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Abstract--This paper presents a simple, unified theory of deposition that is applicable for particles 
of any size, and reproduces very closely experimentally measured variation in deposition velocity 
with particle relaxation time. Apart from providing physical insight, the theory offers a simple, fast 
and reliable computational tool of practical use to aerosol engineers. The predictions are at least as 
accurate as the state-of-the-art particle-tracking calculations but require much less computational 
time. The theory includes the effects of thermophoresis, turbophoresis, electrostatic forces, gravity, 
lift force and surface roughness. The theory consists of writing the particle continuity and mo- 
mentum conservation equations in their proper form and then performing Reynolds averaging. This 
procedure results in an expression for the particle flux which consists of three distinct terms for each 
of which a clear physical interpretation is available. The first term is a diffusive flux due to Brownian 
motion and turbulent fluctuation, the second is a diffusive flux due to temperature gradient 
(thermophoresis), and the third is a convective flux that arises primarily as an interaction between 
particle inertia and the inhomogeneity of the fluid turbulence field (turbophoresis). The lift force and 
electrostatic forces also contribute to this convective flux. It is shown that it is crucial to include the 
particle momentum equation in the analysis as this gives an estimate of the mentioned convective 
slip velocity of the particles. Absence of this equation in many previous studies which included only 
the particle continuity equation necessitated postulations such as stopping distance models. Only 
the dominant terms in the continuity and momentum equations are retained in the present analysis 
which give almost the same answer as with a calculation retaining all terms, but the former is more 
amenable to direct physical interpretation. The method of Reynolds averaging is general, and other 
effects not included in this study, e.g. pressure diffusion can easily be incorporated by including the 
appropriate forces in the particle momentum equation, The present study includes the effects of 
surface roughness, and the calculations show that the presence of small surface roughness even in the 
hydraulically smooth regime significantly enhances deposition especially of small particles. Ther- 
mophoresis can have equally strong effects, even with a modest temperature difference between the 
wall and the bulk fluid. For particles of the intermediate size range, turbophoresis, thermophoresis 
and roughness are all important contributors to the overall deposition rate. © 1997 Elsevier 
Science Ltd. All rights reserved 

1. I N T R O D U C T I O N  

Understanding the mechanisms by which particles dispersed in a turbulent stream of fluid 
are transported towards the solid walls forming the flow passage, and predicting the rate of 
deposition are both scientifically interesting and of engineering importance (in a variety of 
areas of mechanical engineering, chemical engineering and physiology). Consequently, these 
have been the subject-matter of an extremely large number of studies. 

In the present paper, a simple, unified Eulerian theory of deposition has been developed, 
which can be used for practical calculations. Starting from the fundamental conservation 
equations and with a modicum of approximations and no tuning factors, the present theory 
produces satisfactory agreement with the experimental data (schematically shown in Fig. 1). 

There are two common approaches for deposition calculations: Eulerian and Lagran- 
gian. On the Eulerian front, the established practice has been to use separate theories for 
capturing the different behaviours of deposition rate in different size ranges of particles. The 
Lagrangian scheme, on the other hand, involves trajectory calculations typically for a large 
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Fig. 1. A typical variation in measured deposition rate with particle relaxation time. Zone l: 
turbulent  diffusion regime; zone 2: turbulent diffusion - -  eddy impaction regime; zone 3: particle 

inertia moderated regime. 

number of particles, the fluid turbulence field being generated by various methods ranging 
from simple to direct numerical simulation (DNS) of Navier-Stokes equations. The present 
theory is Eulerian in nature but results in a universal set of simple equations that apply for 
the whole size range of particles and explain the physics of the problem to a great extent. 
The present scheme has the potential of becoming a useful tool in practical calculations of 
any complexity, as well as theoretical analyses of fundamental importance. 

The present theory of deposition is general. Other than Fickian diffusion (both Brownian 
and turbulent), the theory includes motion of particles due to temperature gradient 
(thermophoresis), motion arising from the interaction of particle inertia with the in- 
homogeneity of turbulence field (turbophoresis), motion of particles due to electrical forces 
(electrophoresis), motion due to gravity and Saffman lift force, and the effects of surface 
roughness. It is possible to extend the theory to include other effects such as pressure 
diffusion, stressphoresis or diffusiophoresis. 

The theory is mathematically quite sound and should be useful in understanding the 
physics of deposition process. However, one of the main strength of the theory is its 
simplicity and practical relevance. It is shown, for example, in Fig. 9 that the solution of 
a simple set of equations, the continuity equation (16) and two momentum equations (18a) 
and (18b), produce the whole of the "S-shaped" deposition curve and give results which 
compare favourably with the most advanced and elaborate Lagranginan-type particle 
tracking methods (e.g. McLaughlin, 1989; Fichman et  al., 1988; Fan and Ahmadi, 1993). (In 
fact, it is shown that the solution of just one momentum equation (18c) could be enough in 
many cases, the compromise being the neglect of the Saffman lift force.) 

The present scheme, being Eulerian, is computationally much faster than stochastic 
Lagrangian calculations of particle tracking (by several order of magnitude in case of small 
particles). It is also more versatile than any other reported calculation scheme (in its 
applicability to the whole size range of particles and its ability to account for various 
deposition mechanisms). Since the present theory models the various deposition mecha- 
nisms correctly, it should be applicable to practical deposition problems in complex 
geometries (e.g. deposition of particles on internally cooled, highly curved, gas turbine 
blades or that of water droplets on steam turbine blades). It is possible to combine the 
present Eulerian scheme for calculating particle motion with well-established Eulerian flow 
solvers for calculating the flow field of the primary fluid. Thus, the present theory could be 
of interest to fluid dynamicists as well as of use to aerosol engineers, 

The theory is applicable to dilute mixtures, i.e. when the volume fraction of the dispersed 
phase is low. The analysis is presented for two dimensional flow field, but it is straightfor- 
ward to extend it to three dimensions or to axi-symmetric geometry. Although we have 
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shown how to account for terms like virtual mass and Basset-Boussinesq force, we have 
restricted the further analysis to high relative density of the particulate material for which 
these terms become negligible. For all numerical illustrations and for comparisons with 
experiments and other theoretical predictions, we have considered the most explored flow 
configuration: vertical, fully developed pipe flow. However, the method is applicable to 
other flow configurations such as the boundary-layer-type flow on a predominantly 
horizontal surface. 

A particular turbulence model has been used here (Section 2.5) for illustration, but the 
present theory is not limited on this account. Any other suitable turbulence model for 
describing the fluid flow field could be used in conjunction with the present theory of 
deposition. 

1.1. Representation and historical perspectives 

Usually the results of deposition experiments (e.g. Liu and Agarwal, 1974) or calculations 
are presented as curves of non-dimensional deposition velocity versus non-dimensional 
particle relaxation time. The deposition velocity, Vaep, is the particle mass transfer rate, J, 
normalized by the mean or bulk concentration, Co, in the flow 

Vaep = J/co. (1) 

The particle relaxation time, z, is a measure of particle inertia and denotes the time scale 
with which any slip velocity between the particles and the fluid is equilibrated. In the Stokes 
drag regime ~ is given by 

z = 2 ppr2/91~, (2a) 

where p~ is the density of pure particulate material, r is the radius of the particle and # is the 
dynamic viscosity of the fluid. 

We have plotted the results with this definition of relaxation time to be consistent with 
other works in the field. However, in the numerical calculations we have corrected the 
relaxation time to account for the slip velocity for large particles and rarefied gas effects for 
very small particles. The general expression (Guha, 1995) used is given by 

q = r [~b(Re) + 4.5Kn], (2b) 

where ~b(Re) is an empirical correction for large slip Reynolds numbers (Re = 2rlAVl/v) 
given by qS(Re) = [1 + 0.15 Re °687] - 1 where AV is the slip velocity between the two phases 
and v is the kinematic viscosity of the fluid. Kn is the Knudsen number defined by 
Kn = 2/2r where 2 is the mean free path. The simple kinetic theory expression for 
2 [2 = px/(2rcRT)/2p, where T is the temperature and p is the pressure] is used. For small 
slip Reynolds numbers and continuum flow (Re ~ 1, Kn ~ 1) equation (2b) reduces to the 
Stokes drag formula for a sphere. For free molecule flow (Kn > 1) an expression derivable 
from kinetic theory is obtained. The expression within the bracket in equation (2b) provides 
a simple interpolation formula for intermediate Knudsen numbers. The method of analysis 
is not dependent on the form of equation (2b), however, and other, possibly more suitable, 
expressions could easily be incorporated if desired. 

Vde p and r are made dimensionless with the aid of the fluid friction velocity u.. 

v£p - VdedU,, 

0 2 2 r+ ~u2, 2 ( p p h r  u, 
--- v = 7 ' (3)  

where Pe is the fluid density. 
Figure 1 shows a typical, schematic plot of V~p versus z + as obtained by experiments. 

The results fall in three distinct categories. At first, as z + increases, the deposition velocity 
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decreases. This is the so-called "turbulent diffusion regime", where a turbulent version of 
Fick's law of diffusion applies. For 0.1 < r + < 10, the diffusion velocity increases with r +. 
This is the so-called "eddy diffusion--impaction regime". The striking feature of this regime 
is that the deposition velocity increases by three to four order of magnitude. Separate 
models representing additional mechanisms of deposition had to be developed in order to 
explain this behaviour of deposition velocity. One of the most used calculation methods is 
called the "free flight" or ~stopping distance" model (e.g. Friedlander and Johnstone, 1957, 
Davies, 1966, Beal, 1970). 

In all of these models it is assumed that particles diffuse to within one "'stopping 
distance", s, from the wall, at which point they make a "free flight" to the wall. The main 
difference between different models of this type lies in prescribing the free-flight velocity, v. 
Davies assumed that the free-flight velocity, r. is the same as the local RMS velocity of the 
f lu id ,  but he obtained poor agreement with the experiments. (Liu and Ilori, 1974, improved 
the prediction of this model by prescribing, rather arbitrarily, a particle diffusivity which 
was different from the commonly used eddy momentum difffusivity.) Friedlander and 
Johnstone (1957), on the other hand, assumed t, = 0.9 u,, a value close to the fluid RMS 
velocity in the outer layer. Their model agrees well with the experiments. Beal (1970) gave 
another variation of the stopping distance model. 

It may be seen that these models are physically not very satisfactory, and predict 
monotonic rise in stopping distance (which may exceed the buffer layer thickness for larger 
particles, as s T ~ ~+) and deposition velocity with increasing T +. Experiments, however, 
show a third regime of deposition, usually termed "particle inertia moderated regime", in 
which the deposition velocity decreases with further increase in ~+ (see Fig. 1). Stopping 
distance models are not of much use here, and new theories (e.g. Reeks and Skyrme, 1976) 
need to be applied. 

Thus, even for the apparently simple case of turbulent deposition in a fully developed pipe 
flow, the usual theories are not in a very satisfactory state. The common practice is to use 
separate theories for each of the deposition regimes. Although it is possible, with proper 
tuning of the models (e.g. by prescribing the free-flight velocity), to reproduce the experi- 
mental results for fully developed pipe flow, the theories cannot be extrapolated to two- or 
three-dimensional flow situations (e.g. for deposition of particles on gas turbine blades) with 
any great confidence because of their piecemeal nature and the required empirical tuning. 
These models are also of limited use if other effects, e.g. thermophoresis or electrostatic 
interaction, are present. 

A large number of recent studies have adopted the alternative approach of particle 
tracking in a Lagrangian framework. For example, Kallio and Reeks (1989) calculated the 
deposition of particles in a simulated turbulent fluid field; Ounis et al. (1993), and, Brooke 
et al. (1994) computed the motion of particles where the fluid motion was determined by 
direct numerical solution of the Navier Stokes equations; and the calculations of Fichman 
et al. (1988), and, Fan and Ahmadi (1993) were based on the sublayer approach originally 
proposed by Cleaver and Yates (1975). These calculations are illustrative and important for 
physical understanding. However, Lagrangian computations typically involve the deter- 
mination of trajectories of a very large number of particles (to establish statistically 
meaningful average quantities) and may be too time consuming to be effective as a practical 
calculation method, especially for small particles. (Many reported Lagrangian schemes also 
do not reproduce the whole deposition curve. The Kallio and Reeks model, for example, is 
not applicable in zone 1 of Fig. 1.) For example, small particles, say with non-dimensional 
relaxation time r - = 1, require CPU times for a Lagrangian simulation that may easily be 
three order of magnitude higher than the CPU time needed by the present Eulerian scheme. 
A Lagrangian simulation for T + < 1 may take prohibitively large CPU time for practical 
applications. 

In this paper, we, therefore, develop a simple, Eulerian theory that is applicable to all 
regimes of deposition. This approach identifies and models the actual mechanisms of 
deposition and is physically satisfying. We have summarized the special features of the 
present theory in greater detail towards the end of Section 3 and in Section 4. 
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2. THE PRESENT MODEL OF DEPOSITION 

The proper way of deriving the equations for deposition is to write the particle continuity 
and the momentum conservation equations, split the different flow quantities into their 
respective mean and fluctuating components, and then perform Reynolds averaging. If the 
fluid flow field is known, the Reynolds averaged particle conservation equations would 
specify the motion of the particles. It is crucial to include the particle momentum conserva- 
tion equation in the analysis. Failure to do so in many previous studies has resulted in 
empirical hypotheses in the deposition models (e.g. the stopping distance models) in order 
to match theoretical predictions with experimental data. 

However, before presenting the rigorous analysis, we would first take a physical, rather 
intuitive, approach in order to provide qualitative understanding. 

2.1. Modelling turbulent and molecular diffusion 

The deposition of small particles in a turbulent boundary layer is usually calculated by 
integrating a modified Fick's law of diffusion 

dc 
J = -- (On + Dr) d--y' (4) 

where DB is the Brownian diffusivity, Dt is the turbulent diffusivity which varies with 
position, y is the perpendicular distance from the wall, and dc/dy is the concentration 
gradient. It is assumed that the mass diffusivity of the particles due to turbulence, D, is same 
as the eddy viscosity of the fluid, e. D~ is given by the Einstein equation incorporating the 
Cunningham correction for rarefied gas effects, 

kT(1  + 2.7Kn) 
DB = , (5) 

6~/~r 

where k is the Boltzmann constant, T is the absolute temperature and Kn is the Knudsen 
number defined by Kn -- 2/2r where 2 is the mean free path of the surrounding gas and r is 
the radius of a particle. 

It is profitable to non-dimensionalize equation (4) such that 

( ~  ~) tic+ 
Vd¢ + = -- + dy + , (6) 

where 
c + = C/Co, y+ = yu. /v .  (7) 

In the present work we use the universal expression of eddy viscosity valid for all y+, as 
given by Davies (1966) 

where Re is the Reynolds number based on the average velocity in the pipe. 
From equations (3) and (5) it can be seen that the particular combination of the 

dimensionless variables (DB/v) 2/3 (~+)a/3 is independent of the particle radius (for large 
particle radius when the terms involving Kn representing rarefied gas effects can be 
neglected), and, depends only on the flow condition. For example, in the case of flow in 
a small pipe of radius R, it can be shown (using Blasius's formula) that 

_ / kT \2/3/pp\a/3 
(~.B)2/zz" + "3 = 0.01835 ~ p f ~ - ~ ) Q ~ ) ( R e ) 1 4 / 2 4  = @ (9) 

For a particular ~, corresponding to a specific flow condition, D~/v decreases with 
increasing ~+. Hence the deposition velocity, V~p, given by equation (6) always decreases 
with increasing r +. Experiments, however, tell quite a different story (Fig. 1). 
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2.2. Motion of particles in inhomooeneous turbulent fleld 

Therefore, Fick's law of diffusion, as given by equation (4), does not encapsulate the whole 
physics of deposition and neglects a mechanism, operative in inhomogeneous turbulent 
flow that assumes dominance for large particle relaxation times. For a qualitative under- 
standing refer to Fig. 2a and b. Fig. 2a shows the effect of a concentration gradient in 
homogeneous turbulence. Small particles almost faithfully follow the fluid eddies. At any 
location, the probability of a particle getting transported by a fluid eddy to the left is the 
same as that to the right. However, because there is a greater number of particles further 
away from the wall, the flux crossing any imaginary cross-sectional plane from the right 
exceeds that from the left. Consequently, there is a net flux of particles towards the wall 
against the concentration gradient. (Similar explanations are valid for particle flux due to 
Brownian motion as well.) This process of deposition is modelled by the turbulent version of 
Fick's law of diffusion. 

Now consider Fig. 2b which depicts a uniform concentration of particles in an in- 
homogeneous turbulent flow. In this configuration there is a gradient of turbulence 
intensity perpendicular to the wall. The particles are assumed large to have considerable 
inertia so that they may slip through the containing fluid eddy. At any particular location, 
the probability of a fluid eddy throwing a particle towards the right is the same as that of 
a fluid eddy throwing a particle towards the left. However, the probability of a particle being 
thrown rightward from a region of low turbulence intensity so that it reaches the imaginary 
plane is less than that of a particle being thrown leftward from a region of high turbulence 
intensity. Consequently, there is a net flux of particles from a region of high turbulence 
intensity to a region of low turbulence intensity. This transfer of mass against a gradient 
in turbulence intensity is termed "turbophoresis" (Reeks, 1983). (More qualitative and 

Imaginary plane Imaginary plane 

Increasing 
concentration Increasing 

turbulence intensity 

(a) ~ (b) ,,..._ 

Fig. 2. Schematic diagram showing two different mechanisms of deposition. (a) Flux of particles 
driven by concentration gradient; (b) flux of particles driven by a gradient in turbulence intensity or 

"turbophoresis" even though the concentration of particles is uniform 
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quantitative discussion on turbophoresis is given after equations (18).) To formulate 
a unified theory of turbulent deposition one, therefore, has to combine concentration- 
gradient-driven deposition (Fick's law) with turbophoresis. 

2.3. Unified mathematical model for  deposition 

It turns out that such a uniform description automatically arises from the basic conserva- 
tion equations of the fluid-particle system. We follow the approach of Ramshaw (1979) to 
describe the motion of a particle cloud in a flowing fluid. (Ramshaw presents a phenom- 
enological approach. For a kinetic theory of the dispersed phase see, for example, Reeks 
1992.) The particles are assumed to constitute a hypothetical ideal gas whose partial 
pressure pp is given by 

pp = (k/m)pp T, (10) 

where m is the mass of an individual particle and pp is the partial density. It is assumed, 
while writing equation (10), that the particles are in local thermal equilibrium with the 
surrounding fluid. This equilibrium is brought about by their collisions with the fluid 
molecules, the particles themselves rarely collide with each other. If n is the number of 
particles per unit volume of the mixture, then pp is given by 

p p  -= nm, (11) 

pp is the same as particle concentration, c, used in equation (4). The mixture is considered 
dilute. The motion of the hypothetical ideal gas consisting of the particles is governed by the 
continuity and the momentum equations of fluid dynamics. For simplicity, we assume that 
the radius of the pipe is large so that the effects of the curvature can be neglected and the 
governing equations can be profitably written in the Cartesian coordinate. In the steady 
state, the equations of motion are 

V.(ppVp) = 0, (12) 

pp(Vp" V)Vp = --  Vpp + p p F  + ppG,  (13) 

where the vector Vp represents the mean velocity of the particles, on which is superposed 
a random thermal velocity that gives rise to the partial pressure pp. As a result of the 
equipartition of energy, the RMS thermal velocity of the particles is much less than that of 
the fluid molecules. [Young (1991) and Johansen (1991) performed Reynolds averaging, 
similar to what is presented below, on a form of continuity equation which, unlike equation 
(12), includes the diffusive fluxes explicitly. In Ramshaw's treatment diffusion arises through 
the momentum equation.] F is the mean force per unit mass on the particles due to the fluid 
and G is the total external force per unit mass (e.g. gravitational, electromagnetic) on the 
particles. F is given by (Ramshaw, 1979) 

F ~ -  ( V f  - -  V p ) / 2 7 1  - (~//m) V In T - (1/p~)Vp + Fv + FB + Fs (14) 

where, Vr is the fluid velocity, p~, is the mass density of the pure particulate material, p is the 
true pressure of the fluid-particle system, ~/is the thermophoretic force coefficient (Talbot 
et al., 1980). Fv, Fs and Fs are the virtual mass force, the Basset-Boussinesq force and the 
Saffman lift force, respectively. The term containing Vp is the source of the buoyant force on 
a particle in a stationary fluid in a gravitational field. This term and Fv and FB are usually 
small (because of the high material density, p~,, of the particles) compared with the first term 
on the RHS of equation (14) which represents the steady-state drag force. In the present 
study they are not included. The thermophoretic force may become appreciable for small 
particles if the temperature gradient is high (as is the case for internally cooled gas turbine 
blades) and is retained in the present analysis. The thermophoretic force coefficient, r/, is 
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given by Talbot et al., 1980) 

2.34(67rl~vr)(2~ + 4.36Kn) 
i 1 = (1 + 6.84Kn)(1 + 8.72Kn + 2)+y' 

where, ,;,~ ts the ratio of the thermal conductivity of the fluid, 2f, and that of the particles, 
;+p ()+~ = 2f/;.p). 

Now we consider a two-dimensional flow field and decompose the instantaneous flow 
parameters into their mean and fluctuating parts 

E_~ = V~.+ + V(,., 

Vf~. = ~+,. + Vf'~., 

7 t,+. = ~p+ + v ; . .  I15) 

v.,, : c,,,, + ~ , ; ,  

&, =/~p + p'p, 

where the suffix x represents the respective components along the x-coordinate which is 
along the flow direction and the suffix y represents the respective components in the 
direction perpendicular to the wall. The suffices f and p refer to the fluid and the particles, 
respectively. We now substitute equation (15) into equations (12) and (13), and take time 
mean of the resulting equations. The details of the procedure are given in Appendix A. 

Johansen (1991) has presented a similar Reynolds-averaging analysis. The starting point 
of the present formulation has, however, been Ramshaw's (1979) equations of motion which 
are internally consistent and physically satisfying. It is also very easy to include new forces 
in Ramshaw's equations thereby extending the scope of the theory of deposition. We have 
then systematically Reynolds-averaged both the continuity and momentum equations 
simultaneously. Finally, with minor approximations, we have converted equations (A3), 
(A6) and (A7) into the equation set (16)-(18) which are far simpler in form and are amenable 
to direct physical interpretation. The present formulation also includes the effects of 
thermophoresis and roughness of the wall. 

2.4. Physical  description oJ the  model 

If the flux of particles in the y direction (which is perpendicular to the solid wall) is 
denoted by J, then equation (A11) of the Appendix A shows that 

J =  --(DB+C) ~pp ? l n T  17 ° p/~ - -  ~)pDT ? y  + tip m,, (16) 

where the coefficient of temperature-gradient-dependent diffusion, Dr, is given by 

Dr - DB(I + ~l/kT ), (17) 

and includes the thermophoretic component. Equation (16) is the generalized equation for 
particle flux. Note, however, that we did not retain the pressure diffusion term and FB and 
Fv of equation (14) for further analysis, and did not include, say, stressphoresis forces in 
equation (14). The particle convective velocity in the y direction, 17py, appearing in equation 
(16) has to be calculated from the particle momentum equation. The particle momentum 
equations in the y and x directions are given by equations (A9) and (A10), derived in 
Appendix A, which we reproduce here, in the same order, for the ease of reference. 

m, ~ + - - -  + Fs~. + G~y, (18a) 
()Y "['l ("3V 

-c 317p-~ 1 
Vpr ~ - (17f~-- 17p~) + c/. (18b} 

( 'y  Y I 
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Equations (18a) and (18b) are specialized for fully developed, vertical flow. Note that the 
x-momentum equation (18b) involves both 17px and 17pr. The y-momentum equation (18a), 
on the other hand, is almost decoupled and depends on 17px only through the Saffman Lift 
force, Fsr A study of equations (18a) and (18b) also shows nicely how gravity affects the 
y-momentum equation through the lift force. The LHS of equation (18b) involves ITpy. As 
a result of this convective velocity in the y-direction, the direction of the lift force may 
remain unaltered (Appendix B) whether the flow is vertically downwards or upwards 
[-replace g by - g in equation (18b)], and the influence of gravity on the deposition velocity 
is likely not to be serious. 

In the general case, both equations (18a) and (18b) must be solved simultaneously. This 
calculation is presented later (Figs 8 and 9) in order to reveal the effect of including the 
Saffman lift force. For the time being, in order to gain more physical insight into the 
deposition process, we neglect the effect of the Saffman Lift force, Fsy. With these provisos, 
the particle convective velocity in the y direction, 17~y, can be calculated from 

v~, ov;  2 

The electrical force, GEy, is not retained in the further analysis in order to keep the 
discussion focused. It is worth remembering that the second term in the LHS of equation 
(18c) is the steady state drag term simplified with the assumption 17fy = 0; the full form 
is - (lTfy - g ; y ) / " g I .  

The first term in the RHS of equation (16) is the diffusion due to a gradient in the particle 
concentration [same as Fick's law given by equation (4)], the second term represents the 
diffusion due to a gradient in the temperature and the third term represents a convective 
contribution arising due to particle inertia. Equation (18c) relates the particle convective 
velocity with the gradient in turbulence intensity (turbophoresis). It is chiefly the absence of 
this convective term in Fick's law that necessitated postulating stopping distance models. It 
is important to note that the turbophoretic term depends on the particle RMS velocity, 
which may be different from the fluid RMS velocity if the particle inertia is large. When the 
particles are very small, they effectively follow the fluid eddies and the two RMS velocities 

--C are essentially the same. In this limit, z~ -~ 0. Equation (18c) shows that Vpy -~ O. Hence, the 
contribution from turbophoresis is negligible. Fick's law is, therefore, an adequate descrip- 
tion for the deposition of small particles. As h increases, the turbophoretic term assumes 
dominance, thereby increasing the deposition rate by a few order of magnitude. However, as 
z~ increases, the particles are less able to follow fluid fluctuations and the particle RMS 
velocity becomes progressively smaller as compared to the fluid RMS velocity. This is one 
of the factors responsible for the eventual decrease in deposition velocity with increasing 
particle size when Zl is very large (see the fourth and fifth paragraphs from the end of 
Section 4). 

Equation (18c) is almost exact and does not depend on the concentration profile. It is 
a first-order, non-linear differential equation. It can be written in finite difference form and 
integrated with one boundary condition. [17~y = 0 at the pipe centreline, or, at a sufficient 
distance away from the wall where the gradient in turbulence intensity is negligibly small. In 
a boundary-layer-type calculation, one could specify the "laminar slip velocity" at the edge 
of the boundary layer.] The convective velocity, 17~y, can, therefore, be determined if the 
particle RMS velocity could be estimated properly. For not too large particles, the drag 
term (second term in LHS) almost balances the turbulence term (RHS), and, the acceler- 
ation term (first term in LHS) is negligible. The acceleration term assumes importance for 
large particles and should not be neglected. It should be noted from equation (18c) that 17py is 
always zero (or equal to the "laminar slip velocity") if the turbulent field is homogeneous. 

The equation set (16)-(18) is almost exact and should work well if one could find an 
accurate expression for the particle RMS velocity as a function of the wall coordinate. The 
variation of fluid RMS velocity as a function of wall coordinate has been measured and 
is well established. We, therefore, relate the particle mean-square velocity to the fluid 
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mean-square velocity through a parameter  N which is defined as the ratio of the two, 

brl = V;~./Vf~2. (19) 

There is no definitive (accurate and yet simple) mathematical  model for ~ ,  particularly, in 
an inhomogeneous turbulence field. In reality, there should be a memory effect by which the 
migrating particles tend to retain the turbulence levels of earlier instants. In a practical 
Eulerian-type calculation, however, estimates of 'Jt are to be made from local turbulence 
properties. This may not be very accurate, especially since the gradient of fluid turbulence 
near the wall is very high. In defence of a simple calculation scheme, it may be noted 
however that (the not unsuccessful) mixing length theories of fluid turbulence employ 
similar assumptions. 

Simple theories of homogeneous turbulence predict that for the particles to be in local 
equilibrium with the fluid turbulence 91 = TL/(r~ + TL), where TL is the kagrangian time 
scale of fluid turbulence. Some measurements in this area are reported by Binder and 
Hanra t ty  (1991) and Vames and Hanrat ty  (1988). Binder and Hanrat ty  provide the follow- 
ing experimental correlation for 9~ (their equation (18)): 

1 
'J~ = (20) 

I ~- 0.7 (TI /TL)"  

We use, as a first step, equation (20) in the present calculations. ~ varies with the wall 
co-ordinate as TL varies. For very small particles z~ ~ 0, and consequently ~ -~ 1. In other 
words, very small particles essentially follow fluid turbulence. For large particles, r~ -~ ~ ,  
9 1 ~ 0 .  

We can non-dimensionalize equations (18c) and (16) as 

--c+ --c+ 
_ + cVpy + Vpy ?: (91V~:,+~), (21) 
V~, ~3'+ h + - c~3' + 

c (pp + __~lnT + 17 ~+ (22) 
Vd+p= -- + ~ - - p p  D~ (?V+ + p p  v~' , 

where 
V~ep =- J / ( tOp u , ) ,  ¢ o 

v ; ,  + = ~7;,./~,,, 

t)~ =/)p/pp, ,  

Vf;, + = v,.;./u,, 
D7 +, = Dr~v, 

and pp,, is the partial density (concentration) of the particles at the pipe centreline. Similar 
non-dimensionalization is possible for equations (18a) and (18b). 

2.5. Model l ing ,fluid turbulence 

The mean motion of the fluid in the axial direction (lYfx and the RMS fluctuation in the 

y-direction ( ~  ) are expressed as functions of the wall-coordinate (y+) as given by 
Kallio and Reeks (1989) (with corrections of the errors in their paper). 

M e a n  motion o f  the,fluid in the axial  direction (Vf  + ~ gfx/ld,)" 

V~2 = y+ 

Vf~ + = ao + a13 '+ + aay  +2 + a 3 y  + 3  

Vf~ = 2.51ny + + 5.5 

for y* ~<5, 

for 5 < 3  ,+ < 3 0 ,  

for y+ >~ 30, 

where ao = - 1.076, al = 1.445, a2 = - 0.04885 a 3 = 0.0005813. 
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t2 Fluid RMS velocity in the y-direction (x~f'y +2 = x~f'yZ /U,). 

x f ~ f ~  0.005 y + 2 
- 1 + m y  +" f o r 0 < y +  <200 ,  

where m = 0.002923, n = 2.128 

Lagrangian time scale (T + = TL uZ /v): 

T~ ~ = - (1/Vfy ), 
v 

where e is given by equation (8). 

Temperature profile in the pipe (Kay and Nedderman, 1988): 

T -  Tw P r y  + 
AT - AT~-oo for y+ < 5, 

T - Tw 5Pr  + 51n(0.2Pry + + 1 -- Pr) 
A-~T~ = AT~oo for 5 ~ y+ ~ 30, 

T - -  Tw 5 P r  + 51n(1 + 5Pr) + 2.5In(y+/30) 
AT - ATfoo for 30 < y+ < 200, 

where AT~o0 = 5 Pr + 5 ln(1 + 5 Pr) + 2.51n(200/30), T is the local temperature of the 
fluid, Tw is the wall temperature, Pr is the Prandtl  number  of the fluid and AT is the 
temperature difference between y+ = 200 and the wall. 

Figure 3 shows the variation of diffusivity, fluid RMS velocity and the temperature profile 
as functions of wall coordinate. 

2.6. Extension of the unified deposition model to rough surfaces 

Following Wood (1981), we assume that, on a rough surface, the virtual origin of the 
velocity profile is shifted by a distance e away from the wall such that e = 0.55 ks, where ks is 
the effective roughness height. We further assume that the particles are captured when they 
reach the level of effective roughness height, i.e. at a distance b above the origin of the 
velocity profile, where b = k s -  e = 0.45 ks. Figure 4 schematically shows the different 
parameters,  e.g. ks, b and e. 
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Fig. 3. Variation of different flow parameters: ( - - )  eddy viscocity e, (- - - )  fluid rms velocity in 
the y-direction ( - - )  temperature profile T - Tw. All parameters are non-dimensionalized with their 

respective values at y+ = 200. 
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~ Origin o f  the veloci ty  profi le  

Fig. 4. Nomenclature for roughness parameters. 

Wood used the stopping distance model for estimating deposition velocity. We, however, 
use the unified deposition model, equation (22), for this purpose. 

Finally, we account for the effect of"interception" by assuming that a particle is captured 
when its centre o f  mass is at a distance r away from the effective roughness height. The lower 
limit of integration is taken as y+ = y~- = y0u./v, where Yo is given by 

Y0 = 0.45 ks + r. (23) 

The upper limit of integration is taken at y + = 200. 

3. RESULTS AND DISCUSSION 

Figures 5 -9  are plots of non-dimensional deposition velocity versus non-dimensional 
relaxation time r +. It should be recalled, however, that all equations of motion and 
calculations in this paper use the corrected relaxation time r,, given by equation 2(b). 
z~ includes corrections for large slip Reynolds number for large particles and Knudsen 
number correction for small particles. This is another novel and realistic feature of the 
present calculations not to be found in most previous calculations. It is only for plotting the 
results that the Stokes value r+ is used. This is done to be compatible with all previous 
theories and experimental results. Moreover, even for the same particle, the slip correction 
factor assumes different values at different points in the flow field as the local slip velocity 
varies, r+, in the abscissa of the graphs, should be simply viewed as a non-dimensional 
representation of the particle size. 

Figure 5 shows the relative importance of pure diffusion and pure inertial effects in the 
equation for mass flux [equation (22)]. For  all curves in this figure, we assume that the 
effective roughness height, ks, is zero, and that the flow is isothermal (no thermal diffusion). 
The pure diffusion case is calculated by assuming that the turbulence is homogeneous. The 
source term in the RHS of equation (21) is zero and, consequently, the convective velocity, 
17~. +, is zero. Under these circumstances, equation (22) becomes identical with equation (6). 
As discussed after equation (9), the deposition velocity monotonically decreases with 
increasing relaxation time. This case was calculated by taking the lower boundary at 
y+ = 0. The behaviour of the deposition velocity, however, changes if one includes the 
effects of interception. The lower boundary is now given by equation (23). As the lower 
boundary is shifted, the effective resistance against mass transfer tends to decrease. For 
large relaxation times, this effect can more than offset the effect of lower Brownian diffusion 
coefficient, DB. For large relaxation times, the calculated deposition velocity, therefore, 
increases substantially with increasing relaxation time (Fig. 5), even thou qh the cont~ectit;e 
velocity, Pp~.+, is neglected. 

For calculating pure inertial effects, only the third term in the RHS of equation (22) is 
retained. Figure 5 shows that the convective velocity goes to zero for very small particles. Its 
effect on the deposition velocity has become comparable to that of pure diffusion around 
T + ~ 0.2. It then rises steeply by several order of magnitude as r+ increases. The solid line in 
Fig. 5 is calculated by retaining all terms in equation (22). It merges with the pure diffusion 
case for very small particles and merges with the pure inertial case for large particles. The 
relative importance of diffusion, inertia and interception can clearly be appreciated from 
Fig. 5. 
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Fig. 5. Predicted deposit ion rate versus relaxation time (Effects of pure diffusion, pure inertia and 
interception). ( - - - - )  Solution of equat ion (22) retaining all terms; ( - - )  Pure diffusion: solution of 
Fick's law, equat ion (6), with the lower boundary  at wall (y~ = 0): ( - - - )  Pure diffusion: 
solution of Fick's law, equat ion (6), with interception (yg = r +); ( - ) Pure inertial deposition: 
solution of equat ion (22) retaining only the third term in the RHS. For  all curves, k + = 0, AT = 0. 
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Fig. 6. Effects of surface roughness  on the predicted deposition rate (without lift force) and 
compar i son  with experimental results of Liu and Agarwal  (1974). ( - - )  kS = 0, ( - - - - )  k + = 0.5, 

( -  - - )  k + = 1.5. (O) Experimental  results of Liu and Agarwal. For  all curves, AT = 0. 

Figure 6 shows the variation in deposition velocity with relaxation time for three different 
roughness parameters: k + = 0, k + = 0.5 and k + = 1.5. The Reynolds number and the 
density ratio (pOp/pf) are taken as 10,000 and 770, respectively, as in Liu and Agarwal's 
experiments. Equations (21) and (22) are solved in full form for isothermal flow (no diffusion 
due to temperature gradient). The effect of roughness is reflected in the calculation 
procedure through a shift in the lower boundary of the computational domain. Expectedly, 
roughness affects the deposition velocity when diffusion is important. In the same figure the 
experimental data of Liu and Agarwal (1974) is also plotted for comparison. It can be seen 
that the present calculation scheme captures all the features of measured deposition velocity 
both qualitatively as well as quantitatively. Specifically, the calculated curve for ks + = 0.5 is 
almost superposed on the experimental values. Given that the deposition velocity varies by 
more than four order of magnitude in the range of investigation, and that it is calculated 
from a simple, universal equation [-equation (22)], such agreement is indeed remarkable. 



1530 A. Guha 

O. 

-1 .  

~ - 2 .  
+ "O 
> 
"-g -3. 

-4 .  

- 5 .  

- 6 .  

I l i l  'm l  , . , , , . , I  , , , , . , , I  , , , , . , , I  , ~ , , , . , i  

. . . .  

. . . .  - - - -  .@7 

I 
I I l l l l l l  i I I l l l l l l  I I I l l l l l l ]  I I I I I I I T  I I I I I L I I I  / 

-2 .  -1 .  0.  1. 2. 3. 

log10 ('C +) 

Fig. 7. Effects of diffusion due to temperature gradient on the predicted deposition rate (without lift 
force). ( - - )  AT = 0, (- _4) AT = 5 K, ( - ) AT = 20 K. (Q) Experimental results of Liu and 

Agarwal. For all curves, k + = 0. 

Figure 7 shows the effects of temperature gradient on the deposition velocity. Equations 
(21) and (22) are solved for three cases: AT = 0, AT = 5 K and AT = 20 K, where AT is the 
temperature difference between the upper boundary of the calculation domain (y + = 200) 
and the pipe wall (the wall is cooled). The roughness k + is assumed zero for all cases. 
Diffusion due to temperature gradient [-second term in the RHS of equation (22)] is 
important  for small particles. Even a small temperature difference (e.g. AT = 5 K) has 
a significant effect on the deposition velocity. For  1 < ~ + < 10, there is an interaction 
between thermophoresis and turbophoresis. 

Some points regarding boundary conditions for equation (22) may be mentioned here. In 
the pure diffusion limit of very small particles, it is acceptable to set the concentration at the 
lower boundary at y~ to zero. However, in the pure inertial limit of large particles, a more 
appropriate  condition at the lower boundary is + '~ + @ p / c y  = 0. It was found, however, in the 
inertial limit, the effects of such boundary conditions on the magnitude of the calculated 
deposition velocity are negligible. This is because the convective velocity 17v;.+ can be 
calculated from equation (21) without any reference to the concentration profile and in the 
inertial limit the deposition velocity is almost entirely controlled by 17p~. +. Although the 
deposition velocity remains unaffected, the concentration profile close to the wall obviously 
depends on the particular boundary condition employed. In the range of the intermediate 
particle sizes where both diffusion and particle inertia are important,  it is envisaged that 
a boundary condition for particle concentration at the wall will possibly have some effects 
on the calculated deposition velocity. For a proper formulation of the boundary condition 
one would have to resort to kinetic theory. 

Figure 8 shows the effects of Saffman lift force on the deposition velocity. As already 
explained, the inclusion of the lift force makes the y-momentum equation coupled with the 
x-momentum equation, and equations (16), (18a) and (18b) have to be solved simulta- 
neously. The deposition velocity without lift force, as has been considered until now, is 
calculated from equations (16) and (18c). The lift force increases the deposition velocity 
especially in the particle size range where turbophoresis is the dominant  mechanism. This is 
consistent with the findings of other authors, e.g. Kallio and Reeks (1989) and Fan and 
Ahmadi (1993). However, in this connection it should be noted that Sail'man originally 
derived his result for unbounded shear flow whereas all of these works make the question- 
able use of the same expression for lift force in the vicinity of a solid wall. 

Figure 9 shows the comparison of the present calculations with those of some other 
authors. The model of Friedlander and Johnstone (1957) gives the best agreement in the 
turbophoretic region. The difficulties of a stopping-distance model, however, have been 
discussed in Section 1.1. It is interesting to note that the predictions (with lift) of Fan and 



A unified Eulerian theory of turbulent deposition 1531 

~ - 2 .  

-4. 

I l l l l t i l l  , i l l i l u l  I i II]II11 i i l l l t l i l  I I I I I I I I I  

- ] .  

; d  

- 5 .  

-6. , , , . , , , ~  , , . , , , . ,  , , , . . . , ,  , , , , , , , , ,  , ,,,,,, 

-2 .  -1.  0. 1. 2 .  3. 

lOgl0 (T +) 

Fig. 8. Effects of Saffman lift force on the predicted deposition rate. ( - - )  Without lift, (- - - )  with 
lift. (0) Experimental results of Liu and Agarwal. For all curves, k~ + = 0, AT = 0. 

-2. 
;> 

-3. 

I I l l i i l l l  * i l l i , l l l  i l [ l l l l l  

- I .  

- 4 .  ~/:/ 
- 5 .  ' "~ '""1  . . . . . . . .  I . . . . . . . .  

-1. 0. 1. 2. 

lOgl0 (?+) 
Fig. 9. Comparison of the present theory with experiments and predictions of various authors. 
(0) Experimental results of Liu and Agarwal. For all curves, k + = 0, AT = 0. ( ) Present 
prediction (with lift), (- - - )  Fan and Ahmadi (1993), ( - - - )  Fichman et  al. (1988), ( - - . - )  Friedlan- 
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Ahmadi (1993), who used a quite different approach of particle trajectory calculations 
involving the sublayer model of Cleaver and Yates, give quite similar results to the present 
calculations. (The density ratio (p°/p 0 is 770 in the present calculation, it was 965 in Fan 
and Ahmadi's calculation. The agreement is expected to have been better if both calcu- 
lations used the same density ratio.) Fan and Ahmadi's calculations, on the other hand, tend 
to level off at a constant deposition rate for large particles. The deposition rate predicted by 
the present theory would decrease for large particles (Figs 6-8), as a result of the acceler- 
ation term (Section 4). This behaviour is consistent with experiments, and predictions of 
Reeks and Skyrme (1976) and Kallio and Reeks (1989). Good agreement is also observed 
with direct numerical simulation results of Mclaughlin (1989) and of Li and Ahmadi (1991) 
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as quoted by Fan and Ahmadi (1993). The present analysis, however, is Eulerian, simple, 
fast and general. It is also quite flexible--equations (16)-(18), for example, already include 
the effects of thermophoresis, electrical forces, surface roughness, Saffman lift force and 
gravity, and could be easily extended to include other effects. 

There is some discrepancy between the predictions and Liu and Agarwal's data for small 
particles. The experimental data compiled by McCoy and Hanratty (1977) and by Papaver- 
gos and Hedley (1984) show considerable scatter. We have plotted only Liu and Agarwal 
data as this is generally accepted as one of the most dependable data set. The aforemen- 
tioned discrepancy is characteristic of other models also. Figure 9, for example, shows the 
predictions of Lagrangian models of Fan and Ahmadi (1993), Fichman et al. (1988), and, 
direct simulations of Li and Ahmadi (1991) quoted by Fan and Ahmadi (1993). Johansen 
(1991) also underpredicted by similar amounts and suggested that mirror charging could be 
responsible, although the value of the charge required for good agreement was found to be 
ten times the experimental value quoted by Liu and Agarwal. Wood's (1981) calculation 
suggested that a small amount of surface roughness (k + = 0.5) could account for the 
discrepancy. Figures 6 and 7 of the present study show that a small amount of roughness 
(k + = 0.5) or a small temperature gradient (AT < 5 K) produces very good agreement 
between the prediction and the experimental data. Further work on this issue is in progress. 

The starting point of the present formulation has been Ramshaw's (1979) equations of 
motion which are internally consistent and physically satisfying. It is also very easy to 
include new forces in Ramshaw's equations thereby extending the scope of the theory of 
deposition. We have then systematically Reynolds-averaged both the continuity and mo- 
mentum equations simultaneously. Finally, with minor approximations, we have converted 
equations (A3), (A6) and (AT) into the equation set (16) (18) which is far simpler in form and 
is amenable to direct physical interpretation. 

We have presented calculations for fully developed pipe flow. We have assumed that the 
pipe radius is large, so that we could write equations (16)-(18) in simple Cartesian 
coordinates. Similar equations can be derived in the cylindrical coordinates for axisymmet- 
ric, fully developed pipe flow. The analysis presented in Appendix A, until the condition for 
fully developed flow ~Vpy/~x = 0 is invoked, is also applicable for the boundary layer type 
flow. 

4. CONCLUSIONS 

A unified theory of deposition is presented. The procedure consists of writing the particle 
continuity and momentum conservation equations and then conducting Reynolds aver- 
aging, which, for fully-developed vertical flow, ultimately results in the equation set (16), 
(18a) and (18b). The equations are simple, and a clear physical interpretation is possible for 
each term. The solution of these equations agrees well with experimental values of depos- 
ition velocity for the entire range of particle size. The method of Reynolds averaging is 
general, and other effects not included in this study e.g. pressure diffusion can easily be 
incorporated by including the appropriate forces in the particle momentum equation 
[equation (13)] as discussed. 

The theory offers a simple, fast and reliable computational tool of practical use to aerosol 
engineers. The predictions are at least as accurate as the state-of-the-art particle-tracking 
calculations (Fig. 9) but require much less computational time. The theory includes the 
effects of thermophoresis, turbophoresis, electrostatic forces, gravity, Saffman lift force and 
surface roughness, and in this respect it is the most versatile theory that has appeared in the 
literature. The theory applies to particles of all sizes. (The particle relaxation time, equation 
(2b), includes correction for the departure from Stokesian drag regime for large particles 
and rarefied gas effects for very small particles. This is another novel realistic aspect of the 
calculations.) It is possible to combine the present scheme for calculating particle motion 
with well-established Eulerian flow solvers for calculating the flow field of the primary fluid. 
Thus, the present theory could be of interest to fluid dynamicists as well as of use to aerosol 
engineers. 
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A great deal of physics can be learnt from and captured by the present simple analysis. 
The non-dimensionalized versions of the Reynolds averaged equations, equations (21) and 
(22), are used for calculating all results presented in this paper (except for Figs 8 and 9, where 
Saffman lift force is included and, consequently, equations (18a) and (18b) have to be solved 
together in place of equation (21)). The first term in the RHS of equation (22) is the 
contribution from Brownian and turbulent diffusion. This depends on the gradient of 
concentration and is identical to Fick's law, equation (6). The second term in the RHS of 
equation (22) represents the transport of particles as a result of temperature gradient. The 
third term in equation (22) represents a convective transport of particles resulting from the 
interaction of particle inertia with inhomogeneity of the fluid turbulence field. This term 
depends on the gradient of turbulence intensity. For  small particles the first two terms 
dominate whereas for large particles it is the third term that matters (Fig. 5). That these 
three distinct mechanisms of deposition appear in a simple additive form in equation (22) 
has not been postulated but is rigorously derived from the fundamental conservation 
equations. Given that the deposition velocity varies by more than four order of magnitude 
in the range of particle sizes under investigation, and that it is calculated from a simple, 
universal equation (22) which contains only a modicum of empiricism and no "tuning 
factor", it is indeed remarkable that the calculated deposition velocity agrees so well with 
the experimental values. 

It is crucial to incorporate the particle momentum equation [equation (21)] in the 
analysis. The absence of this equation in many previous analyses which solve only the 
particle continuity equation necessitated postulations such as the stopping-distance models. 
It is shown in Fig. 5 that, on the other hand, deposition velocity for particles bigger than 
a critical size could almost be determined from the momentum equation alone. (The critical 
size is about r+ = 1 when k + = 0 and AT = 0 as shown in Fig. 5, but increases when 
thermal diffusion or roughness elements are present as shown in Figs 6 and 7.) The first term 
in equation (21) represents particle acceleration, the second term is the viscous drag and the 
third term arises from the turbulent fluctuations. When r + ~ vc, the viscous drag term is 
negligible, and the acceleration term is balanced by the turbulence term. However, in this 
limit, the turbulence term also tends to zero as N ~ 0. As r + is decreased from this limit, the 
turbulence term grows and so does the convective slip velocity 17py +. The deposition velocity 
therefore increases with decreasing particle size in this range (Fig. 1, zone 3). This trend in 
deposition velocity, however, does not continue all the way to very small particles because 
the viscous drag term assumes importance. The viscous drag term increases with decreasing 
particle relaxation time, and tries to reduce the slip velocity. The turn over point occurs 
around r + = 30. For  r + < 30, the deposition velocity starts decreasing with decreasing 
relaxation time (Fig. 1, zone 2). In this regime, the acceleration term loses importance, and 
the viscous term usually balances the turbulence term. Equation (21) shows that as r+ ~ 0, 

-+ 1 and 17py + --* 0. Turbophoresis is thus negligible for small particles even if there is 
a gradient in turbulence intensity. However, for small particles the Brownian and turbulent 
diffusion of particles begin to dominate and the deposition velocity rises again with 
decreasing ~+ (Fig. 1, zone 1). 

It is to be noted that it is because of the acceleration term in equation (21) that the 
deposition velocity decreases with increasing relaxation time in zone 3 of Fig. 1. If the 
acceleration term was not included, equation (21) would have predicted a constant depos- 
ition velocity for very large relaxation times [the predictions of Fan and Ahmadi (1993) 
show this behaviour for r+ > 10]. This is so because, as T + --, ~ ,  although ~ --*0, the 
product r +~, however, remains finite in this limit. Equation (20) shows that, as ~ + ~ 3c, 
"c + ~ ~ 1.43 T + . 

Present calculations (Fig. 6) show that the presence of small surface roughness even in 
the hydraulically smooth regime significantly enhances deposition of small particles. 
Figure 7 shows that thermophoresis can be equally important (and should be considered, 
for example, in deposition calculations for internally cooled gas turbine blades). For  
intermediate size particles, there can be a strong interaction between thermophoresis and 
turbophoresis. 
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The effects of different deposi t ion mechanisms come out  natura l ly  from the present 
analysis in a physically satisfying m a n n e r  and  there is scope to add other effects in 
a straightforward, logical way. The present theory is also logical in f inding the combined  
effects of different deposi t ion mechanisms,  as the appropr ia te  forces  are added in the 
m o m e n t u m  equat ion  and  the combined  "velocity" or flux is calculated by solving the 
cont inui ty  and m o m e n t u m  equations.  This should be superior to the often-used linear 

addi t ion  of respective "velocities" in order to determine the combined  mass flux (e.g. adding 
a turbophore t ic  velocity with a diffusive velocity). 

A par t icular  turbulence  model  has been used here (Section 2.5) for i l lustration, but  the 
present theory is not  l imited on this account.  Any other suitable turbulence  model  for 
describing the fluid flow field could be used in con junc t ion  with the present theory of 
deposit ion.  Similarly, for all numerica l  i l lustrat ions and for compar isons  with experiments 
and other theoretical predictions,  we have considered the most  explored flow configurat ion:  
vertical, fully-developed pipe flow. However,  the analysis presented in Appendix  A, unti l  the 
condi t ion  for fully developed flow ~lTpy/C?x = 0 is invoked,  is also applicable for the 
boundary- layer - type  flow. Equa t ions  (16)-(18) are a lmost  exact and should work well if the 
particle RMS velocity could be accurately predicted as a funct ion of wall coordinate  and 
particle relaxat ion time. Given  the success of the present simple scheme, further research is 
in tended to improve on this aspect. 
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A P P E N D I X  A: D E T E R M I N A T I O N  O F  T H E  P A R T I C L E  F L U X  

B Y  R E Y N O L D S  A V E R A G I N G  O F  T H E  P A R T I C L E  C O N T I N U I T Y  

A N D  M O M E N T U M  E Q U A T I O N S  

Figure A 1 shows the cartesian co-ordinate system used. Substitute equation (15) in equations (12)-(13) and then 
take time-mean of the resulting equations. We neglect the x-variation of any Reynolds stress terms and triple 
correlations of primed quantities. The continuity equation [equation (12)] then becomes, 

- ~ - ]Tpy+p'pVp'y) 0. (AI) ~(~p  Vp.,) + ~(po  = 

Equation (A1) shows that the particle mass flux in the y-direction, J, is given by 

J = ~p 17py + p'p V•,.. (A2) 

The Reynolds-averaged y-momentum equation [equation (13)] can be written as 

-~y- -DTPp  +/)p'q(Fsy+GE,)+t)p(Vfr-epy)+p'pVf'y-p'pV;y +fipgy, (A3) 

where Gzy is the y-component of electrostatic force per unit mass on the particles and 9r is the component  of the 
gravitational acceleration in the y-direction. The coefficient of diffusion due to temperature gradient, DT, is given 
by Dr  = DB(1 + q/kT), and Fsy, the Saffman lift force in the y-direction, is given by 

1 : dITf~ 
rsy = 1.542 -~  v - (17fx - 17p~). 

pp r 

We now make some simplifications of (A3). The average y-component of fluid velocity is zero, i.e., l~fy = 0. In fully 
developed pipe flow dVpr/~X = 0. The particle mass flux due to turbulent fluctuation is modelled by gradient 
diffusion 

p'p V;,. = D t ~yP, (A4) 

where Dt is the mass diffusivity of the particles due to turbulence and usually taken as the eddy viscosity of the fluid, 
e. We further assume that 

~:" (A5) p'p vf', - p'. v;,, ~. ~, v ; ,  ~, ~-7 

Fig. A1. Co-ordinate system used for calculation of deposition on a solid surface. 
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Consider the special case of vertical flow, i.e. the co-ordinate x is in the vertical direction, g then acts wholly in 
the x-direction and gy is zero. Substitution of equations (A1), (A4), (A5), and the conditions lTr~,- 0 and 
~ffpy/~X = 0 in equation (A3) results in, 

,(  +,+ ) = - -  - - D I ~  D r P p -  ~ - r t p p ~ + ' c t p p ( F s ~ . + G ~ y )  . (A61 
r I (I I" ( ) I  ( / :  

The correspondingly simplified Reynolds-averaged x-momentum conservation equation for the particles is 
given by 

j gVp ,  (" ( ?Vp~"] tip (~. _ ~,,~ + Ppg, (A7) ?)' --?~ ,pPD' c~v / =  r[ " 

where y is the acceleration due to gravity, and the turbulence term Vp.~ Vpy has been modelled by 
Vp., Vpy - -Ddi~Vp~/~y). In the general case, equations (A 1). (A2), CA6) and (A 7) are to be solved simultaneous@ to 
determine [~p, Vpx and Vp.~.. 

Note that x-momentum equation (A7) involves both l~p., and Vp~. The y-momentum equation (A6), on the other 
hand, is almost decoupled and depends on Vp, only through the Saffman lift force, Fs~.. In the general case, as 
indicated earlier, one could retain all terms in equations (A6) and (A7), and solve simultaneously. Our aim, 
however, is to develop a simple theory of deposition that brings out the underlying physics. For simplification, the 
third term in the LHS of equation (A6)+ containing the second derivative of the concentration profile, is neglected. 
We consider the absolute particle velocity to be the sum of a diffusive and a convective part. We define the 
convective velocity of the particles, Vp, by 

Vp = Vp -- (D~ V(ln pp) + Dj V(ln TI). (ASI 

Vp is very close to V~, for large particles. For smaller particles (r + < 10), the acceleration term (the first term in the 
LHS of equation (A6)) itself is not significant. The acceleration term in equation (A6) can, therefore, be 
approximated by V~. ~lT~/Fy. With these simplifications and with the help of (A8), equation (A6) can be rewritten 
a s  

- -  -~ - " + F s .  + G F , . .  ( A 9 )  
?v r, ?y + 

Equation (A9) is almost exact and do not depend on the concentration profile. If Fs~ is not considered, equation 
(A9) is a first order, non-linear differential equation involving only one unknown. Vp~,. It can be written in finite 
difference form and integrated with one boundary condition (I7~,. - 0 at the pipe centreline, or. at a sufficient 
distance away from the wall, say at y* - 200, where the gradient in turbulence intensity is negligibly small). The 
convective velocity, 17~., can, therefore, be determined if the particle R MS velocity could be estimated properly. For 
not so large particles, the drag term (second term in LHS} almost balances the turbulence term (first term in RHS), 
and, the acceleration term (first term in LHS) is negligible. The acceleration term assumes importance for large 
particles. 

Similar to (A9), equation (A7) can be simplified to 

~}p 1 _ 
V~, ~ =  (Vr~-  1~,~ + g. IAI0) 

~ ) '  T I 

Finally, equations (A2). (A4) and (A8} can be combined to give the expression for particle flux, 

J - pp Vp.,. + ~/~ V~,, 

?pp F In T 
(DI~ + D,) ~ -  - -  D T /lp - -  + F,3p rlcv. (A111 

¢) '  ~F 

The equation sets [(A 1), (A2), (A6), (AT)] and [(A9) (A I 1 )] are almost equivalent. The latter has the advantage that 
it is far simpler in form and each term has a clear physical interpretation. 

A P P E N D I X  B: T H E  R O L E  O F  G R A V I T Y  I N  D E T E R M I N I N G  
T H E  D E P O S I T I O N  V E L O C I T Y  1N F U L L Y  D E V E L O P E D  

V E R T I C A L  F L O W  

A study of equations (18a) and (18bl shows nicely how, in a vertical flow, gravity affects the ),-momentum 
equation through the Saffman lift force. The LHS of equation (18b) involves 17~,,. As a result of this convective 
velocity, the direction of the lift force may remain unaltered whether the flow is vertically downwards or upwards 
[for upward flow replace g by ,q in equation (18b)]. 

Consider the expression for the Saffman lift force given in Appendix A. The sign of the lift force depends on 
whether the particle velocity in the x-direction leads or lags the local fluid velocity. 

Sign IFs,.l - Sign 't~x - l~+.,.',. (B1) 

In a vertical downward flow 17p, > I~ x because of gravitational settling. Equation (B l) then shows that the Saffman 
lift force operates in the negative ),-direction. i.e. towards the solid wall. Thus, Saffman lift force enhances the 
deposition velocity in this case (see Fig. 8). 
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Vl y 
Fig. B1. Fully developed verticle upward flow. 
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In a fully developed vertically upward flow gravitational settling would tend to make 17p:, lag the fluid velocity. 
However, the particle convective velocity 17~ may alter the situation. Consider Fig. B1. 17r~ decreases from the 
centre of the flow passage towards the solid wall because of frictional effects, since the no-slip condition demands 
zero velocity at the solid wall. Thus, a particle arriving from higher (say, point A in Fig. B 1) to a lower (say, point B) 
y-location may have higher x-velocity than the local fluid x-velocity [depending on the relative magnitudes of the 
gravitational settling velocity and the particle convective velocity 17~.]. Consequently, it is still possible that  the 
Saffman lift force would act towards the solid wall and enhance the deposition velocity even in vertically upward 
flow. However, it is expected that, other conditions remaining the same, the deposition velocity would be lower in 
upward than in downward flow of the fluid. 

The above discussion is valid for fully developed vertical channel flow, in which the sole cause of the "laminar 
slip" between the particles and the fluid is gravity. In a general flow field, the "laminar slip" may result from the 
inability of the particles to follow curved streamlines exactly. 


