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Abstract: The eigenvalues and eigenvectors of the Jacobian matrix of the homogeneously
condensing two-phase flow equations are derived. These are useful for all upwind schemes.
Details of the implementation in the Roe scheme are described. Example calculations for
condensing wet steam flow are provided, which compare well with the experimental results.
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1 INTRODUCTION

The upwind schemes [1–3] have become very
popular for engineering calculations of compressible
flow through passages of complex geometrical
shapes. In this note, new equations are derived so
as to make these established methods of compu-
tational fluid dynamics (CFD) to be applicable to
the numerical solution of condensing two-phase
flows. The developed numerical schemes can be
used for both the Euler and Navier–Stokes
equations.

The spatial discretization in the upwind schemes
critically depends on the characteristics of the flow.
An important component of the upwind schemes
is, therefore, the eigenvalues and eigenvectors of
the Jacobian matrix of the flow equations. The pre-
sent work shows how the eigenvalues and eigenvec-
tors alter when there are two phases present with
homogeneous condensation (the governing
equations for two-phase flow are different from
their counterparts for single-phase flow). Specific
details of the necessary changes are shown here for
the Roe scheme, but the derived eigenvalues and
eigenvectors are to be used with other upwind
schemes as well.

2 UPWIND SCHEMES FOR SINGLE-PHASE FLOW

The governing equations for a single-phase flow are
the Euler or Navier–Stokes (NS) equations, which
can be written in a two-dimensional conservative
form as follows
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S is the source term that distinguishes the NS from
the Euler equations (S ¼ 0 in Euler equations and S ¼

viscuous terms in NS equations).
Many methods have been developed for solving

equation (1) in the past decades. In the upwind
schemes, the value of a flux at any interface is con-
structed by combining the contributions from the
left-side and right-side grid points, according to the
characteristics of the flow equations. A piecewise
constant (first-order accuracy) or a linear (second-
order accuracy) distribution of variable W with the
shock discontinuities occurring at each cell interface
is used to obtain the Riemann solution. This idea has
been extended and improved by various investi-
gators including Roe [1].
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2.1 The Roe scheme

Considering Roe’s flux difference splitting, the flux
vector F on an interface is approximated by

F(WL, WR) ¼
1

2
½F(WL)þ F(WR)� j ~A(WL, WR)j

� (WL �WR)� (2)

Here, j ~A(WL, WR)j denotes the standard Roe matrix

~A(WL, WR)
��� ��� ¼ ~E � ~L

��� ��� � ~E�1

where ~L represents the eigenvalues of the Jacobian
matrix and ~E is the corresponding eigenvectors.

For the flux integration in the numerical
implementation for two-dimensional flow, a simpli-
fication results if the velocity is expressed in terms
of un and vn, where they are, respectively, perpen-
dicular and parallel to a face of control volume
under consideration. Then, in determining @F=@W ,
only the first column of F is relevant, as the second
column does not contribute to the flux integration
because the area perpendicular to vn is zero. With
this interpretation of the reference axes, the eigen-
values and eigenvectors are given by (without writing
the subscript n for brevity)

~L ¼ ~u� ~a, ~u, ~u, ~uþ ~a (3)

~E ¼
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The superscript � above the variables indicates
that they are Roe-averaged. The Roe-averaged value
for a generic variable X can be calculated as

~X ¼

ffiffiffiffiffi
rL

p
XL þ

ffiffiffiffiffi
rR

p
XRffiffiffiffiffi

rL
p

þ
ffiffiffiffiffi
rR

p (5)

One uses equation (5) to calculate ~u, ~v, and ~h.
~a is calculated from the relation ~a

2
¼ (g� 1)

½ ~h� (1=2)( ~u2
þ ~v

2
)�.

3 GOVERNING EQUATIONS FOR TWO-PHASE
VAPOUR–DROPLET FLOW

A two-phase medium with homogeneous conden-
sation (e.g. wet steam) consists of a very large
number of very small liquid droplets dispersed
within a vapour phase. In the absence of any velocity
slip between the two phases, it can be shown [4, 5]
that the overall conservation equations for the

vapour–droplet mixture can be expressed in the
same form as the single-phase equations
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However, the flow variables in equation (6)
represent the mixture properties and the mixture
may not be at thermodynamic equilibrium.

As the wetness fraction is small, and the density of
the liquid phase is usually very much greater than
that of the vapour phase, the volume occupied by
the droplets can usually be neglected. The mixture
density is then related to the vapour–phase density
by the following equation

r ¼
rg

1�w
(7)

The mixture total enthalpy and total energy are
calculated by combining the contributions from
each phase

h ¼ (1�w)hg þwhl (8)

e ¼ (1�w)eg þwel (9)

The thermodynamic non-equilibrium is reflected in
the fact thatw in equations (8) and (9) is not the equi-
librium value (for example, which can be obtained
from the standard Mollier charts), but must be calcu-
lated from separate rate equations. Similarly, the
enthalpy and energy terms in equations (8) and (9)
have to be calculated at the respective phase tempera-
tures (none of which may be equal to the saturation
temperature, corresponding to the local pressure).

The number of the droplets can be calculated by
integrating a suitable nucleation rate equation (e.g.
the classical homogeneous nucleation rate
equation). The sizes of the droplets, once nucleated,
are governed by the droplet growth equation (one
could use any suitable expression such as Gyarm-
athy’s law; see, for example, reference [6] for details).
Accounting for a large number of droplet groups in
CFD application can be time-consuming. An effec-
tive method of maintaining a poly-dispersed droplet
spectrum is given in reference [4]. A simpler
approach is to consider only the first four moments
of the droplet size distribution [7]. These moment
equations are constructed according to the droplet
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radius r raised to various powers. They describe the
number, the radius, the surface area, and the mass
of the droplets, and these correspond to r n, n ¼ 0,
1, 2, 3, respectively. The droplet moment equations
can be written as

@Q

@t
þ rG ¼ S� (10)
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S� is the source term of the liquid phase equations
and can be written explicitly as

S�1 ¼
4

3
rlpr

3
c J þ 4prlrQ2 _r

S�2 ¼ r2c J þ 2rQ1 _r

S�3 ¼ rcJ þ rQ0 _r

S�4 ¼ J

Each of the source terms S� contains two parts: the
first term represents the new droplets generated by
the nucleation process and the second term repre-
sents the contribution from the growth of existing
droplets.

If it is assumed that the vapour phase behaves as
an ideal gas, one can write the equation of state for
the vapour phase as

p ¼ rgRgTg (11)

Equation (6) is closed by an equation for the
pressure, which can be derived by combining
equations (7) to (9) and (11). The result is

p ¼ (g� 1)
1�w

1þw(g� 1)
e �

1

2
r(u2 þ v2)þ rwL

� �
(12)

Equation (12) reduces to the well-known result for
a single-phase perfect gas when w ¼ 0 is substituted
in it (representing the absence of the liquid phase). L
is the enthalpy of evaporation (L ¼ hg2 hl); for
consistency, it should be calculated as a function of
temperature. Equation (12) has been derived with
an assumption that the liquid phase properties
could be evaluated at the vapour temperature. This
slight approximation simplifies the determination
of the eigenvalues and the eigenvectors given later.

4 UPWIND SCHEMES FOR TWO-PHASE FLOW

For the numerical solution of a two-phase flow field,
eight equations (given by equations (6) and (10))
have to be solved together. Of course, many more
equations are required if the full poly-dispersed dro-
plet spectrum is to be retained in the calculation [4].

For upwind two-phase schemes, the determination
of the algebraic expressions for the eigenvalues and
eigenvectors of the Jacobian matrix @F=@W is needed
for the combined system of equations ((6) and (10)).
A two-phase factor w is introduced to simplify the
mathematical calculations. Here, w is defined as

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w

1þw(g� 1)

s
(13)

w is a function of the wetness fraction and the
specific heat ratio of the vapour phase. Equation (13)
shows that w ! 1 as w ! 0. The use of the factor w
in the pressure equation (equation (12)) simplifies
the algebra considerably.

The eigenvalues and eigenvectors of the Jacobian
matrix @F=@W can be determined by combining
equations (6) and (10), with the help of equations
(12) and (13). Algebra is involved, but with systematic
elimination (and patience), the final results could be
expressed in a neat form. Only the final results are
quoted here.

The eigenvalues of the Jacobian matrix are

L ¼ u� wa, u, u, u, uþ wa, u, u, u (14)

and the corresponding eigenvectors can be written
as a 8 � 8 matrix

E ¼

1 0 1 1

u� wa 0 u u

v v v v

h� uwa v2 h�
a2

g� 1
h� (1�w)L

w 0 w 1

Q2 0 0 0

Q1 0 0 0

Q0 0 0 0

2
666666666666664

1 0 0 0

uþ wa 0 0 0

v 0 0 0

hþ uwa 0 0 0

w 0 0 0

Q2 1 0 0

Q1 0 1 0

Q0 0 0 1

3
77777777777775

(15)

Modification of the upwind schemes 811

JPE146 # IMechE 2006 Proc. IMechE Vol. 220 Part A: J. Power and Energy



u and v in equations (14) and (15) should be
interpreted as perpendicular and parallel, respect-
ively, to a face of control volume under consider-
ation, as explained in the paragraph just before
equation (3).

5 SIMPLIFIED IMPLEMENTATION OF UPWIND
SCHEMES FOR TWO-PHASE FLOW

The 8 � 8 matrix given in section 4 is accurate, but a
computational scheme based on it might be time-
consuming and, in this section, it is shown how a
simpler approach is possible.

It is noticed that the wetness fraction w plays an
important role both in the phase-transition equations
(equation (10)) and in the dynamic equations
(Euler/NS given by equation (6)). Equations (6) and
(10) are fully coupled through the variable w. The
three other variables, i.e. Q0, Q1, and Q2, do not
directly appear in equation (6) and influence it only
implicitly through their effect on w. In the present
work, the authors, therefore, have taken the prag-
matic approach of solving equation (6) simul-
taneously with the equation that specifies the
evolution of the wetness fraction w. The three other
supplementary equations for the liquid phase
(giving Q0, Q1, and Q2 in equation (10)) are solved
separately. In the example calculations given in
section 6, the authors refer to this approach as ‘5–5
Roe scheme’.

The new form of the 5-element governing
equations (either Euler or NS) for the two-phase
flow is

@W

@t
þ rF ¼ S

W ¼

r

ru

rv

e

rw

2
666666664

3
777777775
, F ¼

ru rv

ru2 þ p ruv

ruv rv2 þ p

ruh rvh

ruw rvw

2
666666664

3
777777775

(16)

The same procedure, as described in section 4,
is applied for the algebraic determination of the
eigenvalues and eigenvectors for the 5 � 5 equation
system.

The eigenvalues of the resulting Jacobian matrix
are

L ¼ u� wa, u, u, u, uþ wa (17)

and the corresponding eigenvectors are

E¼

1 0 1 1 1
u�wa 0 u u uþwa

v v v v v

h�uwa v2 h�
a2

g� 1
h� (1�w)L hþuwa

w 0 w 1 w

2
6666664

3
7777775

(18)

Equations (17) and (18) are general and can be
used with any upwind scheme. In the two-phase
Roe scheme, each variable in equations (17) and
(18) has to be interpreted as Roe-averaged quantities.
In addition to ~u, ~v, and ~h, as shown in section 2, ~w is
also calculated using equation (5). However, the
enthalpy h applies to the mixture. Thus, although a
in equations (17) and (18) is still the speed of
sound in vapour alone (i.e. a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gp=rg

p
), the Roe-

averaged value of a, for the two-phase flow, is calcu-
lated from ~a

2
¼ (g� 1)½ ~h� (1=2)( ~u2

þ ~v
2
)þ ~wL�.

Equations (17) and (18) can be compared with
equations (3) and (4). The two-phase equations con-
tain 5 and 5 � 5 elements when compared with 4 and
4 � 4 elements in the single-phase equations. The
single-phase terms are recovered when w ¼ 0. The
characteristic speeds are different, as the speed of
sound in a vapour–droplet mixture differs from
that in the vapour alone.

Guha [5, 6] describes the various speeds of sound
in two-phase mixtures. Depending on the various
assumptions of mass, momentum, and energy trans-
fers between the two phases, four limiting speeds of
sound have been identified from the fully frozen
speed af to the fully equilibrium speed ae3. An inter-
mediate speed ae2 has been established in these
references, which corresponds to the equilibration
of droplet temperature and velocity slip but frozen
vapour thermal relaxation.

The present analysis shows that for the upwind
numerical schemes of two-phase flow, the character-
istics are altered and that the sonic speed in pure
vapour is modified by a factor w. As in the present
analysis also velocity equilibration between the two
phases has been assumed, the magnitude of w a is
close to ae2. However, w a and ae2 are not exactly
equal because a slightly simplified droplet tempera-
ture equilibration is used here. As explained after
equation (12), this slight simplification was neces-
sary so that explicit equations for the corresponding
eigenvectors could be determined.

The Roe scheme also needs the inverse of the
matrix given in equation (18). This can be deter-
mined numerically (e.g. by the Gauss–Jordan
method) at each interface of the control volumes at
each time step, but it would take significant
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computational time for doing so. Therefore, the alge-
braic elements of the inverse matrix were also deter-
mined, which reduce the computational time. The
algebraic components are, however, too lengthy to
reproduce here.

6 EXAMPLE CALCULATIONS

In section 5, the authors showed how to construct
the 5–5 Roe scheme for homogeneously condensing
two-phase flow. Some example calculations using
this scheme are shown in Figs 1 to 3. For this pur-
pose, a two-dimensional time-marching computer
program has been developed that works with
unstructured grids. All calculations are performed
on Barschdorff’s nozzle [8].

Figure 1 shows the convergence history of the
developed 5–5 Roe two-phase scheme. In the same
figure, only for the purpose of comparison, the con-
vergence history of another scheme – the ‘4–4 Roe
scheme’ – has also been included. A separate time-
marching computer program had to be written for
this. The philosophy of the 4–4 Roe scheme may be
explained as follows. As equation (6) is similar in
form to equation (1), which is extensively used for
single-phase calculations, it could be thought that
the eight equations for the two-phase flow could be
solved by a decoupled two-stage process. In the first
stage, equation (6) would be solved with assumed
liquid phase properties, and in the second stage,
this solution would be updated by the solution of
equation (10). One could then make straightforward
adaptation of the upwind schemes from single-
phase CFD for the solution of equation (6). This
approach is referred here as the ‘4–4 Roe scheme’.

Figure 1 shows that the convergence history of the
coupled two-phase solver (the 5–5 Roe scheme) is
better than that of the decoupled two-phase solver
(the 4–4 Roe scheme). Figure 2 shows the compari-
son of the numerical prediction of the pressure dis-
tribution calculated by the 5–5 Roe scheme with
experimental results. Figure 3 shows the two-dimen-
sional contour plot of the frozenMach number in the
nozzle, again calculated by the 5–5 Roe scheme for
the two-phase flow.

7 CONCLUSIONS

The eigenvalues and eigenvectors of the Jacobian
matrix of the homogeneously condensing two-
phase flow equations are derived. The eigenvalues
are essential for all upwind schemes. The

Fig. 2 Computed and measured static pressure

distributions along the axis of the Barschdorff

nozzle showing ‘condensation shock’ (inlet

p0 ¼ 78390 Pa and T0 ¼ 380.5 K)

Fig. 3 Mach number contour for wet steam

computation in the Barschdorff nozzle (inlet

p0 ¼ 78390 Pa and T0 ¼ 380.5 K)

Fig. 1 Comparison of the convergence history of 5–5

Roe scheme with 4–4 Roe scheme for wet

steamflow (inlet p0 ¼ 78390 Pa andT0 ¼ 380.5 K)
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eigenvectors are necessary for all flux-difference
upwind schemes (Roe and Osher) in the flux inte-
gration. The eigenvectors are also to be used in flux
vector splitting methods (van Leer, AUSM [9])
when implicit time integration [10] is used.

A two-dimensional time-marching computer pro-
gram, based on the 5–5 Roe scheme developed
here, has been written for homogeneously conden-
sing two-phase flows. The program works with
unstructured grids. A few example calculations for
wet steam are provided. The numerical predictions
compare well with the experimental results.
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APPENDIX

Notation

a speed of sound in the vapour phase
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gp=rg

p
A Jacobian matrix of the flow equations
cp specific heat at constant pressure
Cp pressure coefficient (defined as p/p0)
e total energy per unit volume
E eigenvectors
h total enthalpy per unit mass
J nucleation rate
L enthalpy of evaporation (L ¼ hg2 hl)
ni number of droplets in group i (per unit mass)
p static pressure
p0 total pressure
Q0 sum of the number of droplets per unit mass

(Q0 ¼ Sni)
Q1 sum of the radii of droplets per unit mass

(Q1 ¼ Sni ri)
Q2 sum of the surface area of droplets per unit

mass (Q2 ¼ 4pSni ri
2)

r average radius of droplet (r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=(4pQ0)

p
)

_r droplet growth rate (_r ¼ dr=dt)
ri droplet radius in group i
rc critical radius
Rg specific gas constant
t time
T0 total temperature
u x-component of velocity
v y-component of velocity
w wetness fraction
x distance along nozzle axis

g specific heat ratio of the vapour
L eigenvalues
w two-phase factor
r density

Subscripts

L variables on the left
R variables on the right
g vapour phase
l liquid phase

Superscript

� Roe-averaged
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