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Similarity analysis shows that Nux varies as Grx
1/4 for natural convection on an isothermal vertical surface

but Nux varies as Grx
1/5 for isothermal horizontal surfaces. It is thus difficult to develop a rigorously-

derived, closed-form solution for Nux on a surface with arbitrary inclination. In the present study we
have formulated, for the first time, a unified integral theory for laminar natural convection on an arbi-
trarily inclined surface, both for specified variation in surface temperature (Tw(x) ¼ T∞ þ f1(x)) and
surface heat flux (qw ¼ f2(x)), such that the Nusselt number matches with results obtained from the
similarity analysis in the limiting cases of vertical and horizontal surfaces. The predictions of the present
formulation also agree well with previous computational and experimental results at intermediate an-
gles of inclination between the vertical and the horizontal. f1(x) or f2(x) can be any arbitrary function,
including power law variation, and represents a differentially heated surface. Another important feature
of the present integral theory is that the developed generalized equations can accommodate arbitrary
orders of polynomials (l and c) representing the velocity and temperature profiles, and optimum values
for l and c have been systematically determined for various boundary conditions (i.e. l ¼ 4, c ¼ 2 for
isothermal case and l ¼ 3, c ¼ 2 for constant-heat-flux case). Because of the simplicity of the present
theory, it is easy to generate results for combinations of Grashof number, Prandtl number and inclination
angle not presented here. The different physical mechanisms for natural convection on vertical and
horizontal surfaces (buoyancy versus indirect pressure difference) are explained with the help of the
present analysis. It is shown that for moderate to high Prandtl number fluids, the natural convection
mechanism for vertical surface is the dominating factor for a large range of inclination angles except for
near horizontal configurations. The range of inclination angles for which the vertical solution pre-
dominates decreases as the Prandtl number decreases. For very low Prandtl number fluids at low Grashof
number, the vertical mechanism applies only to nearly vertical surfaces. A physical explanation for such
behaviour is discovered here, for the first time, in terms of the relative magnitudes of the buoyancy and
indirect pressure difference. Compact scaling laws for significant data reduction are proposed and
explained. New algebraic correlations have been developed that give Nusselt number as explicit func-
tions of Grashof number, Prandtl number and inclination angle. A new methodology for the represen-
tation of the results brings out more powerfully the role of inclination angle in determining the heat
transfer rate as well as the mechanism of natural convection.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Heat transfer by natural convection is an important physical
phenomenon and is often encountered in engineering devices such
as electronic equipments, nuclear reactors, etc. Therefore, the
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phenomenon of natural convection has been extensively studied
considering different geometries and different surface thermal
conditions. For a vertical semi-infinite surface, natural convection
has been studied using integral analysis [1e4], similarity analysis
[1,5e7] and experiments [8]. For a horizontal semi-infinite surface,
natural convection has been studied using integral analysis [9],
series solutions [10], similarity analysis [11e15] and experiments
[16,17]. Discussion on natural convection over vertical and hori-
zontal surfaces is now a standard part of all books on convection
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Nomenclature

a dimensional constant for f1(x) in specified variable
surface temperature case

b a function of Grx and Pr used in Equation (34)
c variable defined in Equation (34)
f1(x) function describing the temperature differential

between surface and ambient
f2(x) function for the specified surface heat flux
g acceleration due to gravity
GrL Grashof number defined as gb(Tw�T∞)L3/y2

Gr*L modified Grashof number defined as gbqwL4/ky2

Grx local Grashof number defiend as gb(Tw � T∞)x3/y2

Gr*x modified local Grashof number gbqwx4/ky2

hx local heat transfer coefficient
k thermal conductivity of the fluid
L reference length
n1, n2 constants used in Nux correlations
Nux local Nusselt number, hxx/k
p pressure
Pr Prandtl number, y/a
qw heat flux at the surface
T fluid temperature
u velocity component parallel to the surface
ux velocity scale
U non-dimensional u velocity
v velocity component normal to the surface
x coordinate along the surface

X non-dimensional x coordinate
y coordinate normal to the surface

Greek symbols
a thermal diffusivity
b coefficient of volume expansion
c order of polynomial for temperature
D non-dimensional boundary layer thickness
d boundary layer thickness
dv velocity boundary layer thickness
dt thermal boundary layer thickness
ε a small positive number
g inclination angle from the horizontal
l order of polynomial for velocity
m dynamic viscosity
q non-dimensional temperature
r density
y kinematic viscosity

Subscript
h horizontal surface
q constant heat flux case
t isothermal case
v vertical surface
w value on the surface
x local value
∞ ambient condition

A. Guha, K. Pradhan / International Journal of Thermal Sciences 111 (2017) 475e490476
(e.g. Refs. [1e4]), and new results have appeared in recent publi-
cations ([9,14,15,18,19]). Reference [18] uses computational fluid
dynamic (CFD) simulations to unearth new physical understanding
of the effects of finiteness of a heated plate on the thermo-fluid-
dynamics of natural convection above it. In Ref. [19], a CFD code
is developed in-house to solve the highly non-linear coupled partial
differential equations describing natural convection of non-
Newtonian fluids on a horizontal plate.

Natural convective boundary layer flow over a horizontal sur-
face is quite different from its counterpart on a vertical surface. In
such buoyancy induced flows, the temperature gradient generating
the buoyancy force does not directly cause the flow. It gives rise to a
pressure gradient in the direction parallel to the surface, which is
responsible for driving the convective flow. This is why Schlichting
and Gersten [11] termed it as “indirect natural convection”, for
which, unlike the usual analysis for the boundary layer, neither the
term vp/vx nor the term vp/vy can be neglected. Similarity analysis
shows that Nux varies as Grx

1/4 for natural convection on an
isothermal vertical surface but Nux varies as Gr1=5x for isothermal
horizontal surfaces. In case of inclined surfaces, the natural con-
vection mechanisms for both vertical and horizontal configurations
are operative. It is thus difficult to develop a rigorously-derived,
closed-form solution for Nux on a surface with arbitrary inclina-
tion, which will reduce to the known solutions in the two limits of
horizontal and vertical surfaces.

In contrast to the extensive literature that exists for natural
convection over horizontal or vertical surfaces, the literature
available for inclined surfaces is rather limited. Rich and Burbank
[20] gave experimental results (for air) for isothermal inclined
surfaces, and, Vliet [21] gave experimental results (for water) for
inclined surfaces subjected to constant heat flux. These experi-
mental data were taken over certain ranges of inclination angles:
50� � g � 90� for [20] and 30� � g � 85� for [21]. Since natural
convection on inclined surfaces does not admit similarity solution,
previous studies have tried to relate the phenomenon on inclined
surfaces to the limiting cases of vertical and horizontal surfaces.
Rich and Burbank [20] and Vliet [21], for example, related their
experimental results for inclined surfaces to that for the vertical
surface by using the component of gravity parallel to the surface for
calculating the Grashof number in their analysis. Pera and Gebhart
[22] approximated the effect of a small inclination as a perturbation
of flow over a horizontal surface. In contrast to these attempts
[20e22] of relating to vertical or horizontal cases, a few studies
have derived the non-similar boundary layer equations on an in-
clined surface and solved them using elaborate numerical tech-
niques [23e25]. The formulation of Yu and Lin [23] holds true for
the isothermal surface only, while the non-similar equations of Lin
et al. [24] are valid for a constant surface heat flux only. The
computation in both work [23,24] is performed in complex trans-
formed co-ordinates. The numerical results of Chen et al. [25] are
restricted to only two values of the Prandtl number (Pr ¼ 0.7 and
Pr ¼ 7). Because of the complexities of the formulations and solu-
tion procedures of these previous theoretical studies [23e25], it is
difficult to generate new numerical results for combinations of
Grashof number, Prandtl number and inclination angle not pre-
sented in their work. Recently, Saha et al. [26] performed a scaling
analysis for the natural convection of air past an inclined flat plate.
Corcione et al. [27] considered natural convection on inclined plates
where both sides of the plate are maintained at the same
temperature.

Although the integral method has been extensively used for
vertical or horizontal surfaces, to the best of the authors' knowl-
edge, it has not been applied in the past for the study of inclined
surfaces. The aim of the present work is to apply the integral
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method to formulate a set of simple generic equations that can
represent the natural convection on horizontal, inclined and ver-
tical surfaces subjected to arbitrary variation inwall temperature or
surface heat flux. With the help of this same set of equations,
comprehensive calculations have been carried out to study the
variation of Nusselt number as a function of Grashof number,
Prandtl number and inclination angle (103 � Gr � 107,
0.01 � Pr � 100 and 0� � g � 90�). The prediction of the simple
unified theory agrees well with previous experimental and
computational results for whatever ranges of the parameters and
boundary conditions they are available. A new, concise method of
data representation sheds light on how the mechanism of natural
convection on an inclined surface undergoes progressive changes
as the inclination angle is varied from the horizontal to the vertical.

2. Mathematical formulation

Consider steady, laminar natural convection on a semi-infinite
flat plate inclined at an acute angle g to the horizontal. The plate
is surrounded by a quiescent fluid which is at a temperature T∞. The
x coordinate is measured from the leading edge of the plate and the
y coordinate is measured normal to the plate. Gravity g acts verti-
cally downwards, which is in the negative y direction for the hor-
izontal plate orientation (g ¼ 0�). Two surface conditions are
considered for the plate: (1) a specified variation of the surface
temperature, Tw(x) ¼ T∞ þ f1(x), and, (2) a specified variation of the
surface heat flux, qw ¼ f2(x). f1(x) or f2(x) can be any arbitrary
function representing a differentially heated surface. The power
law variations (e.g. Tw(x)�T∞ ¼ axn and qw ¼ bxm) used in
Refs. [9,14] can be treated as special cases of f1(x) or f2(x). The
analysis is presented here for the upward surface of the inclined
plane (Fig. 1) and for Grashof number values for which the flow
remains laminar. For isothermal horizontal surfaces the transition
to turbulence commences at Grx ~ 106, while the transition starts at
Grx ~ 109 for isothermal vertical surfaces [28,29]. Numerical illus-
trations are presented in this paper for the range of Grashof number
103 � Gr � 107. The limits are not sacrosanct but approximately
chosen; the lower limit arises from the requirement that boundary
layer type convective flow occurs at a large Grashof number and the
upper limit for a laminar theory is set by transition to turbulence.

The fluid properties are assumed to be constant except for the
density in the buoyancy term. With this assumption, applying the
Boussinesq approximation and neglecting the viscous dissipation
in the energy equation, the governing equations for the natural
convective boundary layer flow are given by Refs. [1,23e25]:

vu
vx

þ vv

vy
¼ 0 (1)

u
vu
vx

þ v
vu
vy

¼ �1
r

vp
vx

þ gb sin gðT � T∞Þ þ y
v2u
vy2

(2)
x 

y 

g 

γ

inclined heated 
surface 

Fig. 1. Physical model and coordinate system.
0 ¼ �1
r

vp
vy

þ gb cos gðT � T∞Þ (3)

u
vT
vx

þ v
vT
vy

¼ a
v2T
vy2

(4)

The boundary conditions are

At y ¼ 0; u ¼ 0; v ¼ 0; TwðxÞ ¼ T∞ þ f1ðxÞ or qw ¼ f2ðxÞ
(5a)

As y/∞; u/0; T/T∞; p/p∞: (5b)

Integral analysis of natural convection routinely assumes that
the velocity and thermal boundary layers are of equal thickness
[1e6,9]. Accordingly, it is also assumed here that both boundary
layers are of thickness d. It is explained in Ref. [9] that unlike in
forced convection where dv z dt only for Pr ~ 1, in natural con-
vection dv z dt for Pr � 1. The physical arguments given in Ref. [9]
and the similarity results given in Ref. [14], however, show that
dv > dt even in natural convectionwhen Pr >> 1. The justification of
using the integral analysis in such cases lies in the finding that the
Nusselt number predicted by the integral analysis still happens to
match with that obtained by the more rigorous similarity analysis.
It turns out that, for fluids with Pr >> 1, the gradient of the tem-
perature field at the solid surface, that determines the Nusselt
number, is predicted reasonably accurately in spite of the inap-
propriate assumption of the equality dvzdt in the integral
analysis.

The general form for a generic temperature profile of order c is
given by ([9], see also Appendix A),

q

qw
¼ T � T∞

Tw � T∞
¼
�
1� y

d

�c
: (6)

Equation (6) is a general equation where appropriate expres-
sions for qw needs to be used depending on the specified boundary
conditions, as mentioned below.

For specified wall temperature; qw ¼ f1ðxÞ (7a)

For specified surface heat flux; qw ¼ 1
c
f2 xð Þ d

k
: (7b)

Substituting the expression in (6) into Equation (3) and partially
integrating the y-momentum equationwith respect to ywithin the
limits y ¼ y and y ¼ d, yields the following expression for the
pressure (noting that p|y¼d ¼ p∞) [30],

p ¼ p∞ � rgbcosg qw
d

cþ 1

�
1� y

d

�cþ1
(8)

Partially differentiating the above expression with respect to x
yields,

vp
vx

¼ �rgb cos g
v

vx

�
qw

d

cþ 1

�
1� y

d

�cþ1
�
: (9)

The general form of the velocity profile of order l is given by ([9],
see also Appendix A)

u
ux

¼ y
d

�
1� y

d

�l�1
; (10)

where,



A. Guha, K. Pradhan / International Journal of Thermal Sciences 111 (2017) 475e490478
ux ¼ d2

2ðl� 1Þy gb
�
cos g
ðcþ 1Þ

d
dx

ðdqwÞ þ qw sin g

�
: (11)

Integrating the x-momentum equation (Equation (2)) in the
boundary layer within the limits y ¼ 0 and y ¼ d, the momentum
integral equation becomes

d
dx

Zd
0

u2dy

[

inertia

¼ �1
r

Zd
0

vp
vx

dy

[

indirect pressure difference

þgbsing
Zd
0

ðT�T∞Þdy

[

direct buoyancy

�y
vu
vy

����
y¼0

[

viscous

:

(12)

Apressure gradient normal to the surface (vp/vy) is developeddue
to the component of the buoyancy force acting normal to the inclined
surface (gb(T�T∞)cosg) as shown in Equation (3). Schlichting and
Gersten [11] explained that a gradient of pressure also develops along
the surface (i.e. vp/vx exists) because of the presence of increased
temperature and reduced density inside the boundary layer. Our
mathematical analysis,Equation (9), gives thequantitativemeasureof
this pressure gradient term vp/vx. This pressure gradient, producing
convective flow parallel to the solid surface, was termed 'induced' or
‘indirect pressure gradient’ by Schlichting and Gersten [11], and is
represented by the first term in the RHS of Equation (12). The second
term in the RHS of Equation (12) is the component of buoyancy force
acting along the inclined surface. This is a measure of the ‘direct
buoyancy’ causing convective flowalong the surface. For a horizontal
surface (g ¼ 0�), the ‘direct buoyancy’ vanishes and the convective
flow in the horizontal direction is driven by the ‘indirect pressure
difference’ alone. On the other hand, for a vertical surface (g ¼ 90�),
the ‘indirect pressure difference’vanishes and theflow isdriven along
the surface only by the ‘direct buoyancy’. For an inclined surface, both
mechanisms are operative.

The integral energy equation is obtained by integrating Equation
(4) within the limits y ¼ 0 and y ¼ d, and suitably using the relation
given in Equation (1):

d
dx

Zd
0

uðT � T∞Þdy ¼ �a
vT
vy

����
y¼0

: (13)

Substituting the expression for vp/vx [from Equation (9)] and
using the temperature and velocity profile approximations [given
in Equations (6) and (10)], the integral Equations (12) and (13) can
be transformed into the following generalized equations for the
natural convective boundary layer flow over inclined flat plates:

1

l
�
4l2 � 1

� d
dx

�
u2xd
�
¼ gb cos g
ðcþ 1Þðcþ 2Þ

d
dx

�
qwd

2
�

þ gb sin g

ðcþ 1Þ dqw � y
ux
d

(14)

1
ðcþ lÞð1þ cþ lÞ

d
dx

ðqwuxdÞ ¼ caqw
d

: (15)

While deriving Equations (12)e(14) appropriate use of the
Leibniz's rule has been made [d=dx

R lðxÞ
kðxÞ f ðx; yÞdy ¼R lðxÞ

kðxÞ vf ðx; yÞ=vxdyþ f ðx; lðxÞÞdl=dx� f ðx; kðxÞÞdk=dx]. The co-
efficients 1/l(4l2�1) in Equation (14) and 1/(cþl)(1þcþl) in Equa-
tion (15) have been obtained by using the properties of beta and
gamma functions in the evaluation of the corresponding integrals.
One consequence of the assumption dv¼ dt¼ d in all integral theories
is that, with one less variable, one less equation is required [9].
Usually, the separate equation for ux, Equation (11), is discarded.
Equations (14) and (15) represent two equations specifying the
variation of two unknown variables ux and d as functions of x.

The same set of Equations (14) and (15) are applicable for all
angles of inclination from the vertical to the horizontal. Secondly,
the equations are valid for any integer values of c and l specifying
the temperature and velocity profiles. Thirdly, the same set of
Equations (14) and (15) are valid for generalized surface boundary
conditions: qw is to be calculated by Equation (7a) for specified
surface temperature, whereas, qw is to be calculated by Equation
(7b) for specified surface heat flux. One example of variable surface
temperature is discussed in Section 3.1.3. Finally, the algebra could
be carried out such that the effects of variable profile choices
(arbitrary values of c and l) and arbitrary specification of surface
boundary conditions (contained in the definition of qw given by
Equation (7)) are neatly segregated in the final forms of Equations
(14) and (15) given above.

When surface temperature is specified, the
local heat transfer coefficient hx may be evaluated from
qw(x) ¼ �k(vT/vy)y¼0 ¼ hx(Tw�T∞). Evaluating (vT/vy)y¼0 from
Equation (6) and using the expression for (Tw�T∞) from Equation
(7a), one obtains the local Nusselt number:

Nux ¼ hxx
k

¼ c
x
d
: (16)

When the surface heat flux is specified, the local heat transfer
coefficient is evaluated from hx ¼ qw(x)/(Tw�T∞). Substituting the
value of (Tw�T∞) from Equation (7b), one obtains the same
expression for Nux as in Equation (16).

Up to now, we have progressed the mathematical formulation
for the general case, generic values of c in Equation (6), l in
Equation (10), f1(x) in Equation (7a) and f2(x) in Equation (7b) have
been carried through the analysis. Equations (14)e(16) are thus
their most general forms. For numerical illustrations given below,
however, specific values of c and l, and specific functions for f1(x) or
f2(x) are to be chosen.

We have derived the general governing equations for arbitrary
variation in surface temperature or surface heat flux so that the
readers may use Equations (14) and (15) as required. However,
most of the previous experimental or theoretical results are
either for isothermal (Tw�T∞ ¼ constant) or constant surface heat
flux (qw ¼ constant) cases. Therefore, specific forms of equations
are developed below for these two important special cases. An
illustration of variable surface temperature is treated in Section
3.1.3.

Now,we turn our attention to the appropriate choice of l andc. A
systematic optimization study for horizontal surfaces [9] demon-
strated that the optimal choices are l ¼ 4, c ¼ 2 for isothermal case
and l ¼ 3, c ¼ 2 for constant-heat-flux case, if one wants to build a
uniformmathematical formulation over a range of Prandtl numbers
(0.01 � Pr � 100). A similar optimization study for vertical surfaces
shown in Appendix B also establishes the same criteria. Therefore,
for all numerical illustrations given below, we have adopted this
optimal choice, viz. l¼4,c¼2 for isothermal case and l¼3,c¼2 for
constant-heat-flux case. As far as we know, only reference [9] and
the present paper have tried to optimize the velocity and tempera-
ture profiles for the integral analysis of natural convection. All other
references and textbooks seem to adopt, without questioning, the
values l ¼ 3, c ¼ 2 for all boundary conditions and all Prandtl
numbers.

The specific forms of the equations for isothermal and constant
heat flux cases are described below. The following non-
dimensionalised variables have been used while writing the spe-
cific forms of the equations:



Table 1
Comparison of values of Nux=Gr

1=5
x obtained by the present integral method with

previously published results for isothermal horizontal surfaces.

Pr Integral
analysis
(present
study, l ¼ 4)

Similarity analysis
by Samanta and
Guha [14]

Numerical
solution by Yu
and Lin [23]

Numerical
solution by Pera
and Gebhart [22]

0.01 0.0804 0.0876 0.0708 e

1 0.4024 0.3895 0.3897 0.3940
100 1.0875 1.0896 1.1224 e

Table 2
Comparison of values of Nux=Gr

1=4
x obtained by the present integral method with

previously published results for isothermal vertical surfaces.

Pr Integral analysis
(present study,
l ¼ 4)

Similarity
analysis by
Burmeister [1]

Similarity
analysis by
Ostrach [31]

Numerical
solution by Yu
and Lin [23]

0.01 0.0539 0.0570 e 0.05699
1 0.4183 0.4010 0.4110 0.4004
100 1.4751 1.5495 e 1.5501

Table 3
Comparison of values of Nux=Gr

*1=6
x obtained by the present integral method with

previously published results for constant heat flux horizontal surfaces.

Pr Integral analysis
(present study,
l ¼ 3)

Similarity analysis
by Samanta and
Guha [14]

Numerical
correlation by
Chen et al. [25]

Numerical
solution by Lin
et al. [24]

0.01 0.1403 0.1690 e 0.1326
0.7 0.5076 0.5216 0.5203 0.5011
100 1.2810 1.3200 e 1.3261
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X ¼ x
L
; Ux ¼ ux

y=L
; D ¼ d

L
; (17)

The length scale L chosen here is a physical length along the
plate andmore specifically, it is a unit length along the semi-infinite
plate. This means that a value of X¼ 1 refers to a point which is at a
distance L downstream of the leading edge. For an isothermal
surface, L is related to the adopted value of Grashof number through
the equation GrL ¼ gbðTw�T∞ÞL3

y2
. The natural convection mechanism

develops a much shorter length scale perpendicular to the solid
surface. The similarity analysis for isothermal horizontal surfaces
[14], for example, shows that this new length scale d ~ L(GrL)�1/5. In
an integral theory, however, an explicit measure of d is not required
for deducing the non-dimensional velocity and temperature
profiles.

For an isothermal surface (Tw�T∞ ¼ constant), Equations (14)
and (15) can be expressed in the following non-dimensional
explicit form, with l ¼ 4, c ¼ 2:

1
252

d
dX

�
U2
xD
�Term I: Inertia

¼ GrL cos g
12

d
dX

�
D2
�Term II: Indirect pressure difference

þ GrL sin g

3
D

Term III: Direct buoyancy

� Ux

D

Term IV: Viscous

(18)

1
42

d
dX

ðUxDÞ ¼ 2
PrD

: (19)

The Grashof number appearing in Equation (18) is calculated
from:

GrL ¼
gbðTw � T∞ÞL3

y2
: (20)

Similarly, for a constant-heat-flux surface (qw ¼ constant),
Equations (14) and (15) can be expressed in the following non-
dimensional explicit form, with l ¼ 3, c ¼ 2:

1
105

d
dX

�
U2
xD
�Term I: Inertia

¼ Gr*L cos g
24

d
dX

�
D3
�Term II: Indirect pressure difference

þ Gr*L sin g

6
D2

Term III: Direct buoyancy

� Ux

D

Term IV: Viscous

(21)

1
30

d
dX

�
UxD

2
�
¼ 2

Pr
: (22)

The modified Grashof number appearing in Equation (21) is
calculated from:

Gr*L ¼ gbqwL4

ky2
: (23)

The equation set (18) and (19) or the equation set (21) and (22)
have been numerically integrated to obtain the corresponding re-
sults presented in this paper. We have attributed a physical
meaning to each term of Equations (18) and (21) because one
objective of the present paper is to understand the mechanisms of
natural convection as the inclination of the surface is changed. This
direct physical interpretation of the terms in the simple integral
theory would be difficult to achieve if the Navier-Stokes equations
were solved by CFD instead. The other advantage of the present
method is that solving a set of ordinary differential equations is
much easier (with the accuracy in predicted Nusselt number being
demonstrated in Section 3) than solving coupled, non-linear partial
differential equations in full-blown CFD methods which would
require overcoming numerical instability problems and consider-
ably greater computational time.

It is well known that boundary layer equations have singularity
at the leading edge. The integration of the equation set (18) and (19)
or the equation set (21) and (22) cannot be started at X ¼ 0. This
problem is overcome by starting the integration at a very small
value of X (X ¼ ε), where the initial values of Ux and D are deter-
mined from the corresponding solutions for a horizontal plate
given in Ref. [9]. Several exploratory solutions revealed that this
method of initialization of the integration process is robust (works
for all inclination angles) and, after a few steps of numerical inte-
gration, the value of the Nusselt number obtained at large X be-
comes independent of the initial condition.

3. Results and discussion

A comparison of the values of the local Nusselt number obtained
from the present integral analysis with those given by similarity
analysis (for both limiting cases i.e. horizontal and vertical surfaces)
and numerical solution of non-similar boundary layer equations
shows that the present theory predicts the results accurately and in
some cases gives results which agree with the similarity solution
even better than other numerical solutions.

Table 1 shows a comparison of the local Nusselt number values
for natural convection on isothermal horizontal surfaces, over a
wide range of Prandtl numbers, given by similarity analysis [14],
numerical solutions [22,23] and the present analysis. For very low
(0.01) and very high (100) Prandtl numbers, the values of Nux given
by the present analysis are in excellent agreement with similarity



Table 4
Comparison of values of Nux=Gr

*1=5
x obtained by the present integral method with

previously published results for constant heat flux vertical surfaces.

Pr Integral analysis
(present study, l ¼ 3)

Similarity analysis by
Sparrow and Gregg [7]

Numerical solution
by Lin et al. [24]

0.1 0.2506 0.2635 0.2635
1 0.5479 0.5339 0.5335
100 1.5455 1.5565 1.5562
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solution, and the simple integral analysis is found to give better
results than the numerical solution of the non-similar equations
[23]. Even for Pr¼ 1, the value ofNux deviates from that of similarity
analysis by only 3.3%.

In Table 2, the values of the local Nusselt number for natural
convection on isothermal vertical surfaces obtained from the pre-
sent integral analysis are compared with those given by similarity
analysis [1,31] and numerical solutions [23]. The results of the
present analysis agree reasonably with the results of similarity
analysis and other numerical solutions.

Table 3 shows values of the local Nusselt number for natural
convection on constant-heat-flux horizontal surfaces obtained
from the present integral analysis and those given by similarity
analysis [14] and the numerical solution of non-similar boundary
layer equations [24,25]. The results of the present analysis agree
reasonably with the results of similarity analysis and the other
numerical solutions.

In Table 4, the values of the local Nusselt number for natural
convection on constant-heat-flux vertical surfaces obtained from
the present integral analysis are compared with those given by
similarity analysis [7] and numerical solution [24]. The results of the
present simple theory agree reasonably with the results of similarity
analysis and the other, more elaborate, numerical solutions.
3.1. Comparison of present predictions with previous computational
and experimental results for inclined surfaces

Most of the previous studies pertaining to natural convection on
inclined surfaces have considered the isothermal and constant heat
flux cases. While Sections 3.1.1 and 3.1.2 investigate the predictions
of the present integral analysis for the isothermal and constant heat
flux cases, Section 3.1.3 describes the natural convective flow over
an inclined surface with variable surface temperature.

Usually previous computational or experimental results are
Fig. 2. Local Nusselt number versus inclination angle for an isothermal surface at
Grx ¼ 4.286 � 106, Pr ¼ 0.7 and X ¼ 1: assessment of the present integral analysis.
presented in the form of Nusselt number versus Grashof number (or
Rayleigh number), with the inclination angle as a parameter. We
have, however, used the inclination angle as the abscissa whenever
possible. We believe this new representation of the results brings
outmore powerfully the role of inclination angle in determining the
heat transfer rate as well as the mechanism of natural convection.

3.1.1. Results for the isothermal inclined surface
Fig. 2 shows the variation of the local Nusselt number Nux with

the angle of inclination g of the surface, for the isothermal case at
Pr¼ 0.7. As g increases, Nux is found to increasewith the lowest Nux
occurring for the horizontal surface and the highest Nux occurring
for the vertical surface. However, the rate of increase of Nux is found
to decrease as g increases. In Fig. 2, we have superposed the nu-
merical solutions of Yu and Lin [23] and Chen et al. [25], and, the
experimental data of Rich and Burbank [20] which exist in the
range 50� � g � 90�. The experiments were conducted with air and
hence Pr ¼ 0.7 is assumed in all three theoretical results shown in
Fig. 2. Similarly, 4.286 � 106 is the minimum Grashof number at
which the experimental data of Rich and Burbank exist; therefore
all theoretical calculations are shown at this Grashof number. Chen
et al. [25] gave two correlations for two ranges of inclination angle,
which are based on numerical computations at two different
Prandtl numbers. Their results, as Fig. 2 shows, unfortunately
contain a discontinuous jump in the value of the Nusselt number at
the boundary of the two ranges of inclination angle (at g¼ 15�), the
magnitude of the jump increasing as either the Grashof number or
the Prandtl number or both decreases (please see the next two
figures to appreciate this aspect). It is hard to imagine a physical
reason why such jumps would exist in reality. The results of the
present integral analysis match reasonably with the numerical
solutions of Yu and Lin [23] and Chen et al. [25] in the range g� 15�,
though they deviate to some extent for g > 15�. However, in the
range 50� � g � 90� for which experimental results of Rich and
Burbank [20] exist, the present integral predictions for the Nusselt
number are closer to the experimental values than the previous,
more elaborate, numerical solutions. It is difficult to extract
experimental data directly from the graphs given in the paper of
Rich and Burbank [20] or to discern the exact variation of Nusselt
number with inclination angle. In plotting the experimental results
in Fig. 2, we have therefore used the experimental correlation
proposed by Rich and Burbank, which is the same as Eckert's
relation except that g is substituted by gsing. For the limiting cases,
the present analysis matches well with the specific value of Nux for
Fig. 3. Local Nusselt number versus inclination angle for an isothermal surface at
Grx ¼ 105, Pr ¼ 0.7 and X ¼ 1: assessment of the present integral analysis.



Fig. 4. Local Nusselt number versus inclination angle for a constant heat flux surface at
Gr*x ¼ 3� 105, Pr ¼ 0.7 and X ¼ 1: assessment of the present integral analysis.

Table 5
Comparison of the local Nusselt number Nux obtained by the present integral
method with the numerical results of Chen et al. [25] for g ¼ 15� , Pr ¼ 0.7, X ¼ 1 and
Tw�T∞ ¼ ax.

Grx Present integral solution Solution of Chen et al. [25]

103 2.34 2.35
104 3.93 4.02
105 6.69 6.89
106 11.58 11.80
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vertical surfaces given by Burmeister [1] and that for horizontal
surfaces given by Guha and Samanta [9].

Fig. 3 also shows the variation of the local Nusselt number with
inclination angle at Pr¼ 0.7, but at a lower value of Grx as compared
to that in Fig. 2. It is observed that the correlations of Chen et al. [25]
contain a discontinuous jump (of a greater magnitude than that in
Fig. 2) in the value of the Nusselt number at g¼ 15�. The magnitude
of the apparently non-physical jump is greater in Fig. 3 as compared
to that in Fig. 2 owing to the smaller value of Grashof number
assumed here. The results of the present simple theory match
reasonably with the numerical solution of Yu and Lin [23] in the
range g � 35�. For the limiting cases, the present theory matches
well with the specific values of Nux given by Burmeister [1] for
vertical surfaces and Guha and Samanta [9] for horizontal surfaces.
3.1.2. Results for the constant-heat-flux inclined surface
Fig. 4 shows the variation of the local Nusselt number Nux with

the angle of inclination g of the surface, for the constant surface
heat flux case at Pr ¼ 0.7. As for the isothermal case, Nux is found to
increase with increasing g, with the rate of increase of Nux
decreasing with increasing g. Fig. 4 also shows that the correlations
of Chen et al. [25] contain a discontinuous, apparently non-
Fig. 5. Local Nusselt number versus inclination angle for a constant heat flux surface at
Gr*x ¼ 0:71� 106, Pr ¼ 7 and X ¼ 1: assessment of the present integral analysis.
physical, jump in the value of the Nusselt number at g ¼ 15�(as
mentioned previously, the magnitude of jump in Fig. 4 is greater
than that in Fig. 2 because the assumed Grashof number is lower
here). The results of the present integral analysis match reasonably
with the numerical solutions of Lin et al. [24] in the range g � 50�,
though they deviate slightly for g > 50�. For the limiting cases, the
present theory matches well with the specific value of Nux for
vertical surfaces given by Sparrow [4] and that for horizontal sur-
faces given by Guha and Samanta [9].

Fig. 5 shows the variation of the local Nusselt number Nux with
the angle of inclination g of the surface, for the constant surface
heat flux case at Pr ¼ 7. As for the isothermal case, Nux is found to
increase with increasing g, with the rate of increase of Nux
decreasing with increasing g. In Fig. 5, we have superposed the
numerical solutions of Lin et al. [24] and Chen et al. [25], and, the
experimental data of Vliet [21] which exist in the range 30� � g �
85�. The experiments were conducted with water and hence Pr ¼ 7
is assumed in all three theoretical results shown in Fig. 5. Similarly,
0.71 � 106 is the minimum Grashof number at which the experi-
mental data of Vliet exist; therefore all theoretical calculations are
shown at this Grashof number. It is difficult to extract experimental
data directly from the graphs given in the paper of Vliet [21], or to
discern the exact variation of Nusselt number with inclination
angle. The axes in the plots given in Ref. [21] are logarithmic and
hence small errors in measurement are magnified in the plots
presented in the present paper which have linear axes. Since the
main focus of the present paper is the effect of inclination angle on
the Nusselt number, we have presented all the Nusselt number
plots with inclination angle g as the abscissa while maintaining the
value of Grx* constant. However, the plots shown in Ref. [21] are
variations of the local Nusselt number with modified Rayleigh
number, and almost no two inclination angle data were found for
the same value of Gr*x . So, plotting the experimental results directly
in the Nux vs g graphs would require multiple graphs, one for each
value of Gr*x and therefore, we have used the correlations developed
by Vliet instead. A comparative study of the curves in Figs. 2e5
demonstrates that the present simple theory captures the essen-
tial physics and does well in predicting the Nusselt number as a
function of the Grashof number, Prandtl number and inclination
angle (for all inclination angles from the horizontal to the vertical
configuration).
3.1.3. Results for inclined surface with variable surface temperature
All illustrations in Sections 3.1.1 and 3.1.2 are for constant

surface temperature and constant surface heat flux cases respec-
tively. Here, we investigate the case of a surface whose tempera-
ture increases linearly with distance from the leading edge (i.e.,
Tw�T∞ ¼ ax), as an example of the suitability of the present
formulation for the case of variable surface temperature. The in-
tegral momentum and energy equations describing the natural
convective flow over an inclined surface for the particular varia-
tion of surface temperature (Tw�T∞ ¼ ax) are obtained by
substituting qw by ax in Equations (14) and (15), and are listed
below:
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1
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d
dX

�
U2
xD
�
¼ GrL cos g
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d
dX

�
XD2

�
þ GrL sin g
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XD� Ux

D
(24)

1
42

d
dX

ðXUxDÞ ¼ 2X
PrD

: (25)

For this case, the Grashof number is defined by:

GrL ¼
gbaL4

y2
: (26)

l ¼ 4 and c ¼ 2 have been used while deriving Equations (24) and
(25) from Equations (14) and (15).

The values of the local Nusselt number Nux obtained by solving
Equations (24) and (25) for g ¼ 15�, Pr ¼ 0.7 and different values of
the Grashof number are shown in Table 5 alongside the numerical
solution given by Chen et al. [25]. It is observed that the predictions
of the present analysis compare reasonably with the numerical
solutions given in Ref. [25].

Unfortunately, no experimental data is available for inclined
surfaces with arbitrary variation in surface temperature or heat
flux. Hence, experimental validation of this versatility of the pre-
sent formulation is not possible at the time. In the following
discussion, we therefore return to the specific cases of isothermal
and constant-heat-flux inclined surfaces, since the main focus of
the present paper is to demonstrate the ability of the present in-
tegral analysis to capture the physics of natural convection as the
inclination angle of the solid surface is varied from the vertical to
horizontal.
Fig. 6. Local Nusselt number versus inclination angle for an isothermal surface at
Pr ¼ 1 and X ¼ 1.
3.2. Analytical formulae for limiting cases of inclination angle

There are two limiting cases, viz. horizontal (g¼ 0�) and vertical
(g ¼ 90�). Similarity solutions exist for both limiting cases. One
important implication is that the integral theories lead to closed-
form analytical solutions for the Nusselt number for both limiting
cases [1,9].

One characteristic of integral analyses is that the computed
Nusselt number depends on the choice of velocity and temperature
profiles. It was demonstrated in Ref. [9] that, for natural convection
on an isothermal horizontal surface, l¼ 4 and c¼ 2 are the optimal
choices respectively for the velocity and temperature profiles, if one
wants to build a generic integral analysis over a range of Prandtl
numbers (0.01 � Pr � 100). Similarly, it was demonstrated in
Ref. [9] that, for natural convection on a horizontal surface sub-
jected to constant heat flux, l ¼ 3 and c¼ 2 are the optimal choices
if one wants to build a generic integral analysis over a range of
Prandtl numbers (0.01 � Pr � 100). In a recent unpublished work
[32], the same analytical procedure, described in Ref. [9], was
applied to the case of vertical surfaces and it was found that the
above conclusions regarding the optimum choices for velocity and
temperature profiles also hold here (a short summary is given in
Appendix B for ready reference). We believe this optimization
study for the vertical surface is new and the results (Table B1 of
Appendix B) are new, since all previous integral studies for vertical
surfaces (e.g given in Refs. [1e4]) use, to the best of our knowledge,
l ¼ 3 and c ¼ 2. We summarize the final forms of the analytical
formulae for Nusselt number below, as they will be useful in the
following discussion and also as a general resource for future
researchers.

For isothermal vertical surface with l ¼ 4, c ¼ 2, the Nusselt
number (Nux,vt) is given by (Appendix B):
Nux;vt ¼ 0:467

 
GrxPr2
5
9 þ Pr

!1=4

: (27)

For constant-heat-flux vertical surface with l ¼ 3, c ¼ 2, the
Nusselt number (Nux,vq) is given by (Appendix B):

Nux;vq ¼ 0:616

 
Gr*xPr

2

4
5 þ Pr

!1=5

: (28)

For isothermal horizontal surface with l ¼ 4, c ¼ 2, the Nusselt
number (Nux,ht) is given by [9]:

Nux;ht ¼ 0:433

 
GrxPr2
4
9 þ Pr

!1=5

: (29)

For constant-heat-flux horizontal surface with l ¼ 3, c ¼ 2, the
Nusselt number (Nux,hq) is given by [9]:

Nux;hq ¼ 0:595

 
Gr*xPr

2

4
7 þ Pr

!1=6

: (30)

For several physical and mathematical insight on the generic
integral analysis, including a discussion on the relative thicknesses
of the velocity and temperature boundary layers in natural con-
vection and the role of Prandtl number in determining their relative
magnitudes (which is fundamentally different from the well-
known role of Prandtl number in forced convection), the reader is
referred to [9].

Due to the nature of the coupling of the velocity and tem-
perature fields in natural convection, the velocity boundary layer
cannot be thinner than the thermal boundary layer. Thus for
fluids with Pr � 1, the two boundary layer thicknesses are of
comparable magnitude. For high Pr fluids (Pr >> 1), the effects of
viscosity are transmitted to a considerable distance normal to the
surface and hence, the velocity boundary layer is thicker than the
thermal boundary layer. Inside the thermal boundary layer
(y � dt), the buoyancy force is balanced by the viscous force.
Beyond y ¼ dt, the motion of the fluid is controlled by inertia and
viscous force [9].



Fig. 8. Local Nusselt number versus inclination angle for an isothermal surface at
Grx ¼ 106 and X ¼ 1.
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3.3. Exploration for possible scaling laws

The figures that have been presented so far in this paper show
the variation of the local Nusselt number with the inclination angle
for specific values of Grx and Pr. In order to avoid multiplicity of
graphs and at the same time provide information on a range of
values of the parameters Grx and Pr, it would be great if one can
scale the local Nusselt number in such a manner that the multiple
curves collapse to a single curve (for a particular surface boundary
condition). In this section, we explore various possibilities of
scaling and determine the success of each method over a range of
important parameters.

Fig. 6 shows the variation of Nux with g for Pr ¼ 1 at different
values of the Grashof number. As Grx increases the value of Nux
increases, and the rate of this increase also increases with
increasing Grx. However, this figure is unable to provide precise
quantitative information about Nux at values of Grx other than those
mentioned in the figure. An appropriate scaling can therefore lead
to concise yet comprehensive representation of data.

Equation (27) shows that the Nusselt number for isothermal
vertical surfaces is scaled by the one-fourth power of the Grashof
number. However, Equation (29) shows that, for isothermal hori-
zontal surfaces, the one-fifth power of the Grashof number is the
scaling factor. It is therefore anticipated that there may not be a
universal scaling factor at all inclination angles, but it would still be
interesting to find what is the scaling factor that would cover the
maximum range of the involved parameters. This would give
insight on physical mechanisms of natural convection operative at
various angles of inclination and explain the rationale of the
adopted ranges of parameters for correlations available in the
literature. The following discussion relates to isothermal surfaces.
Similar conclusions (this time taking help of Equations (28) and
(30)) were found to apply for surfaces with constant heat flux but
are not reported here for brevity.

Taking inspiration from the result for the vertical surface
(Equation (27)), one-fourth power of the local Grashof number is
first considered as the scaling factor. Fig. 7 shows the local Nusselt
number scaled by Gr1=4x , at Pr ¼ 1. For the range of inclination
42� � g� 90�, the curves for the different values of Grx collapse to a
single curve. This shows that the mechanism of natural convection
on a vertical surface dominates in this range of inclinationwhile the
horizontal mechanism comes into play in the range g < 42�.
Extensive computations show that the range of inclination angles
for which the vertical mechanism dominates is increased as the
Fig. 7. Reduced local Nusselt number versus inclination angle for an isothermal surface
at Pr ¼ 1 and X ¼ 1.
Prandtl number increases. For Pr ¼ 100, the curves for different Grx
collapse to a single curve in the range 15��g�90�. However, for
Pr¼ 0.01, this range decreases to 83� � g� 90�. It was also found in
the course of the present study that the scaling of Nux with Gr1=5x
does not result in a single curve for different Grx values at in-
clinations other than the horizontal.

Fig. 8 shows the variation of Nux with inclination angle on an
isothermal surface for different values of the Prandtl number,
Grashof number being kept at a fixed value. As Pr increases, Nux
increases for all inclinations of the isothermal surface. However,
this figure is unable to provide precise quantitative information
about Nux at values of Pr other than those mentioned in the figure.
Therefore, the Nusselt number needs to be scaled with the Prandtl
number (in addition to the scaling with the Grashof number, which
has been illustrated in Fig. 7) in such a way that the four curves
would tend to collapse to a single curve. In that way, Nux can be
determined for any value of Grx and Pr for different inclination
angles from that single curve.

The local Nusselt number on an isothermal vertical surface
(Nux,vt) is given by Equation (27). It was found in Fig. 7 that the
natural convectionmechanism on a vertical surface dominates over
a range of inclination angles while there is no such dominance of
the horizontal mechanism. Hence, it is proposed that Nux be scaled
with Nux,vt.
Fig. 9. Reduced local Nusselt number versus inclination angle for an isothermal sur-
face at Grx ¼ 106 and X ¼ 1.
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A plot of Nux/Nux,vt with the inclination angle g shows that the
curves for Pr ¼ 0.7, Pr ¼ 7 and Pr ¼ 100 collapse to a single curve in
the range 30� � g� 90�, while the curve for Pr¼ 0.01 deviates from
the group for g < 80�. However, it is not possible to ascertain the
range of inclination angle for which the vertical mechanism of
natural convection dominates for various values of Pr. In order to
address this issue, it is recognized that, for an inclined surface, only
a component of gravity acts along the surface. Thus, if the con-
vection mechanism on a vertical surface is the dominating factor at
other inclinations also, then g in the Grashof number can be
replaced by gsing. Thus a new scaling factorNux,vt(sing)1/4 was tried
and the results are shown in Fig. 9.

Owing to the division by sing, the scaled Nusselt number is
undefined at g ¼ 0�, and the curves in Fig. 9 are shown for
1� � g� 90�. Although the curves in Fig. 9 show upward trend near
g ¼ 0�, it should be remembered that the actual values of Nux for a
horizontal surface is always smaller than that for a vertical surface
for given values of Grx and Pr (see Figs. 6 and 8). A horizontal line in
Fig. 9 with ordinate value equal to unity signifies that the mecha-
nism for natural convection on a vertical surface drives the
convective flow. For Pr ¼ 0.01, the curve deviates from unity at
around g ¼ 60�. However for Pr ¼ 0.7, Pr ¼ 7 and Pr ¼ 100, the
curves remain parallel to the g axis at an ordinate value of unity in
the range 15� � g � 90�. This establishes the rationale for why
previous studies (e.g. Chen et al. [25]) had to use two separate
correlations for the ranges 0� � g � 15� and 15� � g � 90�. Our
study also shows that such a division of range in inclination angle is
valid at moderate to high Prandtl numbers and would break down
when the Prandtl number is low. This has not been identified in the
work of Chen et al. [25] since they performed the calculations only
at two Prandtl numbers (Pr ¼ 0.7 and Pr ¼ 7).

There is a second subtle point which depends on the value of
Grx. Fig. 9 is drawn for Grx ¼ 106. When similar calculations are
repeated at other values of Grx, it is found that the curves for
Pr ¼ 0.7, Pr ¼ 7 and Pr ¼ 100 start deviating from each other at
different values of g (i.e. the angle 15�, mentioned in the previous
paragraph, is not a sacrosanct value). The general trend is that as Grx
is decreased, the demarcating angle increases. This trend can also
be appreciated from an inspection of Fig. 7.

It is worth mentioning here that the proposed scaling laws ac-
count for the variation of Prandtl number through the vertical
surface Nusselt number Nux,vt which is a function of Pr (see Equa-
tion (27)). Therefore, the scaling laws have been explored for a
range of values of Gr and Pr.

3.4. Proposed correlations: Nux ¼ f(Grx,Pr,g) or Nux ¼ f
	
Gr*x ; Pr;g



From a practical, engineering point of view it is useful to

formulate a correlation of the form Nux ¼ f(Grx,Pr,g) or
Nux ¼ f

	
Gr*x ; Pr;g



, Grx being used when surface temperature is

specified and Gr*x being used when surface heat flux is specified.

3.4.1. Correlation of Type I
It was proposed by Churchill [33] that the local Nusselt number

for mixed convection laminar boundary layer flows can be corre-
lated very well by combining the local Nusselt number for pure
forced convection and that for pure natural convection. Taking cue
from this and a few other studies [23,24], correlations of the
following form are proposed for the local Nusselt number for in-
clined isothermal surfaces by combining the local Nusselt numbers
for the vertical and horizontal orientations:

�
Nux;tðGrx; Pr;gÞ

�n ¼ �Nux;htðcosgÞ1=5 �n þ �Nux;vtðsingÞ1=4 �n:
(31)
In our formulation, Nux, ht is given by Equation (29) and Nux, vt is
given by Equation (27). It is to be noted that the Prandtl number
dependence in Equations (29) and (27) is mathematically deduced.
The Nusselt number given by Equation (31) correctly reduces to
Nux, ht at g¼ 0� and toNux,vt at g¼ 90�. A comparison of the present
numerical results and the prediction of Equation (31) shows that
n ¼ 5 is a good choice and keeps the prediction of the correlation
within ±2% of the numerical results for the ranges of parameters
investigated (103 � Grx � 107, 0.01 � Pr � 100, 0� � g � 90�).

Similarly, taking cue from previous studies, the following cor-
relation is proposed for surfaces with constant heat flux:

�
Nux;q

	
Gr*x ; Pr;g


 �n ¼
h
Nux;hqðcosgÞ1=6

in þ �Nux;vqðsingÞ1=5 �n:
(32)

Nux,hq is given by Equation (30) and Nux,vq is given by Equation (28).
It is to be noted that the Prandtl number dependence in Equations
(30) and (28) ismathematically deduced. The Nusselt number given
by Equation (32) correctly reduces to Nux, hq at g ¼ 0� and to Nux,vq
at g ¼ 90�. A comparison of the present numerical results and the
prediction of Equation (32) shows that n ¼ 6 is a good choice and
keeps the prediction of the correlationwithin ±1% of the numerical
results for the ranges of parameters investigated (103 � Gr*x � 107,
0.01 � Pr � 100, 0� � g � 90�). However, the form of the above
correlations makes it difficult to establish the dominating convec-
tionmechanism prevalent for a particular inclination of the surface.
Consequently, an attempt is made below to propose correlations
which give a direct indication of the dominating convection
mechanism.

3.4.2. Correlation of Type II
One can also formulate a different form of correlations (referred

to as Type II here), where the cue is taken from Figs. 7 and 9. One
advantage of this type of correlation is that direct physical inter-
pretation of the terms is possible and it is easier to relate the cor-
relation tothebehaviourobserved in Figs. 7 and9andsimilarfigures.
Fig. 9, for example, clearly shows that, at moderate to high Prandtl
number, the actual variation of the Nusselt number is captured well
byNux,vt(sing)1/4 overa large rangeof inclinationangles exceptwhen
the inclination is close to the horizontal. The range of inclination
angles (close tog¼ 0�) overwhichdeviation is observed increases in
extent as either the Prandtl number or the Grashof number de-
creases. In order to capture this behaviour, it is postulated here that
the generic form of the correlations of Type II would be:

Nux ¼ Nux;vðsin gÞn1 þ c Nux;h ; (33)

where,

c ¼ expð � gn2=bÞ: (34)

The exponential form for c is postulated from the features of
Fig. 9, explained previously. The exponent n1 in Equation (33) de-
pends on the surface boundary condition (i.e. whether temperature
or heat flux is specified), as we have already found. It is anticipated
that n2 in Equation (34) will also depend on the surface boundary
condition, though n2 may not necessarily be the same as n1. It is
expected that b in Equation (34) will be a function of Grx (or Gr*x)
and Pr, and, it is hoped that b is not a function of g. The particular
form assumed for c, through Equation (34), ensures that c possesses
the correct behaviour in two known limits, viz. c / 1, as g / 0�,
and, c / 0, as g / 90�.

On the basis of a large number of computations, the following
specific forms of Equation (33) are developed for the isothermal
and constant-heat-flux cases.



Fig. 10. Dependence of the relative force components for natural convection on in-
clined isothermal surfaces on the Prandtl number and the Grashof number. Term II,
Term III and Term IV represent the forces due to 'indirect pressure difference', ‘direct
buoyancy’ and ‘viscous effects’ respectively, as shown in Equation (18).
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Isothermal case:

Nux ¼ Nux;vtðsin gÞ1=4 þ cNux;ht (35)

c ¼ exp
�
� g2=5 =b

�
(36)

b ¼ 2:023
�
Pr2 Grx

��0:064
: (37)

g in Equation (36) is to be expressed in degree. Nux, vt is given by
Equation (27) and Nux,ht is given by Equation (29). The Nusselt
number given by Equation (35) correctly reduces to Nux,ht at g ¼ 0�

and to Nux,vt at g ¼ 90�. A comparison of the present numerical
results and the prediction of Equation (35) shows that the
maximum error is within ±3% of the numerical results for the
ranges of parameters investigated (103 � Grx � 107, 0.01� Pr� 100,
0� � g � 90�). The maximum deviation is found to occur at low
Grashof number and high Prandtl number.

Constant-heat-flux case:

Nux ¼ Nux;vqðsin gÞ1=5 þ cNux;hq (38)

c ¼ exp
�
� g1=3 =b

�
(39)

b ¼ 1:7219
�
Pr2 Gr*x

��0:0454
: (40)

g in Equation (39) is to be expressed in degree. Nux,vq is given by
Equation (28) and Nux,hq is given by Equation (30). The Nusselt
number given by Equation (38) correctly reduces to Nux,hq at g ¼ 0�

and to Nux,vq at g ¼ 90�. A comparison of the present numerical
results and the prediction of Equation (38) shows that the
maximum error is within ±4% of the numerical results for the
ranges of parameters investigated (103 � Gr*x � 107, 0.01� Pr
�100, 0� � g � 90�). The maximum deviation is found to occur at
low Grashof number and low Prandtl number.

It is to be noted that, unlike several empirical formulae available
in the literature, Equations 27e30 giving the Grashof number and
Prandtl number dependence in the vertical and horizontal limits
(Nux,vt,Nux,ht,Nux,vq,Nux,hq) are the results of rigorousmathematical
derivation.

3.5. Mechanisms of natural convection

The physical mechanism of natural convection on a vertical
surface is very different from that over a horizontal surface. For a
vertical surface, buoyancy is generated because of the temperature
difference between the surface and the fluid. The buoyancy force is
parallel to the surface and creates fluid motion along the vertical
surface that carries away heat from the surface (when the surface is
hotter than the surrounding fluid) or supplies heat to the surface
(when the surface is colder than the surrounding fluid). On a hor-
izontal surface, the buoyancy force is perpendicular to the surface.
The natural convectivemotion along the horizontal surface is set up
by an indirectly generated pressure difference [11]. The governing
Equation (18) derived in this paper beautifully captures this stark
difference in the mechanisms of natural convection. For a vertical
surface (i.e. g ¼ 90�), the Term II in Equation (18), representing the
indirect pressure difference, drops out and the sole cause for the
generation of natural convection on a vertical surface becomes the
Term III, i.e. the direct buoyancy force. For a horizontal surface (i.e.
g ¼ 0�), on the other hand, the Term III in Equation (18), repre-
senting the direct buoyancy force, drops out and the sole cause for
the generation of natural convection on a horizontal surface be-
comes the Term II, i.e. the indirect pressure difference. For surfaces
at intermediate angles, both source terms (i.e. Term II and Term III)
are operative, but through a comprehensive analysis we have been
able to establish the generic trend in the relative magnitudes of the
two source terms as a function of Grashof number, Prandtl number
and inclination angle.

Fig. 10 demonstrates the influence of the Prandtl number of the
fluid and the inclination angle of the solid surface on the relative
importance of the components of forces that set up the natural
convective flow, viz. the direct buoyancy force (represented by
GrL sin g

3 D in Equation (18)), viscous force (represented by Ux
D in

Equation (18)) and the force due to indirect pressure difference

(represented by GrL cos g
12

d
dx ðD

2Þ in Equation (18)). It may be observed
that for a given value of the Grashof number and at a given distance
from the leading edge, these forces depend on the inclination of the
surface g and the thickness of the boundary layer D. The value of D
is a function of the Grashof number, distance from the leading edge
and the Prandtl number (see Equation (19)). Thus, though the
Prandtl number does not appear explicitly in the expressions of the
forces, its effect on the relative importance of the forces (which
determines the dominating mechanism) is present through the
value of D. As explained previously, when the direct buoyancy force
dominates (i.e. it is approximately an order of magnitude greater
than its counterpart), the mechanism of natural convection on a
vertical surface mainly drives the convective flow. On the other
hand, when the force due to the indirect pressure difference
dominates, the mechanism of natural convection on a horizontal
surface is the main driving force. The viscous force, however, op-
poses the flow for any surface configuration. Fig. 10a shows that, for
Pr¼ 0.01, the direct buoyancy force and the force due to the indirect
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pressure difference are comparable over almost the entire range of
inclination angles except when g is close to either 0� or 90�, and the
vertical mechanism dominates for only near vertical configurations
(i.e. when g~90�). As a result, the scaling law explored in the pre-
vious section (using Nux, vt (sing)1/4 as the scaling factor) works for
only a small range of inclination angles close to the vertical
configuration. For Pr ¼ 1 and Pr ¼ 100, according to Fig. 10b and c,
the direct buoyancy force dominates over the force due to indirect
pressure difference over a greater range of inclination angles. This
signifies that the mechanism of natural convection on vertical
surfaces drives the convective flow for even inclination angles as
low as g~40�. This establishes the reason for the scaling factor of
Nux,vt(sing)1/4 working over a greater range of inclination angles for
moderate to high Prandtl numbers (as seen in Fig. 9). The consid-
erably greater magnitudes of the relative force components for
Pr¼ 0.01 (see the y-axis labels in Fig. 10a, as compared to the y-axis
labels in Fig.10b and c)may be attributed to the reduced viscosity at
low Prandtl numbers.

Fig. 10 also includes the effect of Grashof number on the varia-
tion of relative force components; the computations being carried
out at two values of Grashof number (104 and 105). It is found that
the cross-over point (the point at which Term II ¼ Term III, i.e. the
direct bouyancy is equal to indirect pressure difference) occurs at a
lower value of g as the Grashof number is increased, i.e. the hori-
zontal convectionmechanism loses its relative importance closer to
the horizontal orientation as the Grashof number is increased. This
shifting of the cross-over point is more pronounced as the Prandtl
number decreases.

4. Conclusion

In the present study we have formulated, for the first time, a
unified integral theory (with optimized orders of velocity and tem-
perature profiles) for natural convection on an arbitrarily inclined
surface, both for specified variation in surface temperature
(Tw(x) ¼ T∞þf1(x)) and surface heat flux (qw ¼ f2(x)), such that the
Nusselt number matches with results obtained from the similarity
analysis in the limiting cases of vertical and horizontal surfaces. The
predictions of the present formulation also agree well with previous
computational and experimental results at intermediate angles of
inclination between the vertical and the horizontal. f1(x) or f2(x) can
be any arbitrary function, including power law variation, and rep-
resents a differentially heated surface. The strength of the present
theory lies in its simplicity while its predictions agree with more
complex computations and experiments. The other strength of the
present theory lies in its unified nature so that the same set of
Equations [(14) and (15)] are applicable for any value of the incli-
nation angle (between the vertical and horizontal), Grashof number
and Prandtl number, and, can accommodate arbitrarily complex
surface boundary conditions. Another important feature of the pre-
sent integral theory is that Equations (14) and (15) can accommodate
arbitrary orders of polynomials (l and c) representing the velocity
and temperature profiles, and optimumvalues for l and c have been
systematically determined for various boundary conditions (i.e.
l ¼ 4, c ¼ 2 for isothermal case and l ¼ 3, c ¼ 2 for constant-heat-
flux case). As far as we know, only reference [9] and the present
paper have tried to optimize the velocity and temperature profiles
for the integral analysis of natural convection. All other references
and textbooks seem to adopt, without questioning, the values l ¼ 3,
c ¼ 2 for all boundary conditions and all Prandtl numbers.

It is shown that for a vertical surface, the natural convective
motion parallel to the surface is created due to buoyancy force, but
for a horizontal surface, the natural convective motion parallel to
the surface is created due to an indirect pressure difference. The
governing Equation (18) or (21) derived in this paper beautifully
captures this stark difference in the mechanisms of natural con-
vection. For a vertical surface (i.e. g ¼ 90�), the Term II in Equation
(18) [or (21)], representing the indirect pressure difference, drops
out and the sole cause for the generation of natural convection on a
vertical surface becomes the Term III, i.e. the direct buoyancy force.
For a horizontal surface (i.e. g ¼ 0�), on the other hand, the Term III
in Equations (18) [or (21)], representing the buoyancy force, drops
out and the sole cause for the generation of natural convection on a
horizontal surface becomes the Term II, i.e. the indirect pressure
difference. For surfaces at intermediate angles, both source terms
(i.e. Term II and Term III) are operative, but through a compre-
hensive analysis we have been able to establish the generic trend in
the relative magnitudes of the two source terms as a function of
Grashof number, Prandtl number and inclination angle (Figs. 7e10).

In the limiting cases of vertical and horizontal surfaces, self-
similar solutions exist, and Equations (14) and (15) lead to closed-
form analytical relations for the Nusselt number, as given in Section
3.2. At all other intermediate values of inclination angle, the solu-
tions are non-similar, and Equations (14) and (15) are integrated
numerically.

Usually previous computational or experimental results are
presented in the form of Nusselt number versus Grashof number (or
Rayleigh number), with the inclination angle as a parameter. We
have, however, used the inclination angle as the abscissa whenever
possible. We believe this new representation of the results brings
out more powerfully the role of inclination angle in determining the
heat transfer rate as well as the mechanism of natural convection.

It is shown that for high Prandtl number fluids, the natural
convection mechanism for vertical surface is the dominating factor
for a large range of inclination angles except for near horizontal
configurations. The range of inclination angles for which the ver-
tical solution predominates decreases as the Prandtl number de-
creases. For very low Prandtl number fluids at low Grashof number,
the vertical mechanism applies only to nearly vertical surfaces. A
physical explanation for such behaviour is discovered here in terms
of the relative magnitudes of the buoyancy and indirect pressure
difference. Compact scaling laws for significant data reduction are
proposed and explained. New algebraic correlations have been
developed that give Nusselt number as explicit functions of Grashof
number, Prandtl number and inclination angle, validated over the
ranges 103 � Gr � 107, 0.01 � Pr � 100 and 0� � g � 90�.
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Appendix A. Determination of the appropriate temperature
and velocity profiles

Temperature profile

In order to solve the boundary layer equations, suppose the
temperature profile is approximated by a second order polynomial
of the form

T ¼ C1 þ C2yþ C3y
2: (A1)

The boundary conditions for Equation (A1) are
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At y ¼ 0; T ¼ TwðxÞ ¼ T∞ þ f1ðxÞ or qw ¼ �k
vT
vy

¼ f2ðxÞ;

(A2a)

At y ¼ d; T ¼ T∞; (A2b)

At y ¼ d;
vT
vy

¼ 0: (A2c)

The three conditions given by Equation (A2) are used to deter-
mine the constants C1, C2 and C3. The temperature distribution is
obtained as,

q

qw
¼ T � T∞

Tw � T∞
¼
h
1� y

d

i2
; (A3)

where qw depends on the surface boundary condition as follows:

For specified wall temperature; qw ¼ f1ðxÞ: (A4a)

For specified surface heat flux; qw ¼ 1
2
f2 xð Þ d

k
: (A4b)

The asymptotic nature of the temperature profile at y ¼ d in-
dicates that all higher order derivatives of temperature (vnT/vyn) can
be set to zero at y ¼ d, where n ¼ 2,3,4…,etc. Hence, higher order
temperature profiles (e.g. cubic, quartic, etc.) can be assumed for
solving the boundary layer equations, with the additional
boundary conditions obtained from the above-mentioned feature
(e.g. v2T/vy2 ¼ 0 at y ¼ d for the cubic profile). Temperature profiles
obtained by assuming higher order polynomials are listed in
Table A1.
Table A1
Details of the temperature profiles obtained by using polynomials of different orders.

c Temperature profile Expression for qw

Specified wall temperature Specified surface heat flux

2 q
qw

¼
h
1� y

d

i2 f1(x) 1
2f2ðxÞ dk

3 q
qw

¼
h
1� y

d

i3 f1(x) 1
3f2ðxÞ dk

4 q
qw

¼
h
1� y

d

i4 f1(x) 1
4f2ðxÞ dk

5 q
qw

¼
h
1� y

d

i5 f1(x) 1
5f2ðxÞ dk
The method of mathematical induction is used to arrive at a
generic temperature profile from the profiles listed in Table A1. The
generic form of the temperature profile for a polynomial of order c
is given by

q

qw
¼
h
1� y

d

ic
; (A5)

where qw depends on the surface boundary condition as follows:

For specified wall temperature; qw ¼ f1 xð Þ: (A6a)

For specified surface heat flux; qw ¼ 1
c
f2 xð Þ d

k
: (A6b)

Equations (A5), (A6a) and (A6b) are the same as Equations (6),
(7a) and (7b) respectively given in the main text.
Velocity profile

In order to solve the boundary layer equations, suppose the
velocity profile is approximated by a third order polynomial of the
form

u ¼ C4 þ C5yþ C6y
2 þ C7y

3: (A7)

The boundary conditions for Equation (A7) are

At y ¼ 0; u ¼ 0 (A8a)

At y ¼ d; u ¼ 0; (A8b)

At y ¼ d;
vu
vy

¼ 0: (A8c)

In order to determine the four constants in Equation (A7), one
more boundary condition is required. This is derived by substitut-
ing Equation (9) into Equation (2), given in the main text, which
gives,

At y ¼ 0;
v2u
vy2

¼ �gb
y

�
cos g
ðcþ 1Þ

d
dx

ðdqwÞ þ qw sin g

�
(A8d)

Leibniz's rule has been applied in deriving Equation (A8d).
The four conditions given by Equation (A8) are used to deter-

mine the constants C4, C5, C6 and C7. The velocity distribution is
obtained as
u
ux

¼ y
d

�
1� y

d

�2
; (A9)

where,

ux ¼ d2

4y
gb
�
cos g
ðcþ 1Þ

d
dx

ðdqwÞ þ qw sin g

�
: (A10)

The asymptotic nature of the velocity profile at y ¼ d indicates
that all higher order derivatives of velocity (vnu/vyn) can be set to
zero at y ¼ d, where n ¼ 2,3,4…,etc. Hence, higher order velocity
profiles can be assumed for solving the boundary layer equations,
with the additional boundary conditions obtained from the above-
mentioned feature (e.g. v2u/vy2 ¼ 0 at y ¼ d for the quartic profile,
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v3u/vy3 ¼ 0 at y ¼ d for a profile of order five, etc). The velocity
profiles obtained by assuming different order of polynomials are
listed in Table A2.
Table B1
The functional dependence of the constants a1 and a2 used in Equation (B3), and a3
and a4 used in Equation (B4) for a few combinations of c and l.

c l a1 a2 a3 a4

2 3 0.508 20/21 0.616 4/5
4 0.467 5/9 0.576 7/15
5 0.430 112/297 0.544 784/2475
6 0.408 40/143 0.517 168/715
7 0.386 20/91 0.494 12/65
8 0.367 55/306 0.475 77/510

3 3 0.589 2 0.694 42/25
4 0.548 10/9 0.655 14/15
5 0.510 8/11 0.623 168/275
6 0.487 75/143 0.596 63/143
7 0.324 110/273 0.572 22/65
8 0.440 11/34 0.552 231/850

Table A2
Details of the velocity profiles obtained by using polynomials of different orders.

l Velocity profile Expression for ux

3 u
ux

¼ y
d

�
1� y

d

�2
ux ¼ d

2

4y gb
�
cos g
ðcþ1Þ

d
dx ðdqwÞ þ qw sin g

�
4 u

ux
¼ y

d

�
1� y

d

�3
ux ¼ d

2

6y gb
�
cos g
ðcþ1Þ

d
dx ðdqwÞ þ qw sin g

�
5 u

ux
¼ y

d

�
1� y

d

�4
ux ¼ d

2

8y gb
�
cos g
ðcþ1Þ

d
dx ðdqwÞ þ qw sin g

�
6 u

ux
¼ y

d

�
1� y

d

�5
ux ¼ d

2

10y gb
�
cos g
ðcþ1Þ

d
dx ðdqwÞ þ qw sin g

�
7 u

ux
¼ y

d

�
1� y

d

�6
ux ¼ d

2

12y gb
�
cos g
ðcþ1Þ

d
dx ðdqwÞ þ qw sin g

�
8 u

ux
¼ y

d

�
1� y

d

�7
ux ¼ d

2

14y gb
�
cos g
ðcþ1Þ

d
dx ðdqwÞ þ qw sin g

�

The method of mathematical induction is used to arrive at a
generic velocityprofile fromtheprofiles listed inTableA2. Thegeneric
form of the velocity profile for a polynomial of order l is given by

u
ux

¼ y
d

�
1� y

d

�l�1
; (A11)

where,

ux ¼ d2

2ðl� 1Þy gb
�
cos g
ðcþ 1Þ

d
dx

ðdqwÞ þ qw sin g

�
: (A12)

Equations (A11) and (A12) are the same as Equations (10) and
(11) given in the main text.

Appendix B. Optimization of the velocity and temperature
profiles for integral analysis of natural convection past a
vertical surface

As derived in Appendix A, the generalized temperature and
velocity profiles for natural convection past vertical surfaces are as
follows:

q

qw
¼
�
1� y

d

�c
(B1)

u
ux

¼ y
d

�
1� y

d

�l�1
(B2)

Textbooks on natural convection provide integral formulation
only for the case c ¼ 2, l ¼ 3. Reference [9] gives the mathematical
details of how to formulate additional boundary conditions for
higher values of c and l, and how to solve the integral conservation
equations that then arise. The procedure involves considerable
algebraic manipulations; only the final results are quoted here. It is
found that, like the case of horizontal surfaces described in Ref. [9],
the final results for the local Nusselt number in the case of vertical
surfaces can also be expressed as closed-form analytical
expressions given below as Equation (B3) for isothermal vertical
surface and Equation (B4) for vertical surface with constant-heat-
flux:

Isothermal vertical surface : Nux;vt ¼ a1

�
GrxPr2

a2þPr

�1=4

(B3)

Constant heat flux vertical surface : Nux;vq ¼ a3

�
Gr*xPr

2

a4 þ Pr

�1=5

(B4)

The values of the constants a1 and a2 used in Equation (B3), and
a3 and a4 used in Equation (B4), depend on the choice of c and l

used, the functional dependence for a few combinations of c and l

are shown in Table B1.
It is found that as the order of the polynomial (l) representing
the velocity profile is increased, the velocity profile becomes
steeper at the surface and the velocity goes to zero more gradually
at y ¼ d [9,32]. A greater slope of the assumed velocity results in a
lower value of the predicted Nusselt number than the actual value.
Therefore, for Pr << 1 (for which Nux is small), high values of l
improve the prediction of Nux. However, for Pr� 1 (for which Nux is
relatively greater), the Nusselt number may be under-predicted by
high values of l.

Different values of c and l are used to evaluate the value of
Nux=Gr

1=4
x for an isothermal surface, and some of the results ob-

tained are tabulated alongside the results given by similarity anal-
ysis in Table B2. It is found that for Pr ¼ 0.01, a combination of c ¼ 3
and l ¼ 6 predicts the value of Nux=Gr

1=4
x most accurately. For

Pr¼ 1, the prediction is most accuratewhen c¼ 2 and l¼ 4 are used
for the temperature and velocity profiles respectively. Using c ¼ 2
and l¼ 3 gives the bestNux=Gr

1=4
x prediction for Pr¼ 100. However,

in order to choose the optimum velocity and temperature profiles
for a range of Pr, both attaining maximum accuracy in determining
Nux at a particular Pr andminimizing the errors incurred at all other
values of Pr should be given importance. Hence, it is concluded that
if a particular combination of c and l is to be selected for the entire
range of Prandtl number considered in this study (0.01 � Pr � 100),
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then the optimum choice is c ¼ 2 and l ¼ 4.
Table B2
Comparison of Nux=Gr

1=4
x obtained from the present integral analysis with those given by similarity analysis for different order polynomial approximations of the velocity and

temperature for an isothermal vertical surface.

Pr Similarity solution [1] c ¼ 2 c ¼ 3

l ¼ 3 l ¼ 4 l ¼ 6 l ¼ 3 l ¼ 4 l ¼ 6

0.01 0.0570 0.0513 0.0539 0.0556 0.0495 0.0533 0.0569
1 0.4010 0.4298 0.4181 0.3836 0.4475 0.4546 0.4383
100 1.5470 1.6023 1.4736 1.2893 1.8534 1.7281 1.6380
A similar study is also performed for a vertical surface subjected
to a constant heat flux. The values of Nux=Gr

*1=5
x obtained from the

present integral analysis for a few combinations of c and l are
tabulated alongside results of similarity analysis in Table B3. It is
found that for Pr ¼ 0.01, a combination of c ¼ 2 and l ¼ 6 predicts
the value of Nux=Gr

*1=5
x most accurately. For Pr¼ 1 and Pr¼ 100, the

best prediction is possible by using c ¼ 2 and l ¼ 3. Careful
observation of Table B3 shows that the improvement achieved for
Pr ¼ 0.01 by using l ¼ 6 is considerably smaller than the detri-
mental effects of such an assumption on the predictions for Pr ¼ 1
and Pr ¼ 100. Therefore, it is concluded that for a vertical surface
subjected to a constant heat flux, c ¼ 2 and l ¼ 3 are the optimal
choice for the temperature and velocity profiles respectively.
Table B3
Comparison of Nux=Gr

*1=5
x obtained from the present integral analysis with those given by similarity analysis for different order polynomial approximations of the velocity and

temperature for a vertical surface subjected to constant heat flux.

Pr Similarity solution [7] c ¼ 2 c ¼ 3

l ¼ 3 l ¼ 4 l ¼ 6 l ¼ 3 l ¼ 4 l ¼ 6

0.01 0.1149 0.1018 0.1059 0.1086 0.0990 0.1050 0.1061
1 0.5479 0.5477 0.5335 0.4956 0.5698 0.5741 0.5540
100 1.5455 1.5449 1.4455 1.2980 1.7374 1.6422 1.4958
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