the entire shock wave corresponding to 
the given upstream frozen Mach number and wetness frac- 
tion. Although this apparently suggests that the space- 
marching calculations end rather abruptly, no discontinu- 
ity in the slope of the profile of various properties results. 
Such discontinuities in the slope could have resulted if the 
relaxation times were fixed. However, as the wetness frac- 
tion decreases, the vapor thermal relaxation time increases 
(-i-T + Cop as y-0) and the different vapor properties ap- 
proach their respective downstream values very smoothly 
[i.e., d/dx (p, VP or Tg) -PO at the downstream end]. [It 
should be noted that the vapor temperature responds si- 
multaneously to heat transfer from all droplets and thus all 
droplets are instrumental in raising or lowering the tem- 
perature to the saturation value. It is to represent this in- 
tegrated effect of the droplet cloud that the wetness frao 
tion enters the expression for vapor thermal relaxation 
time rr as in Eq. ( 19). The condition rr -+ CO as y+ 0 
physically means that, in the absence of liquid phase, the 
vapor temperature at equilibrium is no longer constrained 
to the saturation temperature and the vapor may remain 
superheated.] 
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FIG. 7. Criterion for complete evaporation through a shock wave. 

plete evaporation takes place and separate jump conditions 
have to be used then. 

VI. CONCLUSIONS 

The structure of partly dispersed shock waves in wet 
vapor has been analyzed in detail. The variation of differ- 
ent flow variables through the shock wave has been dis- 
cussed and the limiting conditions for each type of varia- 
tion to occur have been derived. An analytical theory has 
been developed in Sec. IV, which shows the role of differ- 
ent relaxation phenomena on the variation of vapor phase 
properties in the relaxation zone. The influence of different 
flow conditions on the structure and thickness of shock 
waves has been studied. Many peculiarities in the shock 
structure illustrate why a linear theory might not faithfully 
represent the relaxation zone. Some interesting and com- 
plicated features of partly dispersed shock waves in vapor- 
droplet flow have been elucidated and have been compared 
with the corresponding cases in solid-particle-laden gas 
flow. The case of complete evaporation has been discussed, 
which is the direct outcome of interphase mass transfer in 
vapor-droplet mixtures. 
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APPENDIX A: RELAXATION PHENOMENA AND THE 
STRUCTURE OF SHOCK WAVES 

If the value of some property of a medium is perturbed 
from its equilibrium value and the restoration to equilib- 
rium occurs at ajinite rate, the medium is called a relaxing 
medium and the process of restoration is termed relax- 
ation. A relaxing medium such as a vapor-droplet mixture 
exhibits the property of frequency dispersion, i.e., the speed 
of a harmonic sound wave through the medium is a func- 
tion of the frequency itself. If the frequency is very high, 
the sound wave travels through the medium such that all 
relaxation processes arising out of nonequilibrium mass, 

momentum, and energy transfer between the two phases 
remain essentially frozen. The medium behaves like a 
single-phase vapor and the speed of sound in these situa- 
tions is termed the frozen speed af On the other hand, if 
the frequency of the harmonic sound wave is low, full equi- 
librium between the vapor and the liquid droplets is main- 
tained always and the wave travels with the equilibrium 
speed of sound a,. In general, af > a,. Because of the dis- 
persion in sound speed, two limiting Mach numbers can be 
defined corresponding to a particular flow velocity V: (i) a 
frozen Mach number Mf = V/af and (ii) an equilibrium 
Mach number ME = V/a,. In general, &l, > Mf As a result, 
two distinct types of shock waves might occur in such a 
medium. If the upstream velocity is higher than the frozen 
speed of sound (MD > 1 ), a discontinuity forms in the 
same way as an adiabatic shock forms in an ideal gas. Only 
vapor properties change across such (near) discontinuities 
and can be calculated using the classical Rankine- 
Hugoniot relations. Droplet properties such as tempera- 
ture, radius, or velocity remain unaffected across the frozen 
shock. Hence the vapor-droplet medium is not at equilib- 
rium downstream of the frozen shock. Interphase transport 
of mass, momentum, and energy, therefore, takes place in 
order to establish equilibrium and a relaxation layer devel- 
ops. Such types of shock waves are called partly dispersed 
waves. If the upstream velocity lies in the range (a,) i 
< V, < ( af) ,, a fully dispersed wave may form where flow 

properties change continuously from one equilibrium state 
to another. For more details. see Ref. 2. 

APPENDIX B: DETERMNATION OF DIFFERENT 
LIMITING MACH NUMBERS 

The objective here is to obtain an expression for the 
rate of change of vapor-phase velocity in the vicinity of the 
frozen shock in relation to the rate of change of the droplet 
velocity. We shall consider the effect of velocity slip relax- 
ation only, since this is the dominating mechanism in the 
present case of interest. For simplicity, therefore, two as- 
sumptions are made: 

(1) The droplet temperature is equal to the saturation 
temperature (and so terms like dh/dx will be neglected). 

(2) There is no effective mass transfer, i.e., dm/dx=O. 
This is close to the truth in the vicinity of the frozen shock 
because of the large thermal relaxation time. 

In any case, the effect of both these terms is to decrease 
vapor-phase velocity (as shown in Sec. IV). Since we are 
interested in deducing whether or not the vapor-phase ve- 
locity might increase initially under certain circumstances, 
inclusion of these two small terms will probably change the 
magnitude of the limiting Mach number slightly, but the 
main conclusion nevertheless remains valid. 

Under these assumptions, the conservation equations 
(lo)-( 12) become 
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continuity: 

momentum: 

g+pgVg z+Nm V, z=O; 

energy: 

(Bf) 

032) 

(B3) 

Note that Eqs. (Bl)-(B3) are valid in the relaxation zone 
downstream of the frozen discontinuity. If the subscripts 1 
and d refer to far upstream (before the frozen shock) and 
just after the frozen shock, respectively, then classical 
Rankine-Hugoniot relation gives pgd = pgl VI/V,, The va- 
por velocity Vgd is less than the local frozen speed of sound. 
The droplet velocity does not change as it passes through 
the frozen shock. Therefore Vrd = VI1 = Vgl = V,. Droplet 
number conservation gives N1 VI = N,V,. Therefore Nd 
= N1. The radii of the droplets also do not change during 
their passage through the frozen shock. Therefore md 
= rnl. Combining Eqs. (5) and (6)) it can be shown that 
N&d/f.& = bl/( 1 - yl)] ( v&/v/d). This relation is used 
while deriving Eqs. (B6) and (B8). 

After systematic elimination of dp/dx and dT,/dx 
from Eqs. (Bl )-(B3), the system of equations reduces to 

and hence 

dVg Nm VIVg I 1 
-= -.- 
dh RTg, (1 --M;) 

034) 

where y is the isentropic exponent of the vapor phase and 
Iw, is the frozen Mach number given by Mf 
= vg/ mg 

Mi< [y+-l+Yl(y--l)l/(Y+l--Yl). 037) 

As a typical example, we take y= 1.32 and y1 = 0.1, and the 
above relation then gives lwft < 1.053. If interphase heat 
transfer were,taken into account, the limiting Mach num- 
ber would be slightly higher than that given by Eq. (B7). 

1. Variation of vapor-phase velocity 3. Variation of wetness fraction 

It should be noted that all quantities in the above equa- 
tion refer to the downstream condition of the frozen shock. 
Hence ( 1 - Iwj) > 0, dV[ < 0. Therefore dVg will be 
negative so long as 1 - (y - lv-‘/‘Vpwg > 0. 

Note that the ratio V/Vg is also the ratio of the vapor 
velocities across the frozen shock (i.e., v,/ vgd 

= F/gl/vgd). Relating the ratio Vl/Vg to the upstream fro- 
zen Mach number Mfl using the Rankine-Hugoniot equa- 
tion, then the condition for vapor-phase velocity to de- 
crease becomes 

As shown in Sec. V A, dy > 0, if dVdV, > dV/ Vb The 
condition d Vg/ Vg > d V/ Vl may, again with the help of Eq. 
(B4), be expressed as 

> [(y+1U4~,--Y--11[+1)~~+21. CB8) 

On simplification, it may be shown that the critical Mach 
number for this condition to hold is given by the root of the 
equation 

(y+lMfj-l y 

which, after simplification, reduces to 

iv& <2y/(y-1). WI 

=o. (J39) 
For y= 1.32 and a typical upstream wetness fraction of 0.1, 
this critical Mach number is found to be 1.058. That this 
critical Mach number is not very different from the limit 

With y= 1.32, this relation implies that the vapor-phase 
velocity after a strong frozen shock might increase initially 
if the upstream frozen Mach number &ffl > 2.9. However, 
after such a strong shock, the initial superheat would be so 
high that heat transfer would become important even 
though the thermal relaxation time is large. The conse- 
quence is that the above limit would actually be greater 
than 2.9 and such a high Mach number does not normally 
occur in practice. It should also be noted that, if the 
second-order term containing AV was omitted in the en- 
ergy equation (which a linear theory will do, as shown in 
Sec. IV), the conclusion would have been that, behind the 
frozen shock, the vapor-phase velocity decreases uncondi- 
tionally. 

2. Variation of slip velocity 

To establish the condition under which the vapor- 
phase velocity might decrease faster than the droplet ve- 
locity (d Vg/d V, > 1) , we again refer to the expression for 
dVg/dVI as obtained earlier [Eq. (B4)]. Once again, it is 
stressed that all quantities in Eq. (B4) correspond to those 
downstream of the frozen shock. If they are expressed in 
terms of the upstream conditions with the help of standard 
shock relations, then the condition for dV,/dVl > I be- 
comes 

L ,-v-1. 
( 

(y+lM$ ’ 
1 -Y1 Y wlmf;I+2) 

1 zyM:,/(Y-l)-l~l 
>- 

y M;+wY--l) ( i ’ (I361 

which, on simplification, reduces to 
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derived in the previous subsection above is due to V, being 
nearly equal to Vg in this limit. 

APPENDIX c: LINEAR THEORY WITH COMBINED 
VELOCITY AND VAPOR THERMAL RELAXATION 

For a linearized analysis, it is possible to obtain an 
analytical solution for simultaneous velocity and thermal 
relaxation, even though the relaxation times are of quite 
different magnitudes. (In fact, the analysis can be extended 
to include droplet temperature relaxation, but the extra 
complexity is hardly justified.) 

Equilibrating the droplet temperature (A T/rD 
-+ Vl dTJdx) and neglecting second-order terms, the rates 
of change of AT and A V in the relaxation zone can be 
derived from the conservation and the interphase transfer 
equations [Eqs. (lo)-( 15)]. The expressions to be solved 
are 

= 

(Cl) 

(C2) 

where Mei, M,,, and Me3 are the Mach numbers corre- 
sponding to the different equilibrium sound speeds ael, 
ae2, and ae3, as defined in Ref. 9 (i.e., M,i = Vg/ael, Me2 
= Vdae2, etc. ) . These equilibrium sound speeds are de- 
rived subject to different thermal and mechanical con- 
straints. Here, ael corresponds to droplet temperature 
equilibration but frozen momentum and heat transfer, ae2 
corresponds to equilibrium droplet temperature and veloc- 
ity slip but frozen heat transfer, and ae3 corre~sponds to the 
full-equilibrium flow. As a typical example, the ratios of 
different sound speeds for wet steam at 1 bar and 0.1 wet- 
ness fraction are given by 

Uf : a,1 : tz& . * ae3= 1 : 0.996 : 0.945 : 0.89. 

Equations (Cl) and (C2) are coupled differential equa- 
tions for the variables A V and AT and could easily be 
solved analytically if we could linearize the equations, or in 
other words, if we could assume the coefficients are con- 
stant. However, after a weak frozen shock wave, the down- 
stream vapor velocity may be such that one or all of the 
terms like (1 - Mi,), (1 - M:,), and (1 - ML) may 
undergo a change of sign through the relaxation zone (as 
they do in a fully dispersed wave). As an example, again 
consider wet steam at 1 bar and 0.1 wetness fraction. As- 
suming that an approximate Prandtl’s relation is valid 
across the frozen shock wave, the vapor velocity down- 
stream of the frozen shock would be less than ae3 only if 
the upstream velocity is more than about 1.1 Us (since 
ad =; 0.9 af). Hence, if the upstream velocity is less than 
about 1.1 af, at least one of the aforementioned terms 

would change sign in the relaxation zone [the velocity at 
the far downstream end is always less than local ap3 (Ref. 
lo)] and the linear theory would not be valid. On the other 
hand, if the frozen shock wave is substantial, the values of 
AT/T, AT/T, and (especially) AVIV, may not be neg- 
ligible at the start of the relaxation zone and the second- 
order effects involving (A V/ Vg) ‘, etc., dominate the initial 
stage of relaxation. In this case, Eqs. (Cl) and (C2) them- 
selves are not valid, since second-order terms were ne- 
glected while deriving them. Additionally, there is the 
problem of substantial variation of rT and rr in the relax- 
ation zone as discussed in Sec. V. Thus a linearized analysis 
for the relaxation zone in a partly dispersed wave in vapor- 
droplet media would be of limited applicability. 
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