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SYNOPSIS  An unsteady one dimensional time-marching technique has been developed that can be employed for any type of
wet steam flow : nucleating or non-nucleating, subcritical or supercritical, steady or unsteady. It is robust, accurate, simple and
fast. The scheme uses a novel technique that performs the integration of the droplet growth equations along the fluid path lines
rather than the more usual method which involves freezing the gas dynamic flowfield instantaneously in order to perform the
integration. This allows simultaneous solution of all the relevant equations and thus the correct coupling between the vapour-
phase gasdynamics and the relaxation effects due to the droplets is maintained. The scheme maintains a polydispersed droplet
spectrum which is essential for modelling the nucleation zone accurately. Calculations based on the present scheme show good

agreement with experimental measurements, steady and unsteady, reported in the literature.

It is also shown how the unsteady condensation process due to supercritical heat addition may give rise to a polydispersed
droplet spectrum. This has a direci bearing on a possible explanation of the poly-dispersity measured in steam turbines ; a
polydispersity which cannot be predicted with existing steady flow calculation methods.

1 INTRODUCTION

The homogeneous condensation of pure steam in converging-
diverging nozzles can result in both steady and unsteady
modes of operation depending on the inlet stagnation
conditions of the steam. In the periodically unsteady mode of
operation, the inlet stagnation state is close to dry saturated
and homogeneous nucleation occurs in the transonic region
just after the nozzle throat. The resultant heat release causes a
compressive wave to develop of such a strength that a steady
operating position cannot be found. The wave therefore
propagates towards the nozzle throat, the subsequent pressure
rise causing a reduction in nucleation rate and hence heat
release rate. With the cause of its inception removed, the
strength of the wave decreases and the flow again expands
through the throat in a shock free manner thus allowing the
whole process to repeat itself.

Such types of instability due to supercritical heat addition
were first reported by Schmidt (1962), for the case of humid
air. High speed photography revealed the existence of
moving shock waves. Quantitative experiments were then
conducted by Barschdorff (1967,1970) both for humid air
and pure steam. He investigated two different nozzle shapes
and measured frequencies from 500 to 1000 Hz. In an
attempt to correlate the experimental measurements, Zierep
and Lin (1968) derived a similarity law to express the
dimensionless frequencies of the unsteady flow within certain
ranges of nozzle geometries and supply conditions. Wegener
and Cagliostro (1973) also carried out an experimental study
of unsteady moist air flows in nozzles using a special short-
duration supersonic wind tunnel, called a Ludwieg tube. This
provided a well-controlled flow that permitted operation with
increased relative humidities and pressures as well as variable
supply temperatures. In this way, the range of frequency
measurement was extended to about 6000 Hz. They also
carried out a dimensional analysis applicable to arbitrary
supply conditions and cooling rates at the nozzle throat.
However, data near the condition of incipient unsteady flow
and from one of the nozzles of Barschdorff (1970), which
had a low cooling rate, could not be correlated on a universal
plot of dimensionless frequency versus relative humidity.
This implied that the empirical relation is only valid for a
limited range of nozzle shape and supply conditions and in
cases where the unsteady flow is well established.
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Barschdorff and Filippov (1970) analyzed pressure and
density data, calculated shock positions in the nozzle, and
presented an approximate method for calculating the
frequency of oscillation. However, as noted by Wegener and
Cagliostro (1973), solutions of the full equations of motion in
conjunction with a rate equation for heat addition by
condensation are required for a full understanding. Since it is
not possible to solve the unsteady equations analytically, it is
necessary to resort to numerical calculations. Recently,
Skillings and Jackson (1987) have reported a time-marching
technique based on the MacCormack explicit scheme, which
is capable of dealing with unsteady nucleating flow. The
scheme generates 'ripples' before and after the shock wave,
however, and the solution procedure involves decoupling
between the phases which results in, to quote the authors, "a
diminished ability to predict unsteady flows". The gas field is
effectively fixed instantaneously in a pseudo-steady state
whilst the droplet growth integrations are performed.

In this paper, we describe a robust, one dimensional
time-marching technique that can be employed for any type of
wet steam flow : nucleating or non-nucleating, subcritical or
supercritical, steady or unsteady flow. The scheme uses a
novel technique that performs the integration of the droplet
growth equations along the fluid path lines rather than the
usual, quasi-unsteady, method of integration described
above®. This allows simultaneous solution of all the relevant
equations and enforces the correct coupling between the
vapour-phase gasdynamics and the relaxation effects due to
the presence of the liquid phase. The scheme also allows
retention of a polydispersed droplet spectrum (unlike most
existing one- and two- dimensional computer programs)
which is essential for modelling the nucleation zone
accurately. Calculations based on the present scheme show
much closer agreement with experimental measurements
reported in the literature.

* The term "path line" is used in its usual formal sense to describe
the locus of the position of a specified fluid particle on a time-
distance diagram. In the Skillings and Jackson method, the
pressure field was frozen at a given instant of time while the
growth of the liquid phase was calculated. This technique docs not
model the true unsteady flow correctly.
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2 GOVERNING EQUATIONS

Wet steam is assumed to be a homogeneous mixture of
vapour, at pressure p and temperature Tg, and spherical
droplets of various sizes. The continuous distribution of
droplets is discretized into a number of groups such that the
i th group contains nj droplets per unit mass of mixture of
radius r; and mass m; . The wetness fraction y; is then
the sum of contributions from all groups and is given by:
y= 2Zyi = Xnmj ¢))

If the vapour density is pg , the mixture density (neglecting
the volume of the liquid phase) is :

p = pg/(l-}') @
and the mixture specific enthalpy is :
h = (-y)hg + Tyih 3

where hg and h; are the specific enthalpies of the vapour
phase and ith group of droplets respectively.

For sub-micron size particles the slip velocity between
the two phases may be neglected. Therefore, only thermal
non-equilibrium i.e. differences in the temperatures of the
two phases will be considered here. Under such
circumstances the gas dynamic equations for inviscid
adiabatic unsteady two-phase flow can be written as :

Continuity ‘;—‘t’ + VY =0 @
Momentum %% +(VV)V + Y‘;g =0 (5)

Energy g{[p (e + \—'23)] +V. [pz (h + \12_2)] =0 (6

where V is the common velocity of the two phases and e is
the specific internal energy of the mixture.

Equations (4) - (6) are identical to those describing the
adiabatic flow of an inviscid single phase fluid. The
differences are apparent, however, when it is recalled that the
wetness fraction y in equations (2) and (3) is not necessarily
the equilibrium value and that hg and h; in equation (3) are
evaluated at temperatures 'Ig and T; which are not
necessarily equal to the local saturation value Ts.

2.1 Nucleation rate

The nucleation rate equation employed in the present work is
that described by Frenkel [see McDonald (1962-63) for a full
‘derivation] and later corrected by Kantrowitz for non-
isothermal effects [see Young (1982)]. The rate of nucleation
of embryonic droplets per unit volume, J, is thus given by

2
_ 20 P—g exp (_ 4nr*20) o
140 N 7md ot 3kTg

where o is the surface tension, pj is the liquid density, m
is the mass of a molecule, k is Boltzmann's constant, qc¢ is
the condensation coefficient and the non-isothermal correction

factor ¢ is given by
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where hgg is the specific enthalpy of evaporation, Ry is the

specific gas constant and 7y is the ratio of specific heat
capacities.

The critical radius r* is expressed as :

o = 20 T

= 8
p1 hgg AT ®

where AT, the degree of supercooling, is defined as AT =
Ts(p) - Ty, where Ts(p) is the saturation temperature
corrcsponging to pressure p. Many studies have established
the basic correctness of this nucleation rate equation, although
modifications to improve the accuracy are still being
suggested.

2.2  Growth of the liquid phase

As a result of the high latent heat of water, the growth rate of
liquid droplets in pure steam is limited not by the rate at
which vapour can reach the surface, but by the rate at which
heat can be conducted away from the droplet. The generally
accepted form of the droplet growth equation, valid over a
wide range of pressures and flow regimes (from free-
molecule to continuum), is that of Gyarmathy (1963).
However, in order to predict droplet radii which agree well
with experimental measurements, Young (1982) found that,
in the low pressure range, a higher growth rate than that
prescribed by Gyarmathy is necessary. He, therefore,
postulated that, under non-equilibrium conditions when net
condensation is occurring, the evaporation coefficient qe
falls below the condensation coefficient qc. Their relation to
each other was determined by introducing a droplet growth
parameter « , the value of which lay between 0 and 9,
depending on the prevailing pressure. Including this effect the
droplet growth equation takes the revised form:

(hg - hy) 25 hg (Ti-Ty)

Dt 1 Knj
Ii P1 (mK—nl'+ 3.78 (1- v) Pr_gl)

®

where Ag and Prg are the thermal conductivity and Prandtl
number of the vapour phase respectively and Kn; is the
Knudsen number of the droplets in the ith group given by :
Knj =1g / 2rj, lg being the mean free path of a vapour

molecule. v is given by

S

— g S _ _ gC Y+ IS E

where cp is the specific heat capacity of the vapour.

It is worth mentioning here that if one considers the net
bulk velocity of the gas molecules towards the droplet surface
when condensation is occurring (the Schrage effect) then the
mass transfer equation for the droplets gets multiplied by the
factor 2q¢/(2-qc). The value of the Schrage correction factor
becomes 2 if one assumes the value of the condensation
coefficient to be unity. This has prompted researchers to
introduce the correction factor 2 into the energy transfer
equation also and this has the effect of doubling the droplet
growth rate. However, if one carries out the kinetic theory
calculation meticulously it is found that the Schrage effect has
a negligible effect on the energy transfer between the two
phases and hardly influences the droplet growth rate at all.
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(The very small impact of the Schrage effect on the droplet
growth rate can be readily appreciated by examining the

expression for v given above.) Thus, for example, the factor
Sc in the expression for «; in the paper by Skillings and
Jackson(1987) is found to be an artificial factor designed to

double the droplet growth rate and is actually without any
physical basis whatsoever.

The growth rate of the liquid phase can be related to the
growth rate of individual droplets through equation (1).

Noting that the mass of a droplet of the ith group is given by :

mi= 4/3nr3p (11)
it follows that :
Dy _N\"Dyi _ \ 3y Drj
BYH-TE% o

where the differentiation with respect to time is the
D o
_D—[ = E+ y_V

[Note that, for the existing droplets, the nj's do not change,
because velocity slip between the two phases is assumed to
be negligible.]

substantive derivative, i.e.

By combining a mass transfer equation with Eqn (10),
Gyarmathy also showed that, to a good approximation, the
phase temperature difference is given by :

T; - Tg = AT - ATcap,i (13)
where ATcypi is the capillary supercooling of the droplet
given by :

201 TS

ATcap = ———— (14)
cap,i p1Tihrg

o; being the surface tension of the liquid at temperature Tj. It
is convenient to define a thermal relaxation time by :

1 Knj
(1-y) cpri2p1 (m* 3.78 (1-v) Wg') .

37‘g)’i

TTi=

Substituting Eqns. (9) , (13) and (15) into Eqn (12) gives :

(1-y) cp (AT - ATcap i) (16)

D .
(hg-h) it = -
T,

Eqn (16) shows that the time rate of change of y; following
a given fluid particle is directly proportional to the excess of
the vapour supercooling above the liquid capillary
supercooling and is inversely proportional to the thermal
relaxation time.

2.3 Thermal Non-Equilibrium

The secret of obtaining quantitative information about wet
steam flows is to obtain the variation of supercooling through
the expansion. Once this is known, all other variables can be
calculated comparatively easily. Normally the complete
system of gasdynamics and droplet growth equations are
solved numerically, but this can be a time-consuming
business, especially for a polydispersed flow with a large
number of droplet groups. A much simpler, semi-analytical
procedure is, however, possible under certain circumstances
(Young , 1984). Taking the scalar product of the momentum
Eqn (5) with V and combining Eqn (4) and Eqn (6) in the
usual way gives :
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Dh _ 1 Dp an

Introducing Eqn (3), the droplet growth Eqn (16) , the
Clausius-Clapeyron Equation and standard thermodynamic
relationships gives, after considerable algebraic manipulation,

D(AT -
GT) (T Aeyy) _ -

DIn(p)
T F De

where, F = —P——("—Ti-(l-yxaﬂg)gs—) (19)

" (-yepps (e P
¢ being the specific heat of the mixture,
c = (l-y)cp + Xyici (20)

oy is the coefficient of thermal expansion and for an ideal gas

04Tg = 1. Calculations presented in this paper assume that
the vapour is a semi-perfect gas with heat capacities as

functions of the temperature only. Tr and ATcap are the

thermal relaxation time and the capillary supercooling
applicable to the droplet spectrum as a whole and given by :

1.yL Q1)

T TT,i

T
ATcap = E ;I" ATcap,i (22)
T,i

Apart from very minor approximations, Eqn (18) is an
exact first order differential equation for the variation with
time of supercooling of a fluid particle and is valid for the
general case of unsteady, three dimensional flow. F is a
function predominantly of the saturation conditions and its
variation with pressure is very small. It is to be noted that the
contribution of freshly nucleated droplets has not been taken
into account in the above equation (for the computational
domain over which they have been nucleated). However,
because of their extremely small size, they account for a very
small proportion by mass of the liquid phase and the latent
heat released during their formation is also, correspondingly,
small.

For values of Tr which are small compared with the flow
transit time, Eqn (18) is the archetype of a mathematically
stiff differential equation. In these circumstances numerical
integration procedures using conventional finite differencing
would lead to unstable amplification of error unless very
small time increments were employed. One strategy to avoid
this problem is to integrate Eqn (18) analytically over time

increments such that Tr, ATcap and F Din(p) / Dt remain

approximately constant. As Tt changes only slowly through
an expansion, the size of increments is then dictated by the
rate of change of flow properties rather than by the relaxation
time. Applying this technique, the integration of Eqn (18)
gives,

AT = AToe Vo + tT(F15+&E)(1- e-thr)  (23)
i

where AT, is the supercooling at the start of the time
increment and P is the expansion rate defined by
Din(p) / Dt. The above semi-analytical method was suggested
by Young(1984) and can be extended to calculate the wetness
fractions by substituting Eqn (23) into Eqn (16) and
integrating the resulting equations in the same manner. The
result is :

169



1-y) ¢p ATcap.i 1-y)cptT
Vi = Yio - (1-y) pBlcap,i +( ¥)Cp .
hfg Tri hg T,
[(ATO-AT) + {F1'> 4+ ATcap } t] 4)
T

3 DEVELOPMENT OF A 'COMPUTATIONAL, WET-
STEAM BLACK-BOX'

It has already been shown that, if velocity slip is neglected,
the continuity, momentum and energy equations for the two-
phase, vapour-droplet flow become identical with their

single-phase counterparts if the mixture density p and
specific enthalpy h are used throughout. In this situation, the
thermodynamics of the problem can be almost completely
uncoupled from the gas dynamics. At any particular stage of
the iterative solution procedure, the current solution of the gas
dynamic equations provides a pressure distribution for input
to the thermodynamic routines which, in turn, provide
updated values of mixture density and specific enthalpy for
inclusion in subsequent iterations of the gas dynamic
routines. The overwhelming advantage of this approach is
that the computational section dealing with the
thermodynamic aspects is self-contained and can be easily
coupled with single-phase calculation schemes for the gas
dynamics which are already available.

Our objective, therefore, is to develop computer
subroutines for evaluating the thermodynamic equations (23)
and (24) for a given time increment over which the expansion
rate P is specified. At the start of the time increment the state
of the steam is completely specified by the pressure and
vapour supercooling, together with the droplet radius and
wetness fraction associated with each liquid group present.
The necessary calculations are then performed to evaluate the
vapour supercooling and droplet spectrum at the end of the
time-interval. We refer to these subroutines as a
‘computational, wet-steam black-box' and the mode of
operation is illustrated in Fig. (1).

For implementing this scheme, three different situations
have been recognized :

(1) Dry superheated or supercooled steam : This case arises
when the wetness fraction is zero and the nucleation rate is
less than a specified minimum value. (In this work,
nucleation is neglected if J<1015 nuclei / m3.s, as below this
value nucleation will have a negligible effect on the flow
behaviour.) In this case calculation is straight-forward. The
change in supercooling is obtained from the equation :

) l-ang]Qp_
CpPs De

D(AT)=[ Ts 1
Dr Pshfg cppg

and there is no need to calculate the droplet spectrum. It
should be noted that negative AT means that the vapour is
superheated.

(2) Wet Non-Nucleating Flow : This corresponds to the case
when the wetness fraction is greater than zero but the
nucleation rate is less than the specified minimum. In this
case the supercooling is determined by Eqn (23) and the
wetness fractions are calculated from Eqn (24). Since the
flow is non-nucleating, the droplet number per unit mass in
each group is conserved. From the computed wetness
fractions and droplet numbers, the radii of the droplets can be
found from the relationship y; = nj m; . Note that, in the
case of polydispersed flow, Eqn (24) represents a set of
equations, one for each droplet group. However, all the
common terms and those properties which do not change
appreciably have been grouped suitably and are calculated
once only so that the computational time for n droplet
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groups is considerably less than n times the computational
time for a single group.

(3) Nucleating Flow : In this case the nucleation rate is
greater than the specified minimum limit. Therefore, side by
side with the growth of existing droplets, if any, new
droplets of size r* [given by Eqn (8)] are nucleated at the
rate J [given by Eqn (7)]. Since the droplets grow rapidly,
the thermal relaxation time may vary considerably over these
time increments. Thus, the integrated forms of supercooling
and droplet growth equations [Eqns (23) and (24)] , which
assume a constant thermal relaxation time, are not used.
Instead, Eqns (18) and (9) are solved simultaneously by a
Fourth-order Runge-Kutta scheme. At the end of the time
increment a new droplet group consisting of those droplets
nucleated during the interval, is added.

Calculations in nucleating regions of the flow are more
time consuming than those in non-nucleating regions where
the integrated form of equations is applicable. Also, since a
new droplet group is nucleated over each time increment, the
number of droplet groups may become computationally
unmanageable. To alleviate this problem, a scheme has been
developed whereby droplet groups containing droplets of
approximately the same radius are merged into a single
group. However, a sufficient number of droplet groups
(typically 8-10) is always retained so that the accuracy of the
solution is not degraded. In this way the approximate shape
of the droplet spectrum is maintained without consuming
excessive CPU time or computer memory.

4 COUPLING OF THE 'WET-STEAM BLACK-BOX'
WITH A TIME-MARCHING METHOD FOR
SOLVING THE GAS DYNAMIC EQUATIONS

The 'wet-steam black-box' described in the previous section
can be used independently only if the local expansion rate is
prescribed. However, in general, the pressure distribution
specifying this parameter must be obtained from a solution of
the gas dynamic equations. For the calculations described in
this paper, the black-box was coupled to a one-dimensional
time-marching procedure similar to that which had been used
successfully for single-phase calculations.

Time dependent solutions of the Euler equations are now
widely used for the analysis of the flow through
turbomachinery blade rows. Their main attraction is their
ability to compute mixed subsonic-supersonic flows with
automatic capturing of shock waves. Since the droplet growth
laws are more easily applicable to individual fluid particles, a
mixed Eulerian-Lagrangian technique is used for the present
work. In this technique, the continuity and momentum
equations are solved in their usual Eulerian forms. However,
the energy equation in the Euler solver is effectively
substituted by the wet-steam black-box, thermodynamic
calculation® . At the end of a particular computational time-
step, the continuity and momentum equations furnish updated
values of density and velocity respectively. The wet-steam
black-box gives the vapour temperature T, (via the
supercooling) and all the wetness parameters. Finally, the
equation of state for the vapour gives an updated value of the
pressure. One is then ready to repeat the same calculation
procedures for the next computational element and so on.

The unsteady Eulerian flow equations for a one-
dimensional co-ordinate system applied, in integral form, to a
control volume AV over a time step At are as follows :

* A rather similar procedure is often used for computing isentropic
flows of a perfect gas when the cnergy equation is replaced by the
condition of constant cntropy along fluid path lines.
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Continuity Ap = Z(pVxdY) At/ AV

Momentum  A(pVx) = Z(p+pV2 )Y At/AV

where Vy is the flow velocity.

The Time-marching scheme employed is similar to that
of Denton(1983). The finite volume elements are formed such
that the grid points are at the faces of the control volumes.The
fluxes of mass and momentum through each face are then
found from the flow properties stored at the grid points.
These fluxes may then be used in the RHS of the continuity
and momentum equations to obtain the changes in p and Vx
for the element in time At. All the changes in flow properties
are then applied to the downstream node of the element.

Since the aim was to develop a scheme that would be
applicable to all flow regimes including steady and unsteady
supercritical regimes where shock waves are present, it was
found necessary to apply an explicit artificial viscosity in the
form of a pressure correction term in the momentum
equation. For this purpose, instead of using the correct value
of the pressure at the grid point concerned, a slightly
downwinded value is used for calculating the pressure force
term in the momentum equation. For a smoothly varying flow
this introduces negligible error.

At the inlet boundary, constant stagnation pressure and
temperature are specified. At the outlet boundary, static
pressure is specified only if the flow is subsonic.

Since the time-marching procedure is an explicit method,
it has to satisfy the Courant-Friedrich-Lewy (CFL) criterion
of stability. The CFL criterion determines the maximum
stable time step At as:

At < WA

where Ax is the axial distance between two adjacent grid
points and a is the local sound velocity. In practice At is
taken as At = TF Ax/(Vx +a), where TF is an arbitrary
factor to ensure stability which, from experience, lies in the
range 0.1 to 0.7.

5 RESULTS AND DISCUSSION

The main implication of supersaturation is that when steam
expands through a nozzle, droplets do not appear as soon as
the condition line crosses the saturation line. For some
considerable time after this point the steam remains dry in a
metastable equilibrium until the supersaturation ratio becomes
high enough to trigger an appreciable nucleation rate. The
droplets thus formed then grow in size by exchanging heat
and mass with the surrounding vapour. If the flow velocity in
the nucleation zone is supersonic, the heat released by the
growing droplets causes a gradual increase in pressure
known, somewhat inaptly, as the ‘condensation shock'.

For high initial superheat at nozzle inlet, the
‘condensation shock' occurs in the diverging section of the
nozzle. Inside the condensation zone the effect of heat
addition overrides that of area change and so the flow velocity
decreases but always remains above the local sonic speed.
Downstream of the condensation zone the area change
becomes dominant and the Mach number (the flow being still
supersonic) starts increasing again. This is the regime of so
called subcritical heat addition. Figure (2) shows the
prediction of the computer program in such a situation for
two different inlet conditions. The nozzle profile used was
that of Moses and Stein (1978). For experiment 257, the
superheat at the stagnation condition is 14.5 K ; while, for
experiment 258, the corresponding quantity is 16.6 K. Both
the predicted pressure profile and mean droplet radius agree
very well with the experimental measurements. It is to be
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stressed here that such an agreement cannot be made simply
by modifying the nucleation equation and retaining
Gyarmathy's growth model without including the parameter

a of Eqn (10). For a discussion on this topic the reader is
referred to the paper by Young (1982).

As the initial superheat is reduced, the steam attains the
saturation condition earlier in the nozzle and consequently the
condensation shock appears closer to the throat (Fig. 2). The
pressure rise becomes steeper and the Mach number at the
end of the condensation zone is closer to unity. For one
particular inlet superheat the Mach number at the end of the
condensation zone is exactly equal to unity and the flow is
said to be thermally choked. It is to be noted that the flow
then passes through two sonic points - one at the throat
(corresponding to conventional aerodynamic choking) and
one at the end of the condensation zone. This condition
represents the critical amount of heat that the flow can absorb
while maintaining a continuous variation of flow parameters.
If the amount of heat liberated exceeds this critical quantity
then no continuous solution of the gasdynamic equations is
possible, although a steady state may be obtained by the
formation of a steep fronted shock wave inside the
condensation zone. In this case the flow passes the sonic
point at the throat, becomes supersonic in the diverging
section, decelerates somewhat due to partial condensation and
recompresses through an aerodynamic shock wave. The
resulting subsonic flow then accelerates to the sonic speed
due to the remaining rapid condensation and finally
accelerates supersonically due to increase of area. Figure (3)
shows one such case of steady supercritical heat addition .
The nozzle depicted is that of Moore et. al (1973) and the
prediction corresponds to the test marked E, in Skillings and

Jackson (1987). The initial superheat in this case is ~5 K.
The calculated droplet size agrees well with the
measurements. The predicted pressure rise at the shock is
greater than that indicated experimentally, and the pressure
then decreases slightly faster than do the measurements.

If the inlet superheat is reduced further, the aerodynamic
shock wave forms nearer the throat and becomes stronger. At
some point the strength of the shock demanded by the heat
release that accelerates the flow to the sonic condition
becomes higher than that which the local flow velocity can
sustain and the shock becomes unstable. This gives rise to an
oscillatory flow pattern where the shock wave moves
upstream while a new one develops somewhere downstream.
Such unsteady flow generally occurs when T (the inlet
stagnation temperature) is near the saturation temperature
corresponding to p, (the inlet total pressure). Figure(4)
shows the computational prediction in such a situation. The
test case corresponds to Test 4 in Skillings et. al. (1987). The
pressure profiles at different instants during a complete cycle
reveal exactly the same sequence of the formation and
movement of the shock wave as explained above. According
to the predictions the shock weakens as it approaches the
throat and, in fact, becomes of negligible strength a little
upstream of the throat. Thus a self-excited oscillating flow
results, which arises purely because of the dynamics of the
flow, the nozzle geometry being fixed and the inlet boundary
conditions remaining steady. If attention is focussed on the
time history of the static pressure at a point 20 mm
downstream of the throat for the example chosen, the
pressure variation shown in Figure(5) results. It can be seen
that the variation is periodic with a frequency of about 540
Hz and an amplitude of about 24.5 mbar. The experimental
values measured at the same location were ~400 Hz and ~20
mbar respectively.

Considering the complications of predicting the
movement of shock waves even in single phase flows, the
agreement between the theoretical computation and the
experiment is quite good. It is also gratifying, from the
computational point of view, to find that the calculation
converges to the periodic solution with very little delay after
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the wet steam routines were introduced (see Fig. 5). (Due to
the large variation in flow properties during the initial time-
marching iterations it is not advisable to call the wet steam
subroutines until some degree of convergence of the vapour
flowfield has been obtained.) Since different schemes to
accelerate the convergence (for example, the use of 'local
time-steps', 'multi-grids', etc.) that are very useful in steady-
flow calculations, are unsuitable for unsteady predictions, the
CPU time required is higher in the latter case. The
calculations were performed using a single processor of an
Alliant FX-80 computer and the CPU time required to
compute the unsteady flow shown in Figures 4 and S was
approximately 2 minutes per one complete cycle of
oscillation. However, it should be mentioned that the
computer program has not yet been tried to be fully optimized
and appreciable reduction in the CPU time may be achieved
by utilizing further vectorization of the code.

The solid line in Figure(5) shows the time history of the
variation of pressure at the same point using a pseudo-
unsteady scheme similar to that of Skillings et al (1987).
Since, in the pseudo-unsteady scheme, the gas-field is
effectively frozen while the droplets are allowed to propagate
down the nozzle, the downstream points feel the influence of
the upstream aerodynamic shock-wave too early. The new
shock wave therefore develops earlier and the whole process
repeats within a shorter period of time leading to a higher
computed frequency. Thus, the present full unsteady scheme
predicts a frequency of ~540 Hz in comparison to that of
~650 Hz predicted by the pseudo-unsteady scheme. While the
predicted frequency in the former case is still higher than the
measured value, the change is in the right direction.

Figure (6) shows a comparison of the prediction with the
experiments conducted by Barschdorff (1970). The
frequencies of oscillation for Barschdorff's nozzle-I have
been calculated using the present code for different inlet
conditions and are compared with the experimental values. It
can be seen that the frequency increases with decreasing inlet
stagnation temperature. This can be explained by recalling
that, with decreased inlet stagnation temperature, the shock
wave will initially be formed closer to the throat and the two
extreme positions, at which it will have negligible effect on
the nucleation, will move closer together. Thus, the whole
process of the formation, upstream movement and weakening
of the shock wave to the point where the compression has a
negligible effect on the condensation process, repeats faster,
giving rise to a higher frequency. Once again, the predicted
frequencies are higher than the measured values, although the
correct trend is reproduced. It is to be noted that, since the
frequency decreases very rapidly with increase of inlet
stagnation temperature until the oscillation dies away
completely, a small error in the temperature measurement
would shift the experimental curve substantially. This,
together with the uncertainties in the nucleation rate equation,
the droplet growth laws and a possible boundary layer /
shock wave interaction in a sensitive area like the vicinity of
the throat may be responsible for the differences in measured
and predicted frequencies of oscillation.

An interesting implication of the unsteady nucleation
process is that it may explain, to some extent at least, the
nature of the phase change occurring in a real steam turbine.
The measured droplet size distribution in a turbine is normally
polydispersed and highly skewed with a Sauter mean
diameter in the range 0.2 - 0.6 um (Walters, 1980).
Conventional nucleation calculations linked to a steady-flow
gas dynamic analysis generally predict Sauter mean diameters
of the order of 0.1 um or less with very small
polydispersity. (In fact, most existing calculation methods
treat the droplet population as monodispersed and are not
suitable for the prediction of flows characterized by strong
liquid polydispersity.) Thus, although these calculation
methods (which agree reasonably well with steady-flow
experiments in one-dimensional nozzles) can sometimes
predict the peak of the droplet size distribution measured in
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turbines, it is not yet established from where the larger
droplets constituting the "tail" of the distribution originate. It
is, however, of crucial importance to understand the
mechanism of formation of such a droplet spectrum, as such
an understanding would elucidate, at least indirectly, the fluid
mechanics of the wet steam flow through a turbine and would
allow the determination of the other important effect of
wetness, namely the loss of turbine efficiency associated with
the liquid phase.

The possible occurrence of unsteady nucleation
processes in turbines may shed some light on the origins of
the measured polydispersed spectra. Figure(7) shows the
variation of the Sauter mean diameter at the nozzle exit
corresponding to the unsteady pressure fluctuation shown in
Figure(5). It can be seen that the mean radius changes by a
factor of three (from ~0.06 um to ~0.18 pum) during one
period of the oscillation. The reason for the existence of such
a broad band of droplet sizes is that, as the aerodynamic
shock wave moves upstream towards the throat and interacts
with the nucleation zone, progressively fewer droplets are
nucleated thus resulting in a larger final mean radius.
Considering any particular cycle and constructing the average
droplet spectrum over that cycle (number density of droplets
versus droplet radius), then the curve shown in Figure(8) is
obtained. A probe, located at the exit of the nozzle for
sufficient duration of time, would register such a droplet size
distribution. The calculated spectrum is significantly
polydispersed, highly skewed and bears the same qualitative
features as those measured in turbines. In a transonic turbine
blade passage, it is thought that the condensation process may
often occur near the throat where there is the possibility of an
interaction with the shock-wave system generated by the
trailing edge flow. Such an unsteady interaction was indeed
observed by Skillings et. al. (1988), although it must be
stated that a possible explanation of the unsteadiness was not
the condensation process itself but was instead fluctuations in
the free shear layer boundaries extending downstream of the
cascade. The expansion rate in a turbine is generally less than
that in most laboratory nozzle experiments and hence the
mean droplet size in a turbine is likely to be higher than that in
the calculation described above. However, whether or not
this can account for mean droplet diameters of the order of
0.5 um, as measured in turbines, remains to be investigated.

6 CONCLUSION

A robust one-dimensional unsteady time-marching method
has been developed that can be used for any flow regime
encountered in wet steam. It is accurate, simple and fast. The
wet-steam black-box developed can also be used in isolation
if the expansion rate is prescribed and can easily be
incorporated in different, established single phase calculation
procedures. The predicted frequencies of unsteady oscillation
are in better agreement with experiments than those obtained
from pseudo-unsteady calculations. The computer program
models correctly all the basic physics of the unsteady
condensation process, for example, the increase in frequency
of oscillation with decrease of inlet stagnation temperature. it
has been shown that a poly-dispersed droplet spectrum
results from such unsteady processes. Similar unsteady
processes resulting from the interaction of the condensation
zone with the oblique shock waves at the trailing edge in a
turbine blade passage may be responsible, to some extent, for
the observed polydispersity in the droplet-size spectra
measured in real turbines.
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