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The problem of natural convective boundary layer flow of a non-Newtonian power-law fluid over an
isothermal horizontal plate, which does not admit a similarity solution, has been solved numerically
using a time-marching finite difference method. The analysis shows that the velocity, temperature
and pressure inside the boundary layer depend on two parameters, the non-Newtonian power-law
index (n) and the generalised Prandtl number (Pr⁄). For n > 1 (dilatant fluids), the u-velocity profiles
reveal that the maximum velocity attained increases but the thickness of the boundary layer decreases
as the value of n is progressively increased above unity. For n < 1 (pseudoplastic fluids), the reverse
occurs and the boundary layer thickness increases to a great extent while the maximum velocity is
reduced as the value of n is progressively decreased below unity. The magnitude of the normal velocity
component at the edge of the boundary layer is found to be smaller for dilatant fluids and larger for
pseudoplastic fluids as compared to Newtonian fluids. It has been found that the dilatant fluids show
improved heat transfer characteristics as compared to Newtonian and pseudoplastic fluids at the same
generalised Prandtl number. The non-existence of self-similar solutions for non-Newtonian power-law
fluids has been established, thus showing the utility of the numerical method developed to solve the
system of partial differential equations.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection flow is driven by buoyancy forces generated
by density differences that can be caused by temperature gradients
in the fluid. Natural convection is commonly encountered in
processes like cooling of electronic equipments, nuclear reactors,
solar devices, in polymer processing industries, food industries,
etc. [1–4].

The present paper deals with natural convection of non-Newto-
nian fluids on horizontal surfaces. Natural convection from vertical
plates has been explored extensively. In comparison, the number of
studies on natural convection from horizontal surfaces is rather
limited. In case of a heated vertical plate, as the hotter fluid moves
up, colder fluid comes in from the surrounding, principally in the
horizontal direction. In case of a heated horizontal plate facing up-
ward, on the other hand, the buoyancy force gives rise to a pressure
gradient perpendicular to the plate which in turn results in a pres-
sure gradient along the plate. It is the latter that drives the natural
convective flow. Thus there is a significant difference between the
flow physics of natural convection on vertical and horizontal
surfaces. Unlike the boundary layer that forms due to forced
convection, the boundary layer on a horizontal plate due to natural
convection is such that op/oy – 0 and op/ox cannot be neglected in-
side the boundary layer (even when op1/ox is zero). Several of such
subtle physics of natural convection above a horizontal plate have
been included in the theory formulated in this paper.

Having explained the distinguishing features of horizontal sur-
faces, we turn our attention to the other important feature of the
present paper that is the fluid is non-Newtonian in nature. The
study of heat transfer in non-Newtonian fluids has gained much
importance due to a large number of industries (food processing,
heat exchanger and reactor cooling, biochemical processes, etc.)
dealing with these types of fluids [5–7]. The boundary layer flow
of non-Newtonian fluids exhibits characters different from that
of the conventional Newtonian fluids due to the non-linear varia-
tion of the shear stress with strain rate. There are several models
to describe non-Newtonian fluid behaviour [8]. The power-law
model [8] has been used widely to describe the flow of non-New-
tonian fluids, in which the viscosity is assumed to vary as follows:

l ¼ l0
@u
@y

����
����

n�1

ð1Þ

where n is the power-law index, constant for a particular fluid.
Depending on the value of n, fluids are classified into three broad
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Nomenclature

c�f reduced skin-friction co-efficient
cp specific heat capacity (J/kg K)
Ec Eckert number
Gr Grashof number
Gr⁄ generalised Grashof number
g acceleration due to gravity (m/s2)
h heat transfer coefficient (W/m2 K)
k thermal conductivity of the fluid (W/m K)
L reference length scale (m)
Nu⁄ reduced Nusselt number
n non-Newtonian power-law index
Pr Prandtl number
Pr⁄ generalised Prandtl number
p static pressure (Pa)
�p dimensionless static pressure
�p� stretched variable for dimensionless pressure
qw wall heat flux (W/m2)
Re Reynolds number
Re⁄ generalised Reynolds number
T temperature of the fluid (K)
u,m components of velocity along and normal to the plate

respectively (m/s)
�u; �m components of dimensionless velocity
u0 scaling velocity (m/s)
m̂ dimensionless normal velocity before scaling
x, y coordinates along and normal to the plate (m)

�x; �y dimensionless coordinates along and normal to the
plate

�x�; �y� stretched variables for dimensionless coordinates
ŷ dimensionless normal coordinate before scaling
D�y1 distance of first grid point from the plate normal to it

Greek symbols
a thermal diffusivity (m2/s)
b coefficient of volume expansion of the fluid (/K)
d boundary layer thickness (m)
e a positive number less than unity depicting the devia-

tion from Newtonian behaviour
g similarity variable
h dimensionless temperature
h⁄ stretched variable for dimensionless temperature
l dynamic viscosity (Pa s)
t kinematic viscosity (m2/s)
q density (kg/m3)
sw wall shear stress (Pa)
w dimensionless stream function
w⁄ stretched variable for dimensionless stream function

Subscripts
w value of the parameter at the plate surface
1 ambient condition
0 reference value or initial value
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categories: pseudoplastic (shear-thinning fluids) – n < 1, Newtonian
fluids – n = 1, and, dilatant (shear-thickening fluids) – n > 1.

The study of natural convection of a Newtonian fluid from a ver-
tical plate with both constant surface temperature and constant
wall heat flux is given by Burmeister [9]. Schlichting and Gersten
[10] have presented a similarity solution for natural convection
of a Newtonian fluid past a horizontal plate, which they referred
to as ‘‘indirect natural convection’’ for the reasons explained in
the second paragraph. According to them, the first similarity solu-
tion for isothermal, semi-infinite, horizontal plate was given by
Stewartson [11] who studied the case of a fluid with Pr = 0.7. Ro-
tem and Claassen [12] studied the problem of free convection over
a semi-infinite horizontal plate for power-law variation in plate
temperature and constant wall heat flux, and through experiments
showed how the boundary layer breaks down into large-eddy
instability some distance from the leading edge. Recently, a
similarity solution for natural convection of a Newtonian fluid for
complex boundary conditions has been given by Samanta and
Guha [13].

Acrivos [14] was the first to study laminar natural convection of
power-law fluids for several geometries. The experimental studies
of Gentry and Wollersheim [15], on isothermal horizontal cylin-
ders, were in good agreement with the theoretical predictions of
Acrivos [14]. Experiments on the free convection of pseudoplastic
fluids over horizontal wires were performed by Ng and Hartnett
[16], where, unlike the previous studies, the diameter of the cylin-
der was comparable to the boundary layer thickness. Shenoy and
Mashelkar [17] gave an extensive review on free convection in
non-Newtonian fluids. Huang and Chen [18] gave local similarity
solution for the natural convection of power-law fluids past a ver-
tical plate. The natural convection of a shear-thinning power-law
fluid (n = 0.95) past an isothermal vertical plate has been studied
by Ghosh Moulic and Yao [19]. Chamkha et al. [20] studied the un-
steady natural convection of power-law fluid past a vertical plate
in a non-Darcian porous medium. Mixed convection heat transfer
from a horizontal plate to power-law fluids was studied by Wang
[21]. However, the natural convection of non-Newtonian power-
law fluids over a horizontal plate has not been studied till the
present.

The present work studies the laminar natural convection
boundary layer flow of a non-Newtonian power-law fluid over a
semi-infinite horizontal flat plate maintained at a constant temper-
ature. The analysis reduces to that of a Newtonian fluid when n
(power-law index) equals 1, thus demonstrating internal consis-
tency of the solution approach. Natural convection in both shear-
thinning as well as shear-thickening fluids has been analysed in
the present paper.

2. Mathematical formulation

The x-axis is aligned along the plate from the leading edge while
the y-axis is directed normal to the plate against the direction of
gravity. The quiescent ambient fluid is maintained at a uniform
temperature T1 and pressure p1. The boundary layer equations
for a horizontal plate invoking the Boussinesq approximation are:
@u
@x
þ @m
@y
¼ 0 ð2Þ

u
@u
@x
þ m

@u
@y
¼ � 1

q
@p
@x
þ 1

q
@

@y
l @u
@y

� �
ð3Þ

0 ¼ � 1
q
@p
@y
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u
@T
@x
þ m

@T
@y
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@2T
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l
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@u
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� �2

ð5Þ

where the viscosity is given by
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l ¼ l0
@u
@y
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n�1

: ð6Þ

The boundary conditions are

at y ¼ 0; u ¼ 0; m ¼ 0; T ¼ Tw ð7Þ

as y!1; u! 0; T ! T1; p! p1 ð8Þ

at x ¼ 0; u ¼ 0; m ¼ 0; T ¼ T1: ð9Þ

Here, u and v are the components of velocity along the x and y axes
respectively, T is the local temperature of the fluid, l0 is the base
viscosity of the fluid, g is the magnitude of the acceleration due to
gravity, b is the co-efficient of volume expansion of the fluid, a is
the thermal diffusivity, q is the density of the fluid, cp is the specific
heat capacity of the fluid and n is the power-law index for the non-
Newtonian fluid.

Following an order of magnitude analysis (Appendix), Eqs. (2)–
(9) are non-dimensionalized by using the definitions given below:

�x ¼ x
L
; �y ¼ y

L
ðGr�Þ1=ð2nþ3Þ

; �u ¼ u
u0
; �m ¼ m

u0
ðGr�Þ1=ð2nþ3Þ

;

�p ¼ p� p1
qu2

0

; h ¼ T � T1
Tw � T1

ð10Þ

where the scaling velocity is given by

u0 ¼
t0

L
ðGr�Þðnþ1Þ=ð2nþ3Þ

: ð11Þ

The derivation of the appropriate velocity scale and length scale for
the y-direction is given in the Appendix.

The dimensionless parameters are defined as follows:

Re� ¼ qu2�n
0 Ln

l0
;

Gr� ¼ fgbðTw � T1Þgð2nþ3Þ=ð2n2þ2nþ1ÞLð8n2þ10n�3Þ=ð2n2þ2nþ1Þ

tð4n2þ6nÞ=ð2n2þ2nþ1Þ
0

ð12aÞ

Re ¼ qu0L
l0

; Gr ¼ gbðTw � T1ÞL3

t2
0

; Pr ¼ t0

a
; Ec ¼ u2

0

cpðTw � T1Þ
ð12bÞ

It can be observed from Eqs. (12a) and (12b) that the expressions for
the generalised Reynolds number and the generalised Grashof num-
ber reduce to those of the Reynolds number and Grashof number for
Newtonian fluids when n = 1.

Substitution of the non-dimensional variables defined in Eq.
(10) into Eqs. (2)–(9) leads to the following non-dimensional
equations:

@�u
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@�u
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ð16Þ

subject to the boundary conditions

at �y ¼ 0; �u ¼ �m ¼ 0; h ¼ 1 ð17Þ

as �y!1; �u! 0; h! 0; �p! 0 ð18Þ
at �x ¼ 0; �u ¼ �m ¼ 0; h ¼ 0 ð19Þ

The specific heat capacity cp of power-law fluids is of the order of
103 J/kg K. In natural convection, a typical value of the temperature
difference between the heated plate and ambient fluid (Tw � T1)
may be of the order of 101 K; the scaling velocity u0 would then
be of the order of 10�1 m/s, The Eckert number (Ec) given in Eq.
(12b) turns out to be very small (�10�6). Hence, the viscous dissi-
pation term in Eq. (16) can be neglected.

�u
@h
@�x
þ �m

@h
@�y
¼ 1

Pr�
@2h
@�y2 ð20Þ

The two parameters appearing in the above system of Eqs. (13)–
(15) and (20) are the power-law index n and the generalised Prandtl
number Pr⁄, the former having been defined in Eq. (1) and the latter
defined as

Pr� ¼ u0L
a
ðRe�Þ�2=ðnþ1Þ ¼ Pr ReðRe�Þ�2=ðnþ1Þ ð21Þ

Using the results of the order of magnitude analysis (Appendix) and
the expression for the scaling velocity given in Eq. (11), the gener-
alised Prandtl number can be related to the Prandtl number as
follows:

Pr� ¼ PrðGr�Þðn�1Þ=ð2nþ3Þ ð22Þ

Of particular interest in our analysis, are the local heat transfer coef-
ficient and the local skin friction coefficient.

Using Eqs. (1), (10), and (11), the wall shear stress and the sur-
face heat flux can be expressed as:

sw ¼ l0
@u
@y

� �n� �
y¼0
¼ l0

u0

L

� �n
ðGr�Þn=ð2nþ3Þ @�u

@�y

� �n� �
�y¼0

ð23Þ

qw ¼ �k
@T
@y

� �
y¼0
¼ � kðTw � T1Þ

L
ðGr�Þ1=ð2nþ3Þ @h

@�y

� �
�y¼0

ð24Þ

The skin-friction coefficient and the heat transfer coefficient can be
calculated from Eqs. (23) and (24) as follows:

cf ¼
sw

1
2 qu2

0

¼ 2ðGr�Þ�1=ð2nþ3Þ @�u
@�y

� �n� �
�y¼0

ð25Þ

h ¼ qw

ðTw � T1Þ
¼ � k

L
ðGr�Þ1=ð2nþ3Þ @h

@�y

� �
�y¼0

ð26Þ

The reduced skin-friction coefficient and reduced Nusselt number
are given by:

c�f ¼
cf

2ðGr�Þ�1=ð2nþ3Þ ¼
@�u
@�y

� �n� �
�y¼0

ð27Þ

Nu� ¼ Nu

ðGr�Þ1=ð2nþ3Þ ¼
hL=k

ðGr�Þ1=ð2nþ3Þ ¼ �
@h
@�y

� �
�y¼0

ð28Þ
2.1. Search for a similarity solution

Natural convection boundary layer flow of Newtonian fluids on
horizontal surfaces admit self-similar solutions [12,13]. In this sec-
tion the existence (or non-existence) of self-similar solutions for
non-Newtonian fluids exhibiting power-law variation in viscosity
and constancy in thermal conductivity [14,19] is investigated.

A dimensionless stream function w defined by

�u ¼ @w
@�y

and �m ¼ � @w
@�x

ð29Þ

is introduced which automatically satisfies the continuity equation.



Fig. 1. Results of the grid independence test performed for three different grids for
n = 1 and Pr⁄ = 1 at �x ¼ 5.

Table 1
Comparison of the reduced skin-friction coefficient and reduced Nusselt number with
published results for n = 1, Pr⁄ = 1 at �x ¼ 5.

Reduced skin-friction
coefficient ðc�f Þ

Reduced Nusselt
number (Nu⁄)

Rotem and Claassen [12] 0.6277 0.2060
Samanta and Guha [13] 0.6243 0.2046
Present work 0.6253 0.2091

Fig. 2. Variation of non-dimensional u-velocity inside the boundary layer for
different values of the non-Newtonian parameter for Pr⁄ = 1 at �x ¼ 5. Keys: j Rotem
and Claassen [12], N Samanta and Guha [13], Present work. [The �y axis is shown
here up to a value of 20 for clarity of the graphs, the maximum value used in the
computation is far greater to ensure �u asymptotically approaches zero.]
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The non-dimensional boundary layer Eqs. (13)–(15) and (20)
can then be represented in terms of w, �p and h along with the cor-
responding boundary conditions. For finding the similarity vari-
able, the generalised stretching transformation is applied and the
different variables are stretched as follows:

w� ¼ c1w; �x� ¼ c2�x; �y� ¼ c3�y; h� ¼ c4h; �p� ¼ c5�p ð30Þ

where c1, c2, c3, c4 and c5 are arbitrary positive constants. Using the
above, the stretched boundary layer equations take the form:

c2c2
3

c2
1

@w�

@�y�
@2w�

@�x�@�y�
� @w�

@�x�
@2w�

@�y�2

 !

¼ � c2

c5

@�p�

@�x�
þ c2nþ1

3

cn
1

@

@�y�
@2w�

@�y�2

�����
�����
n�1

@2w�

@�y�2

0
@

1
A ð31Þ

0 ¼ � c3

c5

@�p�

@�y�
þ 1

c4
h� ð32Þ

c2c3

c1c4

@w�

@�y�
@h�

@�x�
� @w

�

@�x�
@h�

@�y�

� �
¼ 1

Pr�
c2

3

c4

@2h�

@�y�2
ð33Þ

The corresponding boundary conditions are as follows:

at �y� ¼ 0;
@w�

@�y�
¼ @w�

@�x�
¼ 0;

1
c4

h� ¼ 1 ð34Þ

as �y� ! 1; @w�

@�y�
! 0; h� ! 0; �p� ! 0 ð35Þ

at �x� ¼ 0;
@w�

@�y�
¼ @w

�

@�x�
¼ 0; h� ¼ 0 ð36Þ

The boundary layer equations along with their boundary conditions
should remain invariant under the stretching transformation. Hence
from Eqs. (31), (32), and (34):

c2
3 ¼

c2
1

c5
;

c2c2
3

c2
1

¼ c2nþ1
3

cn
1
; c5 ¼ c3c4; c4 ¼ 1 ð37Þ

Re-arranging the above equations, the expressions for the constants
in terms of c3 are as follows:

c5 ¼ c3; c1 ¼ c3=2
3 ; c2 ¼ cðnþ4Þ=2

3 ð38Þ

Putting the values of the constants obtained above into the energy
Eq. (33) gives the relation

cðnþ3Þ=2
2 ¼ c2

2 ð39Þ

This is true if and only if n = 1. So we get consistent values of the
arbitrary constants and hence a similarity variable only for n = 1
(Newtonian fluid). Hence, it can be stated that self-similar solutions
do not exist for non-Newtonian power-law fluids with the adopted
specification of viscosity and thermal conductivity. Keeping this in
mind we proceed towards devising a method to solve the system
of partial differential equations directly without resorting to any
kind of transformations.

3. Method of numerical solution

The computation is challenging since one has to overcome sev-
eral sources of convective numerical instability due to the basic
non-linear nature of the governing partial differential equations.
The present problem is more difficult than solving forced convec-
tion on a horizontal plate (for which there is an imposed velocity
and op/oy is zero) or than solving natural convection on a vertical
surface (for which op/oy is zero and op/ox does not appear in the
final equation). The existence of the highly non-linear viscous
stress term also gives rise to additional complexity as compared
to the numerical simulation for Newtonian fluids.

Eqs. (13)–(15) and (20), subject to the boundary conditions
(17)–(19), represent a set of coupled, non-linear partial differential
equations. An in-house computer program has been written to
solve these equations using the explicit finite difference scheme.
A non-uniform grid is used in the �y-direction while a uniform grid
is used for the distance �x along the plate. Three grid arrangements
are used to check the grid independence of the solution for the case



Fig. 3. Variation of non-dimensional temperature inside the boundary layer for
different values of the non-Newtonian parameter for Pr⁄ = 1 at �x ¼ 5.

Fig. 5. Variation of non-dimensional u-velocity inside the boundary layer at
different locations along the plate for a non-Newtonian fluid of n = 1.2 and Pr⁄ = 1.
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of n = 1 and Pr⁄ = 1; Grid 1 (18 � 60), Grid 2 (35 � 120) and Grid 3
(60 � 230). It is found that, out of all flow variables, the u-velocity
profiles show the maximum variation as the grid size is altered.
This is why the u-velocity profiles are plotted in Fig. 1 in order to
ascertain that grid independence is achieved. Based on such con-
siderations, Grid 2 has been used for the example computations
presented in this paper.

The values of the skin friction coefficient and Nusselt number
depend strongly on the size of the first computational cell ðD�y1Þ
at the solid surface. A reduction of this size improves accuracy
but requires more computational time for convergence. From
numerical experiments, a value of D�y1 ¼ 0:05 is selected; the sub-
sequent grid sizes in the �y direction are increased according to a
geometric progression series.

It is found during the present course of research that the
choice of the size of the computational domain is very important
and should be chosen so as to ensure that the velocity, pressure
and temperature inside the boundary layer reach the ambient
conditions asymptotically. For example, at Pr⁄ = 1, for Newtonian
(n = 1) and dilatant (n > 1) fluids the maximum value of �y is
taken as 20; for n = 0.7, maximum �y is taken as 50; for n = 0.5,
maximum �y is taken as 220. These values are used to ensure that
Fig. 4. Variation of non-dimensional m-velocity inside the boundary layer for
different values of the non-Newtonian parameter for Pr⁄ = 1 at �x ¼ 5.
�u 6 10�4 at the boundary of the computational domain for all
computations.

It is evident from Eq. (1) that the effective viscosity depends on
the inverse of the velocity gradient for shear-thinning fluids.
Therefore, numerical difficulty is encountered in calculating the
effective viscosity where the velocity gradient approaches zero
(at the point of maximum velocity and at the edge of the boundary
layer). To circumvent this difficulty, a lower limit (10�5) of the
velocity gradient is set for the evaluation of the coefficient of vis-
cosity: if j@�u=@�yjP 10�5, then Eq. (1) is used; if j@�u=@�yj < 10�5,
then j@�u=@�yj ¼ 10�5 is used while evaluating the viscosity.

Table 1 shows that the values of the Nusselt number and the
skin-friction coefficient determined by the computer program
developed for the present work match well with those calculated
by similarity theory [12,13] for a Newtonian fluid. Fig. 2 provides
a comparison of the u-velocity profile for a Newtonian fluid pre-
dicted by the present method and that calculated by similarity the-
ory [12,13].
Fig. 6. Spatial variation of non-dimensional pressure inside the boundary layer for a
non-Newtonian fluid of n = 1.2 and Pr⁄ = 1.



Fig. 7. Non-dimensional u-velocity profiles at different �x-locations for Pr⁄ = 1 depicting the non-existence of similarity solution for non-Newtonian fluids (n – 1). (a) Shear-
thinning fluid of n = 0.5; (b) shear-thinning fluid of n = 0.7; (c) Newtonian fluid n = 1; (d) shear-thickening fluid of n = 1.2; (e) shear-thickening fluid of n = 1.5.
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4. Results and discussion

The non-dimensional equations of natural convection boundary
layer flow of a Newtonian fluid on isothermal flat plates involve a
single parameter – the Prandtl number [13]. In case of non-Newto-
nian power law fluids this is replaced by the generalised Prandtl
number Pr⁄ which is defined in Eqs. (21) and (22). In addition, an-
other parameter which controls the power-law behaviour of the
fluid, called the power-law index (n), appears in the equations.
The generalised Prandtl number reduces to the usual definition
of Prandtl number Pr for Newtonian fluids for n = 1.

It can be seen in Figs. 2 and 3 that the value of n affects signif-
icantly the velocity field but only marginally the temperature field
inside the boundary layer for a given Prandtl number Pr⁄. As n in-
creases, the maximum �u-velocity attained at a given �x-location in-
creases but the thickness of the velocity boundary layer decreases.
Eq. (1) clearly indicates that for n < 1 (pseudoplastic or shear-
thinning fluids), the effective viscosity increases with decreasing



Fig. 8. Growth of the boundary layer along the length of the plate for (a) shear-
thinning fluids (n < 1); (b) shear-thickening fluids (n > 1) in comparison to
Newtonian fluid for Pr⁄ = 1. (Notice the different scales along the d-axis.)
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velocity gradient. For n > 1 (dilatant or shear-thickening fluids), the
effective viscosity decreases with decreasing velocity gradients.
The point where the maximum longitudinal velocity is attained
corresponds to a point of zero velocity gradient and consequently
a very high effective viscosity for the pseudoplastic fluids. This re-
sults in a reduced maximum velocity and the appearance of a near-
plateau region in the neighbourhood of this maxima for shear-
thinning fluids as compared to Newtonian fluids, both effects
increasing with a decrease in n. The reverse happens for dilatant
fluids which exhibit higher maximum velocities and sharper peaks
as compared to Newtonian fluids. In a natural convective boundary
layer flow, the velocity approaches the ambient condition asymp-
totically at the edge of the boundary layer. This implies that the
velocity gradient approaches zero as the boundary layer edge is
reached and consequently the effective viscosity increases for
n < 1. As a consequence, the viscous effects are transmitted up to
a greater distance from the plate and the boundary layer is thicker
for pseudoplastic fluids as compared to the case of Newtonian flu-
ids. The reverse happens for n > 1 and so the boundary layer be-
comes thinner for shear-thickening fluids.

Fig. 4 shows the variation of the normal component of velocity
with varying power-law index n. The �v-velocity is zero on the sur-
face (no penetration) and attains a constant non-zero value at the
edge of the boundary layer. The non-zero value at the boundary
layer edge is due to the entrainment of the quiescent fluid resulting
in the gradual thickening of the boundary layer along the length of
the plate. It is interesting to note that the normal velocity changes
sign as we move away from the plate; being positive initially and
then negative. It can also be observed in Fig. 4 that the magnitude
of the �v-velocity at the edge of the boundary layer decreases as n
increases, which indicates that at the same �x-location, greater mass
of fluid is drawn into the boundary layer for n < 1. This is consistent
with the occurrence of a thicker boundary layer for n < 1 as com-
pared to n > 1 as seen in Fig. 2.

In order to visualise the development of the boundary layer for
a non-Newtonian power-law fluid, the longitudinal velocity pro-
files inside the boundary layer at different locations along the plate
have been plotted for a dilatant fluid in Fig. 5. This figure tracks the
evolution of the velocity profile along the horizontal plate. It can be
observed from the figure that, as one moves along the x-direction,
the boundary layer thickens and the maximum value of �u in-
creases. Calculations show that, with increasing �x, the �y-location
of the maxima in �u shifts away from the plate. A similar trend of
boundary layer development has been observed for the pseudo-
plastic fluids during the course of present research but the details
are not presented here for the sake of brevity.

Fig. 6 shows the spatial variation of pressure inside the boundary
layer. The pressure decreases as one traverses along the plate, keep-
ing the �y-coordinate fixed. Thus, the imposed temperature gradient
in the y-direction gives rise to a buoyancy force which, in turn, sets
up a pressure gradient in the x-direction such that the natural con-
vective flow becomes possible. This is why such flows were termed
as ‘‘indirect natural convection’’ in Section 1. Moreover, pressure
also varies with the y-direction such that, at any �x-location, the min-
imum pressure occurs at the surface ð�y ¼ 0Þ and the magnitude of
this minimum decreases as one moves along the length of the plate.
At a particular �x-location, the pressure increases from the minimum
at the surface to reach the ambient condition ð�p ¼ 0Þ asymptotically
at the edge of the boundary layer.

The similarity solution for natural convection of a Newtonian
fluid over horizontal surfaces has been given in [12,13]. The vari-
ables used in the Refs. [12,13] can be recast in terms of the
power-law index n as follows:

g ¼
�y

�x2=ðnþ4Þ ; f ðgÞ ¼
�u

�x1=ðnþ4Þ ð40Þ
where g is the similarity variable and f(g) is the dimensionless lon-
gitudinal velocity inside the boundary layer. In order to check the
validity of the conclusion reached analytically in Section 2.1, the
present computational results, obtained as functions of the two
coordinates �x and �y, are post-processed and recast in terms of
the similarity variables given in Eq. (40); the post-processed re-
sults are shown in Fig. 7. The same computer programs are used
for all cases (i.e., n < 1, n = 1 and n > 1). For Newtonian fluids
(n = 1), the plots of f(g) versus g at various �x-locations collapse
to a single graph (Fig. 7(c)), as expected (this provides an indepen-
dent check of the accuracy of the present computer programs).
However, Fig. 7(a, b, d and e) shows that in case of a power-law
fluid, the plots of f(g) versus g at various �x-locations are not super-
posed on one another. The maximum deviation in velocity profiles
occur near the point of maximum velocity. While the non-similar
nature of solutions is mainly observable in the region of maximum
velocity for dilatant fluids, pseudoplastics exhibit non-similarity
for a greater range of g.

Fig. 7, apart from demonstrating the non-existence of similar
solutions, also shows how the quantitative deviation from the
Newtonian flow solution depends on how far away from unity
the value of n is. A comparison of the five sub-plots of Fig. 7 pro-
vides an idea about the rate of deviation from Newtonian behav-
iour as n is decreased below 1 or increased above 1.



Table 2
Effect of generalised Prandtl number and power-law index on the skin-friction and
heat-transfer coefficients.

Pr⁄ n c�f Nu⁄

1 0.7 0.7157 0.2032
1 0.6253 0.2115
1.2 0.5837 0.2160

5 0.7 0.4333 0.2909
1 0.3433 0.3161
1.2 0.3044 0.3295

10 0.7 0.3476 0.3346
1 0.2651 0.3708
1.2 0.2304 0.3903
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Fig. 9. The values of the reduced skin-friction coefficient for non-Newtonian fluids
(shear thinning and thickening) relative to that for Newtonian fluids at a particular
Prandtl number.
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It is interesting to see how the boundary layer thickens as one
proceeds along the plate. The thickness of the boundary layer is de-
fined here as the normal distance from the plate at which the non-
dimensional streamwise velocity �u becomes 10�4. Fig. 8 shows that
as n increases, the boundary layer thickness decreases. For pseudo-
plastic fluids (Fig. 8(a)), the boundary layer thickens rapidly over a
short distance near the leading edge (much faster than that for
Newtonian or dilatant fluids as shown in Fig. 8(b)) and then the
rate of growth becomes similar for all values of n (the boundary
layer thickness in the pseudoplastic fluids however remains con-
siderably larger than that in Newtonian or dilatant fluids at all val-
ues of �x because of the initial rapid growth). Fig. 8 also shows that if
we choose a pseudoplastic and a dilatant fluid such that the value
of the power-law index is given by 1 � e and 1 + e respectively, the
deviation of boundary layer thickness (from the Newtonian fluid
case) will be much more in the case of the pseudoplastic fluid
(i.e., jdn¼1�e � dn¼1j � jdn¼1 � dn¼1þej).

The effect of generalised Prandtl number Pr⁄ and power-law
index n on the reduced skin-friction coefficient c�f and reduced
Nusselt number Nu⁄ has been shown in Table 2. It can be seen that
as the Prandtl number increases, the skin-friction coefficient
decreases but the Nusselt number increases. This finding, which
is different from the Reynolds analogy for forced convection, is
consistent with the results obtained for natural convection of New-
tonian fluids [13].

Table 2 shows that, for a non-Newtonian shear-thickening fluid
(n > 1), the reduced skin-friction coefficient ðc�f Þ is smaller and the
reduced Nusselt number (Nu⁄) is larger than the corresponding
quantities for a Newtonian fluid at the same generalised Prandtl
number. Details of the calculation are complex but can be summa-
rized as follows. When Pr� P 1, the numerical value of the non-
dimensional velocity gradient at the wall ð@�u=@�yÞ�y¼0 is usually less
than unity. It is found that the magnitude of ð@�u=@�yÞ�y¼0 in fluids
with n > 1 is greater than the magnitude of ð@�u=@�yÞ�y¼0 in fluids
with n = 1. However, when the non-dimensional velocity gradient
is raised to the power n (for n > 1) in order to calculate c�f according
to Eq. (27), the value of the reduced skin friction coefficient in the
non-Newtonian (dilatant) fluid becomes smaller than that in a
Newtonian fluid. The opposite happens for a pseudoplastic (n < 1)
fluid: the reduced skin-friction coefficient is greater and the re-
duced Nusselt number is smaller than the corresponding quantities
for a Newtonian fluid at the same generalised Prandtl number. It is
found that the magnitude of ð@�u=@�yÞ�y¼0 in fluids with n < 1 is smal-
ler than the magnitude of ð@�u=@�yÞ�y¼0 in fluids with n = 1. However,
when the non-dimensional velocity gradient (whose numerical va-
lue, it is to be remembered, is less than unity for Pr� P 1) is raised
to the power n (for n < 1) in order to calculate (c�f ) according to Eq.
(27), the value of the reduced skin friction coefficient in the non-
Newtonian (pseudoplastic) fluid becomes greater than that in a
Newtonian fluid. Fig. 9 summarizes the variation of the reduced
skin-friction coefficient with the power-law index n for Pr� P 1.

5. Conclusion

A theoretical framework for analysing natural convective
boundary layer flow of power-law fluids on horizontal surfaces
has been formulated. A robust and generic computational method
has been developed that can be implemented to solve natural con-
vection problems where self-similarity does not hold. Example cal-
culations have been performed for five values of n and three values
of generalised Prandtl number. An important principle has been
established during the present course of computation that, in order
to ensure acceptable accuracy of the solution, the size of the com-
putational domain has to be appropriately varied for different val-
ues of Pr⁄ and n such that the flow variables reach the ambient
conditions asymptotically.

A few of the important findings from the present work can be
summarized as follows.
� It has been shown analytically as well as computationally that

self-similarity does not exist if the viscosity shows power-law
variation but the thermal conductivity is assumed constant.
� The hydrodynamic boundary layer has been found to be influ-

enced by the non-Newtonian nature of fluid (i.e., by the value
of n) while the thermal boundary layer remains almost unaf-
fected for a given generalised Prandtl number.
� The correct scaling velocity for natural convection of non-New-

tonian power-law fluids on horizontal surfaces is determined as
u0 ¼ t0

L ðGr�Þðnþ1Þ=ð2nþ3Þ.
� The maximum �u-velocity attained within the boundary layer has

been found to increase as the value of n increases, while the thick-
ness of the boundary layer decreases with increasing n. As the
value of n decreases below 1, a near-plateau region develops in
the neighbourhood of the �u maxima; as the value of n increases
above 1, the velocity profile becomes increasingly more peaky.
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� The magnitude of the normal velocity component ð�mÞ at the
edge of the boundary layer is found to be smaller for dilatant
fluids and greater for pseudoplastic fluids as compared to that
of Newtonian fluids.
� For the same Prandtl number, the power-law fluids with n > 1

show improved heat transfer characteristics and reduced skin-
friction coefficient as compared to the Newtonian fluid.

Appendix Determination of appropriate length and velocity
scales in the y-direction

If the length and velocity scales for the boundary layer analysis
are chosen as L and u0 (to be determined), then the non-dimen-
sional variables would be:

�x ¼ x
L
; ŷ ¼ y

L
; �u ¼ u

u0
; m̂ ¼ m

u0
; h ¼ T � T1

Tw � T1
;

�p ¼ p� p1
qu2

0

ðA1Þ

In Eq. (A1), both x and y coordinates are non-dimensionalized by the
length L, but, in reality, a different length scale (d) arises in the y-
direction within a boundary layer. In order not to lose sight of this
fact, the notation ŷ is used in Eq. (A1). The notation �y is reserved for
a subsequent part of the analysis where the appropriate length scale
for the y-direction has been derived and used for the non-dimen-
sionalization. The same comments apply for the variables v̂ and �v .

With the help of non-dimensionalization given in Eq. (A1), the
boundary layer equations for a non-Newtonian power-law fluid gi-
ven as Eqs. (2)–(5) in the main text, can be transformed as follows:

@�u
@�x
þ @m̂
@ŷ
¼ 0 ðA2Þ

�u
@�u
@�x
þ m̂

@�u
@ŷ
¼ � @

�p
@�x
þ 1

Re�
@

@ŷ
@�u
@ŷ

����
����
n�1

@�u
@ŷ

 !
ðA3Þ

0 ¼ � @
�p
@ŷ
þ Gr�

Re�
2 h ðA4Þ

�u
@h
@�x
þ m̂

@h
@ŷ
¼ 1

Re Pr
@2h
@ŷ2 þ

Ec
Re�

@�u
@�y

� �2

ðA5Þ

Eq. (A2) implies that if the appropriate velocity scale in the y-direc-
tion is v0, then v0/u0 should be of the same order as d/L.

The appropriate length scale in the y-direction (d) can be deter-
mined by equating the order of the inertia force with that of the
viscous force [13]. This results in,

d � ðRe�Þ�1=ðnþ1Þ ðA6Þ

It can be observed in Eq. (A4) that, the term due to buoyancy

� O Gr�

Re�
2

� �
and the term due to pressure gradient � O 1

d

� �
. Since the

pressure gradient in the y-direction is a result of the buoyancy
force, they must be of the same order of magnitude. Hence the fol-
lowing relation is obtained:

O
Gr�

Re�
2

� �
� O

1
d

� �
ðA7Þ
Putting the order of magnitude of the boundary layer thickness
from Eq. (A6), and using the definition of Re⁄, the scaling velocity
to be used for non-dimensionalization is derived to be:

u0 ¼
t0

L
ðGr�Þðnþ1Þ=ð2nþ3Þ ðA8Þ

Substituting n = 1 in the expression for u0, the scaling velocity used
in case of Newtonian fluids can be ascertained to be u0 ¼ t0

L ðGrÞ2=5

which is exactly the same as that given in [13]. The agreement in
the limiting case provides a check on the scaling analysis performed
here.

Using (A6) and (A7), the dimensionless variables for the normal
distance from the plate and normal velocity component are ob-
tained as:

�y ¼ ŷðGr�Þ1=ð2nþ3Þ
; �m ¼ m̂ðGr�Þ1=ð2nþ3Þ ðA9Þ

Eq. (A9) provides the basis for the dimensionless variables defined
in Eq. (10) in the main text. With the help of these variables, Eqs.
(13)–(16) are obtained from Eqs. (A2)–(A5).
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