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A compulsory element of all textbooks on natural convection has been a detailed similarity analysis
for laminar natural convection on a heated semi-infinite vertical plate and a routinely used boundary
condition for such analysis is u = 0 at x = 0. The same boundary condition continues to be assumed in
related theoretical analyses, even in recent publications. The present work examines the consequence
of this long-held assumption, which appears to have never been questioned in the literature, on the
fluid dynamics and heat transfer characteristics. The assessment has been made here by solving the
Navier-Stokes equations numerically with two boundary conditions—one with constrained velocity
at x = 0 to mimic the similarity analysis and the other with no such constraints simulating the case of a
heated vertical plate in an infinite expanse of the quiescent fluid medium. It is found that the fluid flow
field given by the similarity theory is drastically different from that given by the computational fluid
dynamics (CFD) simulations with unconstrained velocity. This also reflects on the Nusselt number, the
prediction of the CFD simulations with unconstrained velocity being quite close to the experimentally
measured values at all Grashof and Prandtl numbers (this is the first time theoretically computed values
of the average Nusselt number Nu are found to be so close to the experimental values). The difference
of the Nusselt number (∆Nu) predicted by the similarity theory and that by the CFD simulations (as
well as the measured values), both computed with a high degree of precision, can be very significant,
particularly at low Grashof numbers and at Prandtl numbers far removed from unity. Computations
show that within the range of investigations (104 ≤ GrL ≤ 108, 0.01 ≤ Pr ≤ 100), the maximum
value of ∆Nu may be of the order 50%. Thus, for quantitative predictions, the available theory (i.e.,
similarity analysis) can be rather inadequate. With the help of the CFD simulations, the details of the
fluid dynamics, particularly the physics of fluid entrainment, are thoroughly studied. It is shown that
the relative proportions of the fluid entrainment from the bottom, top, and side of the vertical plate
depend on the size of the region of interest (ROI). As the size of the ROI is made large, most of the
entrained fluid comes from the bottom, a little bit from the top and almost no fluid enters from the side;
the nature of entrainment is opposite in the similarity analysis for which all the fluid enters from the
side and no fluid enters either from the bottom or the top. The two sets of CFD simulations establish,
in particular, the conclusion that it is the inappropriateness of the age-old boundary condition u = 0 at
x = 0, and not the boundary layer approximation, that is the principal cause for the vulnerability of the
standard similarity analyses (and integral theories) for natural convection. The CFD solutions further
demonstrate the effects of finite length and finite thickness of the plate on the flow field and the shape
of the buoyant jet. The different boundary conditions on the two sides of the vertical plate and the
presence of its finite thickness make the buoyant jet bend over the top edge of the plate and make the
evolution of entrainment from the two sides of the free buoyant jet different. The entrainment velocity
from the two sides, however, equilibrates at a certain distance above the plate. The asymmetry in the
velocity and temperature fields above the plate decreases more rapidly when Pr is smaller and GrL is
greater. It is shown that sufficiently above the plate, the distributions of axial velocity and temperature
in the buoyant jet tend to be symmetric with respect to an axis that seems to pass through the vertical
mid-plane of the plate, i.e., the jet tends to lose its history of origination. Published by AIP Publishing.
https://doi.org/10.1063/1.4990279

I. INTRODUCTION

Natural convection is a widespread natural phenomenon
where convective motion is naturally set up in a fluid body as a

a)Author to whom correspondence should be addressed: a.guha@mech.
iitkgp.ernet.in

result of the establishment of a temperature difference. Its anal-
ysis is complex because the velocity scale is not imposed but
arises from the simultaneous solution of coupled differential
equations representing the conservation of mass, momentum,
and energy. One of the most fundamental and popular analyses
involves the derivation of self-similar solutions for natural con-
vection on an isothermally heated semi-infinite vertical plate,
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and this topic is a compulsory element of all textbooks on
natural convection.1–5 The present paper also concerns this
topic but the power of computational fluid dynamics (CFD)
is invoked here to unravel the detailed thermo-fluid-dynamics
of the phenomenon. The CFD solutions create a comprehen-
sive physical understanding both in qualitative and quantitative
aspects, not available previously, and offer a route to precisely
assess the accuracy (or applicability) of previous theoretical
solutions which are usually derived under more restrictive
assumptions. As an example, a routinely used boundary con-
dition for the similarity analysis of natural convection over a
vertical flat plate is u = 0 at x = 0. The present work exam-
ines the consequence of this long-held assumption, which
appears to have never been questioned in the literature, on the
fluid dynamics and heat transfer characteristics. The assess-
ment has been made here by solving the Navier-Stokes equa-
tions numerically with two boundary conditions—one with
constrained velocity at x = 0 to mimic the similarity anal-
ysis and the other with no such constraints simulating the
case of a heated vertical plate in an infinite expanse of the
quiescent fluid medium. For a focussed discussion, the main
text is concerned with an isothermal vertical plate, while the
constant heat flux case is discussed in the Appendix for the
sake of completeness. The robustness of the present approach
is founded on the computational experience drawn from a
recent study of natural convection above a heated horizontal
plate.6

Laminar natural convection on a vertical plate has been
studied by experiments,7–12 similarity theory,13,14 and integral
theories.15 According to Saunders,7 the history of publica-
tion on the study of natural convection over a vertical plate
goes back to 1881 when Lorenz16 tackled the problem but
incorrectly deduced that the iso-velocity and iso-temperature
surfaces are formed parallel to the plate. According to Rich and
Burbank,9 Pohlhausen was the first to extend in 1921 the Bla-
sius solution by including heat transfer, i.e., the energy equa-
tion in the boundary layer analysis (although Rich and Burbank
did not specify the actual publication, we could locate this first
similarity analysis of forced convection heat transfer, Ref. 17).
We could find the first presentation of the similarity solution for
the natural convection problem in the paper by Schmidt and
Beckmann13 published in November 1930. [As an interest-
ing historical note, we mention the month of publication, i.e.,
November, because the same authors had published another
article (pp. 341–349) on the same subject matter in the October
issue of the same journal. There seems to be some confusion in
the relevant literature published in English, for example, Saun-
ders7 writing in the Proceedings of the Royal Society ascribed
(both in the citation within the text as well as in the list of ref-
erences) the November 1930 paper to Pohlhausen instead of
Schmidt and Beckmann. The paper in question13 is written in
German. On page 398 of this paper, the authors, i.e., Schmidt
and Beckmann acknowledge that “Herrn E. Pohlhausen,
Danzig, verdanken wir die Mitteilung, daβ sich diese partiellen
Differentialgleichungen in gewöhnliche transformieren, wenn
man ξ = cy/ 4

√
x als neue Variable einführt,” i.e., “We owe the

communication to Mr. E. Pohlhausen, Danzig, that these par-
tial differential equations transform into ordinary ones when
ξ = cy/ 4

√
x is introduced as a new variable.” On page 402 of

their paper, Schmidt and Beckmann further acknowledge that
it was Pohlhausen who painstakingly carried out the integra-
tion of the transformed differential equations for air and the
results are included in Table 4 (“Zahlentafel”) and Fig. 24 of
the paper by Schmidt and Beckmann.] Another much-quoted
early work on similarity theory is by Ostrach.14 Sparrow15

developed an integral analysis, and Chen et al.18 adopted an
integro-differential approach. Research is also carried out in
related fields involving natural convection on a vertical plate,
for example, Refs. 19 and 20 present solutions in the pres-
ence of a nanofluid, Ref. 21 deals with non-Newtonian fluids,
Refs. 21–25 discuss turbulent natural convection, Ref. 26
combines the effects of radiation with natural convection,
Ref. 27 establishes the fluid dynamics of magnetohydro-
dynamic natural convection, and Ref. 28 discusses the
thermophoretic movement of nanometre-to-micrometre-sized
particles in a natural convective boundary layer on a heated ver-
tical plate. New experimental techniques for flow visualization
and measurements have been reported.29,30 Guha and Sen-
gupta6 have presented a comprehensive analysis of the effects
of the finiteness of a heated horizontal plate on the thermo-
fluid-dynamics of natural convection above it. Recently, Guha
and Pradhan31 have developed a unified integral theory for
natural convection on an arbitrarily inclined plate, a limiting
case applied to the vertical plate. Since a practical plate is
necessarily of finite length, one aspect of the present study is
complementary to Ref. 6 in extending the study of finiteness to
the case of a vertical plate. Even though the research field spans
over a century and is still active, the present paper, according
to our knowledge, is the only work which presents detailed
fluid dynamics around a finite heated vertical plate and which
critically assesses the theoretical formulation that is routinely
included in all textbooks on the subject.

Other than establishing the full consequence of the much-
used boundary condition u = 0 at x = 0 in the theoretical
analyses, the CFD solutions in the present paper are designed
such that it is possible to examine separately the role of a
few other assumptions of the theoretical analyses as well. For
example, the similarity theory or the integral theory is based on
the boundary layer equations. The validity of this assumption is
quantitatively assessed here since the full Navier-Stokes equa-
tions are solved for the CFD simulations. The similarity theory
is also based on the assumption that the plate is semi-infinite.
The effect of finiteness is established here. The present CFD
solutions are carried out carefully, the domain independence
and grid independence tests being conducted afresh each time
a new combination of the Grashof number and Prandtl num-
ber is simulated. For accurate solutions, the domain size must
be sufficiently large so that the flow quantities properly reach
their quiescent values. The computations are also carried out
to a high degree of precision: the maximum scaled residual
for all (continuity, momentum and energy) conservation equa-
tions is set to as low as 10�8 (which is much lower than what
is reported in the usual CFD literature). Moreover, double-
precision arithmetic is used in all computations. This precision
gives confidence in the physical conclusions deduced in this
paper.

It should be stated here that if one wants to construct the
standard similarity theory for natural convection on a heated
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vertical plate, which simplifies the physical description by pro-
viding non-dimensional velocity and temperature profiles as
functions of the similarity variable, then it is necessary to use
the boundary condition u = 0 at x = 0. In spite of the accom-
plishment of the present work, we still think that the similarity
theory, as the first theoretical tool, has its definite role in text-
books. However, the limitations of the similarity theory and the
consequences of the boundary condition u = 0 at x = 0 have not
so far been established. Generations of textbooks have repro-
duced the same analysis and generations of students seem to
have followed the method without introspection. The present
work provides a critical understanding of the similarity theory,
identifies for the first time the fluid dynamic consequences of
the boundary condition u = 0 at x = 0, and thereby establishes
the basis of a more appropriate theoretical analysis whose pre-
dictions agree closely with experimentally measured values of
the Nusselt number.

II. MATHEMATICAL FORMULATION AND A SUMMARY
OF THE SIMILARITY THEORY

A short introduction to the boundary layer equations for
laminar natural convection and the formulation of the classical
similarity theory for natural convection on a vertical plate are
presented below for ready reference. Since a major objective of
the present paper is to examine the role of various approxima-
tions, particularly the role of the assumed boundary condition
u = 0 at x = 0, it is hoped that this summary would be help-
ful for the reader. Since several similarity solutions13,14 were
obtained many years ago, we have recomputed the value of the
Nusselt number, to a high degree of precision, as a function
of Grashof and Prandtl numbers. The following summary is
contextual in this respect as well.

Navier-Stokes equations expressed in a Cartesian coordi-
nate system are the governing equations for natural convection
above a vertical plate. The present study considers steady,
incompressible, laminar flow. A two-dimensional analysis is
conducted for which the width of the plate perpendicular to the
plane of the paper is infinite. The two-dimensional governing
equations are as follows:

∂u
∂x

+
∂v
∂y
= 0, (1)

ρ

(
u
∂u
∂x

+ v
∂u
∂y

)
= fx −

∂P
∂x

+ µ∇2u, (2)

ρ

(
u
∂v
∂x

+ v
∂v
∂y

)
= −

∂P
∂y

+ µ∇2v, (3)

ρcP

(
u
∂T
∂x

+ v
∂T
∂y

)
= k∇2T . (4)

Here the x-axis is taken along the vertical direction (Fig. 1).
u and v denote velocities, respectively, along the x- and y-axis,
P denotes the absolute pressure, and T is the absolute tem-
perature of the fluid. ρ, µ, cP, and k are the density, dynamic
viscosity, specific heat at constant pressure, and thermal con-
ductivity, respectively, of the fluid. Body force per unit volume
in the x direction is denoted by fx ( fx ≡ �ρg) where g is the
gravitational acceleration.

FIG. 1. A schematic for the analysis of natural convection along an isother-
mally heated vertical plate.

All thermophysical properties of the fluid, e.g., viscos-
ity, specific heat, thermal conductivity, and thermal expansion
coefficient, except the density, are considered to be constant.
The variation of density with temperature is taken care of only
in the buoyancy term of the momentum equations. In addition,
the Boussinesq approximation,2 which considers a linear vari-
ation of density with temperature, is adopted here. According
to the Boussinesq approximation

ρ = ρ∞[1 − β(T − T∞)], (5)

where β is the thermal expansion coefficient. β equals 1/T
from the ideal gas approximation. T∞ is the temperature of
the quiescent fluid medium far from the heated plate and
ρ∞ is the far-field density of the quiescent fluid. Substi-
tuting the expression of ρ in the definition of fx, we have
fx = �ρ∞g[1 � β(T � T∞)]. The viscous dissipation terms
are neglected here considering the fact that the induced kinetic
energy is much less than the heat transfer.32

A. Simplified equations

With boundary layer approximations, an order of mag-
nitude analysis reduces the y momentum equation and
gives

∂P/∂y = 0. (6)

Equation (6) suggests that P is a function of x only, and ∂P/∂x
can be written as dP∞/dx which equals (�ρ∞g). An order of
magnitude analysis of the x-momentum equation shows that
the term ∂2u

∂x2 is negligible with respect to the other terms. Along
with these considerations, the variation of density with tem-
perature is taken care of only in the buoyancy term of the
momentum equations, as mentioned earlier. Therefore, the
x-momentum equation can be expressed as

ρ∞

(
u
∂u
∂x

+ v
∂u
∂y

)
= ρ∞gβ(T − T∞) + µ

∂2u

∂y2
. (7)

Now, for the sake of non-dimensionalisation, a charac-
teristic length scale L and a velocity scale u0 are introduced.
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Temperature is non-dimensionalised by (Tw � T∞), where Tw

is the constant surface temperature of the heated plate. The
non-dimensionalised variables are

x̄ =
x
L

, ȳ =
y
L

, ū =
u
u0

, v̄ =
v
u0

, θ =
T − T∞

Tw − T∞
, (8)

and the simplified non-dimensionalised equations are1

∂ū
∂x̄

+
∂v̄
∂ȳ
= 0, (9)

ū
∂ū
∂x̄

+ v̄
∂ū
∂ȳ
= θ +

1
√

GrL

∂2ū

∂ȳ2
, (10)

ū
∂θ

∂x̄
+ v̄

∂θ

∂ȳ
=

1
√

GrL Pr

∂2θ

∂ȳ2
. (11)

The reference velocity u0 in Eq. (8) is chosen such that the
coefficient of θ in the RHS of Eq. (10) becomes unity. This
happens when u0 = υ

√
GrL/L, where GrL is the Grashof

number based on the characteristic length L and is given by
GrL = gβ(Tw � T∞)L3/υ2. Here υ is the kinematic viscosity
of the fluid, defined as υ = µ/ρ∞. The Prandtl number of the
fluid is denoted by Pr (Pr ≡ µcp/k).

The boundary conditions are as follows:

at ȳ = 0, ū = v̄ = 0, θ = 1, (12)

as ȳ → ∞, ū→ 0, θ → 0. (13)

B. Similarity solution

Equations (9)–(11) can be transformed to a set of ordinary
differential equations which give similarity solutions.2 The
ordinary differential equations are as follows:

f ′′′ + 3ff ′′ − 2f ′2 + θ = 0, (14)

θ ′′ + 3 Pr f θ ′ = 0, (15)

In Eqs. (14) and (15), prime, double-prime, and triple-prime
denote d/dη, d2/dη

2
, and d3/dη

3
, respectively. The similarity

variable “η” is y
x

(
Grx

4

) 1
4 . f is related to the stream function

ψ(x, y) as follows:

ψ = f (η)

4υ

(
Grx

4

) 1
4 

. (16)

The boundary conditions required to solve Eqs. (14) and (15)
are given as follows:

at η = 0, f = f ′ = 0, θ = 1, (17)

as η → ∞, f ′ → 0, θ → 0. (18)

Numerical solutions of Eqs. (14) and (15) give the variations
of f and θ as functions of η, from which the velocity and
temperature fields (in terms of dimensional variables) can
be constructed. The value of the local Nusselt number Nux

(Nux ≡ hx/k) obtained from the similarity theory is given by

Nux = −

(
Grx

4

) 1
4
(

dθ
dη

)
η=0

=

(
Grx

4

) 1
4

g(Pr). (19)

A study of Eqs. (14) and (15) shows that the value of −θ ′(0) =
−(dθ/dη)η=0 depends only on Pr. This is why this functional
dependence is denoted by g(Pr) in Eq. (19). The function g(Pr)
is determined numerically as a part of the similarity solu-
tion. The average Nusselt number Nu can be evaluated from
Eq. (19) as follows:

Nu ≡
h̄L
k
=

1
k

L∫
0

hdx =
4
3

(
GrL

4

) 1
4

g(Pr). (20)

Here, h is the local convective heat transfer coefficient and h
is the average convective heat transfer coefficient. Since the
results of similarity analyses given in Ref. 14 were obtained
many years ago, we recomputed these values taking advan-
tage of modern computers with large computational resource
and double-precision operations.33 Equations (14) and (15)
are solved with the boundary conditions given by Eqs. (17)
and (18) by the shooting method. In this method, the system
of Eqs. (14) and (15) is first reduced to a system of five first
order equations. The equations can now be solved by marching
forward in η, if the boundary values which are not specified
at η = 0 are first guessed so that the solution process can pro-
ceed. However, the boundary values computed at η →∞ will
depend on these guessed values and, in general, will not agree
with the actual prescribed conditions at η→∞. Since we need
to guess multiple (two) values simultaneously at η = 0 for
the five first order equations (with two boundary conditions
prescribed at η → ∞), the Newton method for simultaneous
non-linear equations34 has been used here for finding the roots
of the boundary residuals (difference between the computed
and specified boundary values at η → ∞). The fourth-order
Runge–Kutta method with a small step size (∆η) of 0.001
is chosen for the integration of differential equations. For a
numerical process, a large finite number for the maximum
value of η needs to be specified (replacing the mathe-
matical condition η → ∞). For the present computations,
ηmax = 100 is used to ensure that all flow parameters asymp-
totically approach their final values. A systematic study of
the effects of varying ∆η and ηmax on the computed values of
the average Nusselt number is made to confirm that the present
similarity solutions are determined with a high degree of preci-
sion. The computed values of the function g(Pr) in Eq. (19) are
shown in Table I which demonstrates that the present Runge–
Kutta integration determines the value of g(Pr) with at least
six decimal place precision (any difference between the last
two columns of Table I occurs only in the seventh decimal
place).

III. RESULTS FROM A NEW INTEGRAL THEORY

A unified integral theory has been developed for laminar
natural convection over surfaces with arbitrary inclination,31

which can also be used to determine the average Nusselt num-
ber (Nu) for the special case of a vertical plate. One uniqueness
of this approach (as compared with the previously available
integral theories) is that the theory can accommodate arbitrary
orders for the polynomials representing the velocity profile
(order λ) and the temperature profile (order χ). A systematic
optimization given in Ref. 31 shows that for an isothermal
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TABLE I. Similarity solutions for the function g(Pr) obtained by the 4th order Runge–Kutta integration.

Pr g(Pr) (∆η = 0.01; ηmax = 50) g(Pr) (∆η = 0.001; ηmax = 50) g(Pr) (∆η = 0.001; ηmax = 100)

0.01 0.170 708 9 0.170 151 1 0.170 151 0
0.1 0.307 415 2 0.307 125 5 0.307 125 4
0.7 0.665 409 1 0.665 230 2 0.665 230 2
1 0.789 524 2 0.789 445 2 0.789 445 2
10 1.560 731 2 1.560 574 3 1.560 574 3
50 2.284 204 3 2.283 918 2 2.283 918 1
100 2.747 011 2 2.746 654 2 2.746 654 2

vertical plate, the best compromise is obtained at λ = 4, χ = 2.
The analysis given in Ref. 31 then shows that the local Nus-
selt number can be explicitly expressed as a function of the
Grashof number and the Prandtl number. The relation for
λ = 4, χ = 2 is as follows:

Nux = 0.467 *
,

GrxPr2

5
9 + Pr

+
-

1
4

. (21)

The average Nusselt number for the isothermal vertical plate
of length L can be calculated from

Nu = 0.623 *
,

GrLPr2

5
9 + Pr

+
-

1
4

. (22)

The analysis given in Ref. 31 shows that the local Nusselt
number for a vertical plate with constant-heat-flux boundary
condition, with optimized velocity and temperature profiles
λ = 3, χ = 2, is as follows:

Nux,vq = 0.616 *
,

Gr∗x Pr2

4
5 + Pr

+
-

1
5

. (23)

Gr∗x in Eq. (23) is the modified Grashof number given by
Gr∗x = gβqwx4/(kν2), where qw is the wall heat flux. The aver-
age Nusselt number for the constant-heat-flux vertical plate of
length L can be calculated from

Nuvq = 1.027 *
,

Gr∗LPr2

4
5 + Pr

+
-

1
5

. (24)

It is demonstrated in Ref. 31 that Eqs. (21)–(24) give the Nus-
selt number with accuracy comparable to that of the similarity
theory. The advantage of Eqs. (21)–(24) is that the Nus-
selt number is expressed as explicit functions of the Grashof
number and Prandtl number.

The new integral theory is briefly mentioned here for the
sake of completeness. A future reader will then get updated
versions of all approaches on the natural convection around a
heated vertical plate—similarity theory, integral theory, con-
strained CFD, unconstrained CFD, and experiments—in one
place. This will make the current paper a comprehensive source
on the subject. The predictions of the new integral theory are
included in the comparison of all approaches (Sec. V), which
shows that the predictions of the explicit integral formulae are
quite close to the predictions of the similarity theory (which is
more rigorous than integral analysis but does not give closed-
form analytical results) and exhibit the same trend in the entire

range of computations 104 ≤ GrL ≤ 108, 0.01 ≤ Pr ≤ 100.
Next we turn our attention to the main theme of the present
paper—CFD simulations.

IV. COMPUTATIONAL FLUID DYNAMICS
SIMULATIONS

The full incompressible Navier-Stokes equations for
steady, laminar natural convective flow are solved using a
commercially available CFD software Fluent,35 which uses
the finite volume method. The dimension of the plate in the
z-direction (i.e., perpendicular to the plane shown in Fig. 1)
is considered to be infinitely large. Accordingly, 2-D simula-
tions are performed utilizing double precision arithmetic. An
implicit36 formulation is used to solve the system of equations.
The solver uses a time-marching technique37,38 to achieve a
steady state solution as the limiting process of an unsteady sim-
ulation. All thermophysical properties are assumed constant
except the density in the buoyancy term, which is modeled
by the Boussinesq approximation. The second order upwind
scheme provided in Fluent is used for the discretisation of
the advection terms, while the central difference scheme is
used for discretising the diffusion terms in both momentum
and energy equations. The second order scheme is employed
for pressure-discretisation. The SIMPLE algorithm is used
for pressure-velocity coupling. Under relaxation factors for
momentum, energy, pressure, density, and body forces are cho-
sen, respectively, as 0.7, 1, 0.3, 1, and 1, respectively. The
values are chosen such that numerical instabilities are avoided
but computational time does not increase excessively.

A. Geometry and physical properties

A vertical plate of length L and thickness tp is consid-
ered in the present study. One side of the plate (AB in Fig. 2)
is maintained at a constant temperature Tw (>T∞), while the
other three sides are insulated. (Of course we could maintain
both the left and right sides of the plate at the same constant
temperature. The buoyant jet will then be symmetric. With the
prescribed asymmetric boundary conditions, we have tried to
simultaneously achieve a new exploration on the evolution of
an asymmetric buoyant jet.) All the four sides of the plate are
subjected to no-slip condition. The plate is located exactly at
the middle of the rectangular computational domain (Fig. 2),
and the boundaries of this computational domain are mod-
eled by the “pressure outlet” option available in Fluent.35 The
Fluent manual does not provide much detail on the actual
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FIG. 2. The schematic details of the
computational domain used in the
present numerical analysis (not to
scale).

implementation of the “pressure outlet” boundary condition
but states that, for subsonic flow, the static gauge pressure spec-
ified by the user is applied at the domain boundary (this static
gauge pressure is set at 0 Pa for all CFD simulations reported
in this study). Our experience is that the implementation of
this boundary condition is such that it properly resolves the
outflow and inflow regions on the domain boundary. Further-
more, we have taken extra precautions to minimize the effects
of any imperfection in the implementation of this boundary
condition (see second paragraph of Sec. IV B).

The final results of the computation are presented in terms
of non-dimensional numbers: the average Nusselt number Nu
is expressed as a function of the Grashof number based on the
length of the plate (GrL) and the Prandtl number (Pr). Numer-
ical results are obtained for the ranges 104 ≤ GrL ≤ 108 and
0.01 ≤ Pr ≤ 100. By means of several initial CFD simula-
tions, we, at first, reconfirmed the principles of dimensional
analysis that whatever combinations of independent param-
eters we choose, the numerically determined value of Nu
remains unaltered as long as the values of GrL and Pr are
kept fixed. Therefore, in the Fluent implementation, we have
varied GrL and Pr by varying those independent parame-
ters which can be varied most easily. In a real experiment
for natural convection of a particular fluid, for example, air,
on a heated vertical plate, the properties of the fluid are
fixed and GrL would be varied by varying the plate sur-
face temperature Tw and/or the plate length L. However, a
reasonable variation only in Tw cannot achieve the range
104 ≤ GrL ≤ 108. Hence plate length L would have to be
varied in the experiment. This can also be done in a numerical
simulation, and we have indeed varied the plate length in a few
of our simulations to reconfirm the principle of dimensional

analysis. But an associated difficulty of this approach is that a
new grid structure has to be established for each simulation,
which is time consuming. Hence, GrL is varied in the numer-
ical simulations by varying the fluid viscosity µ alone, with
a compensating change in the fluid thermal conductivity k to
hold the Prandtl number constant. Since k appears only in the
Prandtl number and not in the Grashof number, the variation
in the Prandtl number is achieved by varying k alone. Thus,
for all simulations reported in Sec. V (i.e., excluding the addi-
tional simulations run to establish the validity of the principle
of dimensional analysis), the following constant values of the
remaining parameters are assumed: L = 0.1 m, tp = 0.001 m,
Tw = 325 K, T∞ = 300 K, ρ = 1.1614 kg/m3, β = 0.0033 K�1,
and cp = 1007 J/kg K. The upper limit of GrL is set here
as 108 to ensure that transition to turbulence39 does not take
place. With increasing height from the trailing edge (i.e., the
top edge) of the vertical plate, the local Reynolds number Rex

(Rex ≡ uδ/υ) of the buoyant jet created by the heated vertical
plate increases due to fluid entrainment (δ is the local width of
the jet at any x). The value of Rex should not exceed 104 for
the flow in the jet to remain laminar.40 This condition is well
satisfied here.

B. Domain independence test

Figure 2 shows that the computational domain is notion-
ally divided into eight sub-domains, viz., S1, S2, . . . , S8, for
the ease of future reference. Our experience shows that the
computational domain and the grid structure must be selected
very carefully for accurate simulations of natural convection.
In this subsection, we describe the choice of an appropriate
computational domain, whereas the selection of an optimum
grid structure is described in Subsection IV C.
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Since our objective is to obtain CFD results for natural
convection with such high degree of accuracy that these results
can be included in future textbooks as a reliable source of data,
we have taken a double-ensuring strategy for selecting the
all-important size of the computational domain. At first, with
several initial simulations with various sizes of the adopted
domain, we have approximately determined the required size
of the domain such that various flow parameters asymptotically
reach their final values at the domain boundary. We denote this
domain as the region of interest (ROI). The rectangle WXYZ,
shown in Fig. 2, represents the region of interest (ROI). We
then adopt a much larger size of the domain for the actual sim-
ulations from which we extract the final results (such as the
value of Nu). Figure 2 shows that the boundaries of the final
computational domain are la and lb distances away, respec-
tively, from the vertical and horizontal boundaries of the ROI.
The difference between the initial set of simulations to deter-
mine the ROI and the final set of simulations to determine the
final computational domain is that, for the latter, the boundary
conditions are applied much further away (at the boundaries
of the full domain) from the boundaries of the ROI where the
asymptotic convergence of the various parameters is ensured.
In this way, the effect of any imperfection in the application
of the “pressure outlet” boundary condition is eliminated from
the region of interest.

The procedure is illustrated here for a particular combi-
nation of Grashof and Prandtl numbers, viz., GrL = 106 and
Pr = 0.7. From the first set of initial simulations mentioned
above, it is determined that the size of the ROI in this case is a
rectangle of 1.7 m height and 12.8 m width. Now, a systematic
domain independence test is carried out in which the values of
la and lb are progressively increased and the values of impor-
tant parameters at the boundaries of the ROI are monitored.
Table II shows some sample results of the domain indepen-
dence test for five representative domains, viz., D1, D2, . . . ,
D5. The mass flow rates through the four boundaries of the
ROI (WX, YX, ZY, and ZW ), denoted as ṁWX , ṁYX , ṁZY , and
ṁZW , are tabulated for each of the domains. It is observed that
as the domain size is changed from D4 to D5, none of the mass
flow rates change up to the sixth decimal place.

In a similar manner, the sizes of the ROI and full compu-
tational domain are determined for all other combinations of
Grashof and Prandtl numbers. It is found that the widths of the
ROI and full computational domain mentioned above remain
adequate, whereas the height of the ROI needs to be increased
to 3.3 m for low values of the Prandtl number. Accordingly the

TABLE II. Result of the domain independence test for five computational
domains (GrL = 106, Pr = 0.7).

Name of the
computational

Mass flow rates (kg/s)

domain la/L lb/L ṁWX ṁXY ṁYZ ṁZW

D1 0.5 4 0.000 084 0.003 126 0.000 043 0.002 617
D2 1 8 0.000 089 0.003 428 0.000 070 0.003 013
D3 2 16 0.000 094 0.003 515 0.000 088 0.003 319
D4 4 32 0.000 096 0.003 664 0.000 095 0.003 467
D5 8 64 0.000 096 0.003 664 0.000 095 0.003 467

standard sizes chosen for all computations reported in Sec. V
are as follows: a rectangular area of 3.3 m height and 12.8 m
width ROI and a rectangular area of 6.5 m height and 25.6 m
width for the full computational domain. It is recalled that
the length of the plate (L) taken here is 0.1 m. This means
that the computational domain is of the size 65L × 256L,
i.e., nearly true infinity conditions have been attempted to be
implemented.

C. Grid independence test

A systematic grid independence study has been car-
ried out for many combinations of GrL and Pr. Four grid
structures are constructed—viz., “coarse,” “medium,” “fine,”
and “superfine”—as shown in Table III. The size (in the y–
direction) of the first computational cell adjacent to the solid
plate, ∆y1, is a critical parameter for accurately capturing the
gradients of flow variables at the surface, and hence this value
is also shown in Table III. The value of ∆y1 is progressively
halved as the grid is progressively refined from “coarse” to
“superfine.” A non-uniform grid distribution is used in the
y-direction so that the natural convective boundary layer is
appropriately resolved, and at the same time, a large computa-
tional domain can be utilized so that the boundary conditions
for the natural convective flow can be applied appropriately.
The grid size in the y-direction is progressively increased (as
one moves away from the solid surface) in geometric progres-
sion (with a ratio of 1.02 between successive grid sizes) and
a limiter is placed so that a computational cell cannot become
larger than 25 mm. When this limiting value is reached, a
uniform grid of 25 mm is continued up to the boundary of the
computational domain. The size of all grids in the y-direction in
regions S4 and S8 (see Fig. 2) is uniformly∆y1, i.e., a very fine
grid is used with a view to capture the details of the evolution
of the buoyant jet. Similarly, a non-uniform grid distribution
is used in the x-direction, with a geometric progression ratio
of 1.02, to capture the effects of the plate edges. The grids are
coarser towards the boundary of the computational domain
and also towards the middle of the plate while those are finer
towards the edges of the plate. In the x-direction also, a limiter
of 25 mm is placed on the size of a computational cell. When
the size of 25 mm is reached, geometric progression is not used
any further, instead a uniform grid of 25 mm is used.

A systematic grid independence test is applied and exam-
ined for domain D5 at 25 combinations of Grashof and Prandtl
numbers of which the results for five such combinations are
included in the upper part of Table III as representative sam-
ples. The representative five cases are carefully selected to
cover the entire range of GrL × Pr used for the computations. It
is found that as the grid size is systematically refined (following
the method described above) from “coarse” to “superfine,” the
values of the computed average Nusselt number Nu uniformly
converge. Between the “fine” and “superfine” grid structures,
there is no difference in Nu up to the third decimal place at
all combinations of the Grashof number and Prandtl number
tested within the ranges 104 ≤ GrL ≤ 108 and 0.01 ≤ Pr ≤ 100.
The data in Table III show that the relative difference in Nu
between the “fine” and “superfine” grids is of the order 10�6.

Since the domain independence test described in Sec. IV B
was carried out with a particular grid, a second series of grid
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TABLE III. Grid independence test for unconstrained flow.

For domain D5

Grid First grid No. of No. of Nu Nu Nu Nu Nu
distribution size points in points GrL = 104 GrL = 105 GrL = 106 GrL = 107 GrL = 108

(adjacent to the plate) (m) x-direction in y-direction Pr = 0.01 Pr = 0.1 Pr = 0.7 Pr = 10 Pr = 100

Coarse 0.000 1 184 415 1.684 98 5.116 21 15.726 82 52.288 27 162.198 39
Medium 0.000 05 296 804 1.787 01 5.210 02 15.749 21 52.321 64 162.210 21
Fine 0.000 025 518 1472 1.795 11 5.214 21 15.750 15 52.324 03 162.214 37
Superfine 0.000 012 5 949 2515 1.795 12 5.214 23 15.750 26 52.324 35 162.214 63

For GrL = 106 and Pr = 0.7

Nu Nu Nu Nu
coarse grid medium grid fine grid superfine grid

Domain (184 × 415) (296 × 804) (518 × 1472) (949 × 2515)

D3 15.708 73 15.732 35 15.736 73 15.736 94
D4 15.726 25 15.749 03 15.750 01 15.750 15
D5 15.726 82 15.749 21 15.750 15 15.750 26

independence tests is performed for various domains to check
whether there are any finer issues involved. The results for
GrL = 106 and Pr = 0.7 are given in the lower part of Table III.
It is found that the results uniformly converge as one moves
to the right along any particular row or toward the bottom of
a particular column. The present CFD solutions thus compute
the Nusselt number accurately at least up to the third decimal
point when the domain D5 and the superfine grid structure are
used.

D. Convergence criteria

Convergence criteria indicate the level of accuracy of the
results obtained by a CFD simulation. In the present CFD
study, we adopt a systematic procedure to determine the appro-
priate convergence criteria. For a specific set of geometry,
boundary conditions, and thermo-physical properties, the CFD
simulation is carried out up to various convergence levels. This
procedure has been followed for all of the combinations of GrL

and Pr studied here; it is seen that when the “maximum scaled
residual” is changed from 10�7 to 10�8 for the “superfine grid,”
any change in the average Nusselt number (Nu) happens after
the fifth decimal place. Computed values of Nu with “maxi-
mum scaled residual” at 10�8 are reported in Sec. V of this
paper.

E. Two sets of CFD simulations

CFD simulations are run for various combinations of the
Grashof number (104 ≤ GrL ≤ 108) and Prandtl number
(0.01 ≤ Pr ≤100). For each combination of GrL and Pr,
CFD simulations are run with two alternative boundary
conditions—one with constrained velocity at x = 0 to mimic the
similarity analysis and the other with no such constraints sim-
ulating the case of a heated vertical plate in an infinite expanse
of the quiescent fluid medium. The domain independence, grid
independence, and convergence criteria for the CFD solution
with constrained velocity at x = 0 are similar to those for
unconstrained flow discussed in Secs. IV B–IV D, respectively,

the difference being in the domain size of the two cases,
the location of the lower boundary, and the boundary con-
dition applied there. The vertical plate is situated exactly at
the centre of the computational domain for simulations with
unconstrained flow. For simulations with constrained flow, the
lower edge of the computational domain is flush with the lower
edge of the vertical plate, i.e., the sub-domains named as S3,
S4, and S5 in Fig. 2 are absent. The boundary condition u
= 0 is numerically implemented along the lower edge of the
computational domain to mimic the similarity analysis which
assumes u = 0 at x = 0. The systematic grid independence test is
applied again at 17 combinations of Grashof and Prandtl num-
bers, and the same level of convergence up to second and third
decimal places of the computed Nu is obtained as discussed in
Secs. IV C and IV D.

It can therefore be concluded that following the system-
atic domain independence and grid independence tests and
applying a stringent convergence criterion, we have been able
to determine the values of Nu with a very high degree of pre-
cision for both constrained and unconstrained flows. With the
domain “D5,” “superfine grid (949 × 2515),” and maximum
scaled residual at 10�8, we have been able to determine Nu
with at least five decimal place precision.

V. RESULTS AND DISCUSSION

CFD simulations are run for various combinations of
the Grashof number (104 ≤ GrL ≤ 108) and Prandtl number
(0.01 ≤ Pr ≤ 100) for a thorough understanding of the thermo-
fluid-dynamics of natural convection on a heated vertical plate.
Comparisons are made with the corresponding similarity solu-
tions. For streamlining the discussion, the results are divided
into a few subsections.

A. Streamline pattern and contours of flow variables

Before embarking upon a detailed quantitative analy-
sis, we present a few theoretical and computational flow
visualization results that powerfully establish a qualitative
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FIG. 3. (a) Streamline pattern obtained
from the standard similarity theory (for
GrL = 106 and Pr = 0.7). (b) Streamline
pattern obtained from the present CFD
simulation with constrained flow (for
GrL = 106 and Pr = 0.7). (c) Streamline
pattern obtained from the present CFD
simulation with unconstrained flow (for
GrL = 106 and Pr = 0.7).

understanding of the physical situation. Figure 3(a) shows
the streamline pattern corresponding to the standard similar-
ity theory. It is recalled that all similarity analyses1–5 assume
the boundary condition u = 0 at x = 0. Figure 3(b) shows the
streamline pattern which is obtained by post-processing CFD
solutions (of the Navier-Stokes equations) with constrained
velocity (u = 0) at x = 0 to mimic the similarity analysis.
Figure 3(c) shows the streamline pattern which is obtained
by post-processing CFD solutions with no such constraints on
the u-velocity at x = 0, simulating the case of a heated vertical
plate in an infinite expanse of the quiescent fluid medium.
Figures 3(a)–3(c) are drawn to the same scale, the com-
putations being at the same Grashof and Prandtl numbers
(GrL = 106 and Pr = 0.7). The change in the stream function
between any two consecutive streamlines of Figs. 3(a)–3(c) is
exactly the same (which is, to be precise, 3.3 × 10�5 m3/s per
unit depth) so that direct comparisons are possible.

Although the principle of constructing streamlines is
rather straightforward, the present authors have not come
across an equivalent of Fig. 3(a) anywhere in the literature
or even a discussion on what streamline pattern would be the
consequence of the assumptions made for developing the sim-
ilarity analysis. A comparison of Figs. 3(a) and 3(c) provides
a stunning display of the differences in the fluid dynamics
of entrainment. Whereas the detailed computation establishes
that most of the entrained fluid (over 90% as established later
in Sec. V B) comes from the bottom of the domain when a
heated plate is placed in a large expanse of the fluid, the sim-
ilarity theory compels all (100%) of the fluid to be sucked

from the side. One important utility of the additional set of
computations displayed in Fig. 3(b) is that we have been able
to reproduce the streamline pattern of the similarity theory by
CFD simulations. Since the only difference between the two
sets of CFD simulations lies in the boundary condition imposed
on the u-velocity at x = 0, we conclude that the totally differ-
ent streamline pattern at the bottom and side boundaries of the
computational domain are the result of the assumption of the
boundary condition u = 0 at x = 0 used in the similarity theory.

A comparison of Figs. 3(a)–3(c) at the top boundary shows
that there is no fluid entrainment from the top side in the sim-
ilarity theory, but there is a similar level (small but finite) of
downward movement of the fluid through the right side of the
top boundary in both sets of CFD simulations. This establishes
the conclusion that fluid entrainment through the top bound-
ary is the result of the finite extent of the heated plate in the
CFD simulations (the similarity theory assumes that the plate
is semi-infinite).

Figures 4 and 5 show, respectively, the velocity and
temperature contours obtained by the CFD simulations with
unconstrained u-velocity. The right side of the plate is at a
raised but uniform temperature (isothermally heated). The
other three sides of the plate are insulated. The flow field and
the temperature field on the left and right sides of the plate are
not the same (left-right asymmetry). The main natural convec-
tive boundary layer forms on the right side; however, Fig. 4
shows that there is a small movement of the fluid on the left
side of the plate as well, as a small fraction of the entrained
fluid at the leading edge of the plate spills over to the left side.
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FIG. 4. Velocity contours adjacent to a heated vertical plate subjected to a
constant wall temperature. (Predictions of the present CFD simulations with
unconstrained flow for Pr = 0.7 and GrL = 106 with Tw � T∞ = 25 K.)

As the buoyant jet leaves the trailing edge of the plate, it bends
over the plate (see Fig. 4) due to the left-right asymmetry and
due to the finite thickness of the plate.

As the jet leaves the plate, more and more fluid can be
entrained from the left side as well. Consequently, as the ver-
tical distance above the plate increases, there is a tendency
for the centreline of the jet to align with the midplane of the
plate and for the velocity of entrainment at the left and that
at the right to equilibrate. This evolution of jet asymmetry is
quantitatively described later in Sec. V C.

From the temperature contour in Fig. 5, it can be seen
that the maximum temperature of the fluid occurs close to the
plate. The maximum value of the temperature inside the free
jet occurs around the centreline of the jet but its magnitude
decreases as the vertical distance above the plate increases.
The velocity along the centreline of the buoyant jet, in contrast,
tends to increase as the vertical distance increases (see Fig. 4),
as a consequence of buoyancy and the continued entrainment
of the surrounding fluid.

FIG. 5. Temperature contours adjacent to a heated vertical plate subjected to
a constant wall temperature. (Predictions of the present CFD simulations with
unconstrained flow for Pr = 0.7 and GrL = 106 with Tw � T∞ = 25 K.)

B. Behaviour of directional mass fluxes

At the trailing edge of a finite heated vertical plate, a jet
of fluid containing heated air emanates from the flow domain.
This outgoing mass flow rate (per unit depth) at this exit plane
(i.e., at the horizontal plane flush with the trailing edge of the
plate) is denoted by ṁout . This mass flux is replenished by
the flow of air through the three planes AD, DC, and EC of
a rectangle ABCD, which is constructed with side AB coin-
cident with the heated side of the plate. The location of the
side CD is variable. The physical configuration can be appre-
ciated from Fig. 2. The relative proportions of the mass fluxes
that get entrained from the three sides are important indicators
of the underlying fluid mechanics that determine the natural
convective heat transfer. It is shown below that the relative
proportions are widely different between the predictions of
the similarity theory and constrained CFD and unconstrained
CFD simulations.

In the proximity to the plate, the velocity of the fluid on
the line BC is upward (the x component of velocity is posi-
tive) due to the buoyant jet. Farther from the plate, the velocity
of the fluid on the line BC is downward (the x component
of velocity is negative). So there is a point on the line BC
where the x component of velocity is zero. This important
point on the side BC is denoted by E. So the buoyant jet
emerges fully through side BE and the fluid enters the con-
trol volume ABCD through edges AD, DC, and EC. For the
inflows, let us denote the mass flow rates through AD, DC,
and EC by (ṁin)bottom, (ṁin)side, and (ṁin)top, respectively. The
three inflow rates are non-dimensionalized by the outflow rate
ṁout , the non-dimensional quantities being denoted by a hat
(ˆ). So, ( ˆ̇min)bottom ≡ (ṁin)bottom/ṁout , and so on. Now these
non-dimensional mass flow rates depend on the position of the
side DC. In this study, the position of DC has been systemat-
ically shifted away from the plate, and for each new position
of DC, the three non-dimensional mass flow rates are deter-
mined. This is done until each of ( ˆ̇min)bottom, ( ˆ̇min)side, and
( ˆ̇min)top plateaus to their respective limiting values, i.e., they
become independent of the position of DC. An example of
obtaining these limiting ratios at GrL = 106 and Pr = 0.7 is
shown in Table IV. This painstaking process is repeated at
every other combination of GrL and Pr reported in this paper.
Two representative variations of ( ˆ̇min)bottom with GrL and Pr
are shown in Fig. 6.

From Table IV, Fig. 6, and other computations not graph-
ically displayed here, the following general observations can
be made. (i) Table IV shows that as the value of lc/L increases,
i.e., the plane DC is shifted farther from the heated plate,

TABLE IV. Change of ( ˆ̇min)bottom, ( ˆ̇min)side, and ( ˆ̇min)top with varying
distance of CD from AB for GrL = 106 and Pr = 0.7.

lc
L ( ˆ̇min)bottom ( ˆ̇min)side ( ˆ̇min)top

8 0.9544 0.0416 0.0040
12 0.9689 0.0170 0.0141
16 0.9729 0.0071 0.0200
32 0.9736 0.0037 0.0227
64 0.9737 0.0036 0.0227
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FIG. 6. Variation of mass flow fraction entrained from the bottom ( ˆ̇min)bottom
with GrL (for Pr = 0.7) and with Pr (at GrL = 106).

the values of ( ˆ̇min)bottom, and ( ˆ̇min)top increase and the value
of ( ˆ̇min)side decreases. (ii) There is little change in the three
non-dimensional mass fluxes as the value of lc/L is increased
from 32 to 64, indicating that the mass fluxes have nearly
attained their respective limiting values. (iii) Figure 6 shows
that the limiting value of ( ˆ̇min)bottom decreases slightly as GrL

is changed by four orders of magnitude and increases slightly
as Pr is changed by four orders of magnitude. (iv) There is a
small but finite value of ( ˆ̇min)top; this entrainment flow is the
result of the heated plate being finite in extent. In the similar-
ity or integral theory,1–5 ( ˆ̇min)top is found to be exactly zero
since the plate is assumed semi-infinite. (v) In the similar-
ity theory,1–5 100% of the entrainment flow comes through
the side (plane CD in Fig. 2), and no fluid entrainment takes
place from the bottom (because of the boundary condition u
= 0 at x = 0) or from the top (because of the assumption of
semi-infinite extent of the plate). In contrast, the present CFD
simulations with unconstrained flow show that the majority of
the flow entrainment (more than 90%) takes place from the
bottom (plane AD in Fig. 2). The smallest fraction of entrain-
ment takes place from the side. [However, it should be noted
that ( ˆ̇min)side does not go to zero as lc/L is increased, but it
assumes a small finite value.] The physics of actual entrain-
ment is thus very different from what can be constructed from
the predictions of the standard similarity theory.

C. Evolution of the asymmetry of the buoyant jet

The asymmetry of the buoyant jet could be visualized from
the contour plots in Figs. 4 and 5. The asymmetry arises for two
reasons: (i) different boundary conditions being applied on the
two sides of the plate and (ii) a finite thickness being assigned
to the plate. The physics of the evolution of the asymmetry
is studied here. As far as we know, this topic has not been
investigated previously. The asymmetry is reflected both in
the profiles of u-velocity (representing the vertical velocity in
the jet) and v-velocity (which determines the mass flow rate
of entrainment from the two sides of the jet). Both topics are
discussed below.

The physical configuration is displayed in Fig. 2. It is
to be realized that even though the left side of the plate is
insulated, a small portion of the entrained fluid at the leading

(bottom) edge of the plate spills over to the left side and there
is a (small) natural convective motion on the left side of the
plate as well. Similar to the point E on the top-right side of the
plate, there is also a point of zero vertical velocity to the left
of the plate. This is denoted by E ′. For the case GrL = 106 and
Pr = 0.7, the present computations show that BE ≈ 1.145 L
and B′E ′ ≈ 1.247 L. A floating plane GiF i, at a distance ld

above the trailing edge of the plate, is constructed to complete a
rectangular control volume E ′GiF iE (Fig. 2). For convenience,
the superscript i (denoting the locations of the points F i and Gi)
are such that EF i = E ′Gi = i×AB = i×L for i = 1/2, 1, 2, 4, 8.
The superscript i thus directly indicates the non-dimensional
vertical distance of the plane GiF i above the trailing edge of
the plate. As a result of different boundary conditions on the
two sides of the plate, the magnitude of the v-velocity, and
hence the mass flow rate per unit depth, along EF i and along
E ′Gi are different from each other. The mass flow rate through
E ′Gi is denoted by ṁi

left and that through EF i is denoted by

ṁi
right . The ratio of ṁi

left and ṁi
right is denoted by ri. Hence,

ri =
ṁi

left

ṁi
right

. (25)

The mass flow rate ratio ri is plotted against GrL and Pr
in Figs. 7 and 8, respectively, for the chosen five values of i.
It shows that farther from the plate (i.e., with increasing value
of i) the asymmetry in mass flow entrainment decreases and
the ratio ri tends to unity. It is also seen that the asymmetry
between the mass flow rate through EF i and E ′Gi decreases
more rapidly with increasing values of GrL and decreasing
values of Pr. This can be attributed to the increased role of
viscosity which tends to establish symmetry.

The evolution of the asymmetry in the u-velocity is shown
in Fig. 9. In order to clearly expound the physics, the velocity
profiles are displayed at four values of ld /L (viz., 0, 0.1, 0.4, and
1), all computations corresponding to GrL = 106 and Pr = 0.7.
The following observations can be made. (i) At ld /L = 0,
i.e., even at a horizontal plane flush with the trailing edge of

FIG. 7. Variation with GrL of the ratio of the rate of mass flow entrainment
from the left and that from the right at different heights above the top edge of the
vertical plate. [Predictions of the present CFD simulations with unconstrained
flow at GrL = 106. The ordinate ri represents the ratio of the left and right
mass fluxes entering through a height i × L above the top edge of the vertical
plate, where L is the length of the plate and five values of i are chosen (i =
1/2, 1, 2, 4, 8).]
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FIG. 8. Variation with Pr of the ratio of the rate of mass flow entrainment from
the left and that from the right at different heights above the top edge of the
vertical plate. [Predictions of the present CFD simulations with unconstrained
flow at GrL = 106. The ordinate ri represents the ratio of the left and right
mass fluxes entering through a height i × L above the top edge of the vertical
plate, where L is the length of the plate and five values of i are chosen (i =
1/2, 1, 2, 4, 8).]

the plate, there exists a distribution of the vertical velocity on
the left (insulated) side of the plate. This is consistent with
our earlier description that there exists a small natural con-
vective current on the insulated side of the plate. (ii) As ld /L
increases, i.e., as the jet moves further above the plate, there is
a tendency to restore the left-right symmetry in the u-velocity
distribution. This happens mainly through adjustment in the
velocity distribution on the left side; the velocity distribution
on the right side changes only a little. (iii) The maximum value
of the u-velocity increases with increasing ld /L. (iv) The pre-
vious two behaviours occur over different length scales. The
restoration of the left-right symmetry happens rather quickly;
Fig. 9 shows that the jet becomes reasonably symmetric (the
right side, though, still having a slightly greater velocity) when
ld /L ∼ 1. The maximum u-velocity, on the other hand, is seen
to increase considerably even as far as ld /L ∼ 4. (v) Figure 9
shows that at ld /L = 0, there are two maxima, one on the left
and the other on the right side. At ld /L = 0.1, the profile has
only maxima on the right. The transition from two-maxima
to one-maxima solution is interesting and is virtually accom-
plished by ld /L ∼ 0.05. (vi) As ld /L increases, the location of

FIG. 9. Progressive development of the axial velocity profile in the buoyant
jet at different heights above the top edge of the vertical plate. (Predictions of
the present CFD simulations with unconstrained flow for Pr = 0.7 and GrL =
106 with Tw = 325 K.)

FIG. 10. Progressive development of the temperature profile in the buoyant
jet at different heights above the top edge of the vertical plate. (Predictions of
the present CFD simulations with unconstrained flow for Pr = 0.7 and GrL =
106 with Tw = 325 K. The maximum decreases as ld /L increases.)

the maximum u-velocity shifts toward the left, tending toward
the vertical line drawn through the middle of the plate. (vii)
Figure 10, which displays the evolution of the temperature
profile, shows the process of equilibration of temperature as
ld /L increases. At ld /L = 0, the temperature profile is most
asymmetric with a step change at y = 0. As ld /L increases,
the location of the maxima in temperature moves at first to
the right (i.e., toward the heated side of the plate) and then
to the left. Like the profile of the axial velocity (shown in
Fig. 9), the temperature profile (Fig. 10) also becomes nearly
symmetric at ld /L ∼ 1, although the jet still remains buoyant,
and the evolution of temperature and axial velocity continues
up to much larger values of ld /L.

The above discussion establishes a qualitative and quan-
titative description of the evolution of the asymmetry in the
buoyant jet. It is shown that at large values of ld /L, the buoyant
jet tends to be symmetric with respect to an axis that passes
through the vertical mid-plane of the plate. An interesting inter-
pretation of this phenomenon is that, sufficiently above the
plate, the jet tends to lose its history of origination.

D. Variation of the computed Nusselt number

The variations in the local Nusselt number Nux and the
average value of the Nusselt number Nu (averaged over the
finite length of the plate) are computed and compared in this
section. CFD simulations are run for various combinations of
the Grashof number (104 ≤ GrL ≤ 108) and Prandtl number
(0.01 ≤ Pr ≤ 100). For each combination of GrL and Pr, CFD
simulations are run with two alternative boundary conditions–
one with constrained velocity at x = 0 to mimic the similarity
analysis and the other with no such constraints simulating the
case of a heated vertical plate in an infinite expanse of the
quiescent fluid medium. Table V shows a summary compari-
son of the results of CFD simulations, similarity analyses, and
experiments. (The combination of GrL = 104 and Pr = 0.01
may stretch the applicability of the boundary layer anal-
ysis, and the combination of GrL = 108 and Pr = 100
may stretch the applicability of the laminar flow analysis.
Nevertheless, we have kept these limiting combinations in
Table V and found that similar trends continue at these values,
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TABLE V. Comparison of the Nusselt number obtained by the present CFD simulations, similarity theory, and experiment.

Variation with the Prandtl number (at GrL = 106)

Nu (similarity Nu (integral31) Nu (CFD with Nu (CFD with Nu

Pr recomputed) Eq. (20) Eq. (22) constrained flow) unconstrained flow) (experimental)

0.01 3.805 3.671 3.880 4.988 5.511

0.1 6.872 6.920 6.984 8.424 9.211

0.7 14.875 15.563 15.108 15.750 16.011

10 34.891 34.545 35.405 29.784 30.59

100 61.417 62.180 62.216 50.888 51.59

Variation with the Grashof number (at Pr = 0.7)

Nu (similarity Nu (integral31) Nu (CFD with Nu (CFD with Nu

GrL recomputed) Eq. (20) Eq. (22) constrained flow) unconstrained flow) (experimental)

104 4.704 4.922 4.958 5.826 5.411

105 8.365 8.752 8.646 9.358 9.111

106 14.875 15.563 15.108 15.750 16.011

107 26.453 26.676 26.615 27.207 289

108 47.041 49.215 47.226 47.762 489

At various combinations of Grashof and Prandtl numbers

Nu (similarity Nu (integral31) Nu (CFD with Nu (CFD with Nu

GrL Pr recomputed) Eq. (20) Eq. (22) constrained flow) unconstrained flow) (experimental)

104 0.01 1.202 1.215 1.203 1.795 1.811

104 0.1 2.173 2.188 2.175 2.988 3.111

104 10 11.034 10.924 11.516 9.184 9.211

104 100 19.422 19.663 20.209 16.849 1711

105 0.01 2.137 2.161 2.015 2.984 3.111

105 0.1 3.864 3.891 3.816 5.214 5.511

105 10 19.621 19.426 19.816 16.521 1711

105 100 34.520 34.967 35.115 29.614 30.59

107 0.01 6.759 6.832 6.329 9.416 9.211

107 0.1 12.220 12.306 11.928 17.484 1711

107 10 62.046 61.431 63.218 52.324 51.59

107 100 109.215 110.574 112.214 98.310 979

108 0.01 12.015 12.148 12.995 16.416 1711

108 0.1 21.731 21.883 22.224 29.292 30.59

108 10 110.335 109.241 107.824 98.214 979

108 100 194.219 196.632 191.926 162.215 1609

including the fact that the Nusselt numbers determined from
the unconstrained CFD simulations are still close to the experi-
mentally measured ones.) The experimental values of Nu given
in Table V have been extracted from Refs. 9 and 11. Reference
11 reports the measurement at low Grashof numbers (values
not covered in Ref. 9); unfortunately, the issue of experimen-
tal errors is not mentioned there, although the paper seems
to be well respected in the literature. The authors of Ref. 9
have addressed the topic of experimental errors in detail. They
mention that experimental errors may arise from “accuracy of
measurements, effects of aberration, end effects, and effects of
conduction and radiation.” They discuss each source of error
in turn and what precautions they have taken to minimise them;
the final value of the experimental uncertainty is however not
quantified.

Table V establishes that, in general, (i) the predictions of
the similarity theory and those of CFD with constrained flow
are close, (ii) the difference between the predictions of the
similarity theory and those of the CFD with unconstrained flow
can be large, particularly when the Prandtl number is small or
large, and (iii) out of the various predictions, the experimental
values of Nu are always closest to the predictions of CFD
simulations with unconstrained flow.

Both sets of CFD simulations (with and without con-
strained flow) solve the full Navier-Stokes equations. The
demonstration in Table V that, at all combinations of Grashof
and Prandtl numbers, Nu determined by CFD with con-
strained flow is quite close to Nu determined by the similarity
solution establishes the conclusion that the boundary-layer
approximations inherent in the similarity theory are not a major
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FIG. 11. (a) Variation of ∆Nu with GrL (for Pr = 0.7).
(b) Variation of ∆Nu with Pr (at GrL = 106).

source of error. The difference between the two sets of CFD
simulations is significant at all combinations of Grashof and
Prandtl numbers. This establishes that the boundary condition
u = 0 at x = 0 causes major alteration in the fluid dynamics
and consequently in the computed value of Nu, and this long-
used boundary condition is therefore the principal cause for
the vulnerability of the similarity analysis. Table V shows that,
for certain combinations of GrL and Pr, the similarity theory
underpredicts the value of Nu as compared with the experi-
ment, while for certain other combinations of GrL and Pr, the
similarity theory overpredicts. The CFD with unconstrained
velocity brings the theoretical analysis closer to experiments
in both situations.

To assist the discussion, we define

∆Nu =
Nu from CFD − Nu from Similarity

Nu from Similarity
× 100. (26)

Two sets of values of ∆Nu, corresponding to two sets of CFD
simulations with and without constrained flow, are plotted in
Figs. 11(a) and 11(b) to display, respectively, its variation with
GrL and Pr. The difference between the two sets of ∆Nu is
indicative of the influence of the boundary condition u = 0 at
x = 0. ∆Nu can be significant for the CFD simulation with
unconstrained flow. Figure 11(a) shows that ∆Nu is positive,
but Fig. 11(b) shows that∆Nu can be positive or negative. ���∆Nu���
decreases continuously with an increase in GrL. But in the case
of variation with Pr, ���∆Nu��� is the least in the moderate range
of Pr (≈1) and increases towards the very high or low values
of Pr. A good discussion on the role of the Prandtl number
in natural convection, particularly in determining the relative

thicknesses of the velocity and thermal boundary layers, is
given in Ref. 41.

Other than the average Nusselt number, Nu, giving overall
heat transfer characteristics of natural convection over a heated
vertical plate, the variation of the local Nusselt number Nux is
also important to understand complementary aspects of heat
transfer. It is found that at GrL = 106 and Pr = 0.7, the values of
Nux calculated by the similarity theory, CFD with constrained
flow, and CFD with unconstrained flow are almost the same
in the middle portion of the vertical plate (hence not graph-
ically illustrated), but there are differences near the leading
edge [Fig. 12(a)] and the trailing edge [Fig. 12(b)]. There are
subtle differences in the physics. Figure 12(a) shows that there
is only a modest difference between the predictions of simi-
larity theory and CFD with constrained flow. This difference
is caused by the additional boundary layer approximations
adopted in the similarity theory, which are not valid near the
leading edge. There is much greater difference between the two
sets of CFD predictions since the boundary condition u = 0
at x = 0 significantly alters the streamline pattern near the
leading edge, altering the heat transfer there. Figure 12(b),
in contrast, shows that the two sets of CFD solutions are
quite close to each other, both being significantly differ-
ent from the similarity analysis. This difference is caused
by the assumption of semi-infiniteness in the similarity the-
ory, whereas both CFD solutions capture the effects of finite
length and finite thickness of the plate. The small difference
between the two sets of CFD solutions signifies that, even
at the trailing edge, there is some residual effect left of the
assumed boundary condition u = 0 at x = 0 in one set of CFD
simulation.

FIG. 12. (a) Variation of the local Nusselt number with
the distance along the plate near the leading edge (for
GrL = 106 and Pr =0.7). (b) Variation of the local Nusselt
number with the distance along the plate near the trailing
edge (for GrL = 106 and Pr =0.7).
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FIG. 13. Variation of the local Nusselt number with the distance along the
plate in the middle portion of the plate (for GrL = 106 and Pr =0.01).

FIG. 14. Variation of the local Nusselt number with the distance along the
plate in the middle portion of the plate (for GrL = 106 and Pr = 100).

It is commented that at GrL = 106 and Pr = 0.7, the values
of Nux calculated by the similarity theory, CFD with con-
strained flow, and CFD with unconstrained flow are almost the
same in the middle portion of the vertical plate. This is not the
case when the Prandtl number is either small or large. Figures
13 and 14 display the results, respectively, for Pr = 0.01 and
Pr = 100. It is found that the predictions of the similarity the-
ory and CFD with constrained flow are almost superposed in
the middle portion of the vertical plate, but the CFD solutions
with unconstrained flow (which is closer to the experimen-
tal values) are significantly different. Figure 13 shows that
for Pr = 0.01, Nux determined by CFD with unconstrained
flow is significantly greater than that determined by the other
two methods everywhere on the plate. Figure 14 shows that
for Pr = 100, Nux determined by CFD with unconstrained
flow is significantly smaller than that determined by the other
two methods everywhere on the plate. These behaviours are
reflected in the average values of the Nusselt number, Nu,
discussed previously.

VI. CONCLUSION

A compulsory element of all textbooks on natural convec-
tion has been a detailed similarity analysis for laminar natural
convection on a heated semi-infinite vertical plate and a rou-
tinely used boundary condition for such analysis is u = 0 at

x = 0. The same boundary condition continues to be assumed
in related theoretical analyses, even in recent publications.
The present work examines the consequence of this long-held
assumption, which appears to have never been questioned in
the literature, on the fluid dynamics and heat transfer char-
acteristics. The assessment has been made here by solving
the Navier-Stokes equations numerically with two boundary
conditions—one with constrained velocity at x = 0 to mimic
the similarity analysis and the other with no such constraints
simulating the case of a heated vertical plate in an infinite
expanse of the quiescent fluid medium. It is found that the fluid
flow field given by the similarity theory is drastically different
from that given by the CFD simulations with unconstrained
velocity. The difference is strikingly visualised by drawing,
for the first time, the streamline patterns [Figs. 3(a) and 3(c)].
This also reflects on the Nusselt number (Table V), the pre-
diction of the CFD simulations with unconstrained velocity
being quite close to the experimentally measured values at all
Grashof and Prandtl numbers (this is the first time theoretically
computed values of Nu are found to be so close to the exper-
imental values). The difference of the Nusselt number (∆Nu)
predicted by the similarity theory and that by the CFD simu-
lations with unconstrained velocity (as well as the measured
values), both computed with high degree of precision, can be
very significant, particularly at low Grashof numbers and at
Prandtl numbers far removed from unity. Computations show
that at Pr = 0.7, ∆Nu increases with decreasing GrL reach-
ing about 25% at GrL = 104. Similarly, ���∆Nu��� is the least in
the moderate range of Pr (≈1) and increases towards the very
high or low values of Pr, reaching about 31% at Pr = 0.01,
GrL = 106. The maximum deviation is found for the combi-
nation of lowest Grashof and Prandtl numbers; for GrL = 104

and Pr = 0.01, ∆Nu is about 50%. Thus, for quantitative pre-
dictions, the available theory (i.e., similarity analysis) can be
rather inadequate.

Both sets of CFD simulations (with and without con-
strained flow) solve the full Navier-Stokes equations. The
demonstration in Table V that, at all combinations of Grashof
and Prandtl numbers, Nu determined by CFD with constrained
flow is quite close to Nu determined by the similarity
solution establishes the conclusion that the boundary-layer
approximations inherent in the similarity theory are not a major
source of error. The difference between the two sets of CFD
simulations (constrained and unconstrained) is significant at
all combinations of Grashof and Prandtl numbers. This estab-
lishes that the boundary condition u = 0 at x = 0 causes major
alteration in the fluid dynamics and consequently in the com-
puted value of Nu, and this long-used boundary condition is
therefore the principal cause for the vulnerability of the simi-
larity analysis. Table V shows that for certain combinations of
GrL and Pr, the similarity theory underpredicts the value of Nu
as compared with the experiment, while for certain other com-
binations of GrL and Pr, the similarity theory overpredicts.
The CFD with unconstrained velocity brings the theoretical
analysis closer to experiments in both situations.

With the help of the CFD simulations, the details of the
fluid dynamics, particularly the physics of fluid entrainment,
are thoroughly studied. It is shown that the relative proportions
of the fluid entrainment from the bottom, top, and side of the
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vertical plate depend on the size of the region of interest (ROI).
As the size of the ROI is made large, most of the entrained fluid
comes from the bottom, a little bit from the top and almost no
fluid enters from the side; the nature of entrainment is oppo-
site in the similarity analysis for which all the fluid enters
from the side and no fluid enters either from the bottom or
the top.

The CFD solutions further demonstrate the effects of finite
length and finite thickness of the plate on the flow field (being
complementary to a recent paper6) and the shape of the buoy-
ant jet. The different boundary conditions on the two sides
of the vertical plate (introduced deliberately here so that the
new exploration of the evolution of an asymmetric buoyant
jet is possible) and the presence of a finite thickness of the
vertical plate make the buoyant jet bend over the top edge of
the plate and make the evolution of entrainment from the two
sides of the free buoyant jet different. The entrainment velocity
from the two sides, however, equilibrates at a certain distance
above the plate. The asymmetry in the velocity and tempera-
ture fields above the plate due to different thermal conditions
in the two sides of the plate decreases more rapidly when Pr
is smaller and GrL is greater. It is shown (Figs. 9 and 10) that
sufficiently above the plate, the distributions of axial veloc-
ity and temperature in the buoyant jet tend to be symmetric
with respect to an axis that seems to pass through the vertical
mid-plane of the plate, i.e., the jet tends to lose its history of
origination.
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APPENDIX: SUMMARY OF CFD SIMULATIONS
FOR CONSTANT HEAT FLUX CONDITION

All results and discussion given in the main text of the
paper are for an isothermal vertical plate. Several CFD simu-
lations were run for another surface boundary condition, viz.,
the constant heat flux boundary condition for the sake of com-
pleteness. Such additional computations showed that although
the numerical values of the various parameters such as the
Nusselt number were slightly different from their isothermal
counterparts, the broad physical picture of natural convective
heat transfer, the physics of entrainment, and the evolution
of the buoyant jet remain essentially the same. The conclu-
sion regarding the inappropriateness of the boundary condition
u = 0 at x = 0 in the similarity analysis for constant heat flux
also remains valid. Hence only one test case is reported below
for the sake of brevity. Figure 15 shows the computed tem-
perature contours for an assumed constant surface heat flux of
100 W/m2 in a fluid with Pr = 0.7. A comparison with Fig. 5
shows overall similarity, although there are subtle differences.
As an example, it should be noted from Fig. 15 that the temper-
ature of the solid surface is, in this case, variable (it increases
with increasing x). Detailed computational tests show that
when the plateau is reached (see Sec. V B), the fractions of the
fluid entering from the bottom, top, and side are, respectively,
96.15%, 3.04%, and 0.81%.

FIG. 15. Temperature contours adjacent to a heated vertical plate subjected
to a constant wall heat flux. (Predictions of the present CFD simulations with
unconstrained flow for Pr = 0.7 and q̇w = 100 W/m2.)

The similarity analysis gives Nu = 8.504. CFD with con-
strained flow gives Nu = 8.723. CFD with unconstrained flow
gives Nu = 9.410. Experiments9 show that Nu = 9.2. Thus, for
the constant heat flux case too, the results obtained by CFD
with unconstrained flow are quite close to the experimental
value. The average Nusselt numbers predicted by the CFD
simulations with constrained velocity are reasonably close
to the values given by the similarity analysis, although there
can be significant differences in the streamline patterns. The
difference is the manifestation of the boundary layer approxi-
mations in the similarity analysis. The differences in the fluid
flow field and heat transfer characteristics between the two
sets of CFD solutions (one with constrained velocity and the
other with unconstrained velocity) highlight the influence of
the boundary condition imposed at x = 0. The two sets of
CFD simulations establish, in particular, the conclusion that
it is the inappropriateness of the age-old boundary condition
u = 0 at x = 0, and not the boundary layer approximation,
that is the principal cause for the vulnerability of the stan-
dard similarity analyses (and integral theories) for natural
convection.
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