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Original Article

Similitude and scaling laws
for the rotating flow between
concentric discs

Abhijit Guha and Sayantan Sengupta

Abstract

In this article, a systematic dimensional analysis and similitude study for the three-dimensional rotating flow within the

narrow spacing (usually of the order of 100 mm) of multiple concentric discs is presented. An engineering application of

this flow configuration is the Tesla disc turbine, and the dimensional analysis leads to proper scaling laws for such

machines. Using the Buckingham Pi theorem, the list of non-dimensional numbers necessary for describing the incom-

pressible flow through the concentric discs has been formulated and physical interpretation of the non-dimensional

numbers has been provided. The complete criteria for achieving geometric, kinematic and dynamic similarity between a

model and the prototype have been established. Computational fluid dynamics (CFD) solutions have been obtained for

various geometries, fluid properties and flow conditions to demonstrate the validity of the similitude criteria developed.

The CFD results show that, when the present similitude criteria are fulfilled, the values of all non-dimensional output

parameters such as the power and pressure-drop coefficients remain unchanged for various combinations of input

variables. What is more striking is that the three-dimensional variations of non-dimensional z component of velocity

Uz (whose non-zero values are computed by the CFD solver even though the only physical boundary condition applied is

Uz ¼ 0 at the inlet and on disc surfaces) are superposed on one another for all models and the prototype. Systematic

methods for arriving at simplified conservation equations are discussed and it is shown how the corresponding list of

non-dimensional numbers and similitude criteria evolve with such simplification of the conservation equations.
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Introduction

According to Dixon and Hall,1 dimensional analysis
enables one to predict the behaviour of the prototype
from that of a model, to determine the most suitable
machine for a particular operating condition or to
reduce the experimental effort in determining
functional relationships between flow variables. In
this article, a systematic dimensional analysis for the
three-dimensional rotating flow within the narrow
spacing (usually of the order of 100mm) of multiple
concentric discs is provided. Fluid flow within a
Tesla disc turbine represents such a flow scenario.

Tesla turbine was invented by the famous scientist
Nikola Tesla in 1913.2 Unlike a conventional bladed
turbine, the rotor of a Tesla turbine is formed by a
series of flat, parallel, co-rotating discs which are clo-
sely-spaced and attached to a central shaft. The work-
ing fluid is injected nearly tangentially to the rotor by

means of one or more inlet nozzles. The injected fluid,
which passes through the narrow gaps between the
discs, approaches spirally towards the exhaust port
located at the centre of each disc. The viscous drag
force, which is generally considered to be a source of
loss for conventional turbine, causes the rotor of the
disc turbine to rotate. There is a housing surrounding
the rotor, with a small radial and axial clearance.
Figure 1 shows a schematic of two successive discs of
the rotor of a Tesla turbine. The components of the
velocity at the inlet are represented by arrows. For a
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Tesla turbomachine, subjected to a steady rotational
speed �, the components of absolute velocity
(r, z and � components ofU) are related to the compo-
nents of relative velocity (r, z and � components of V)
by the following transformation:

Ur ¼ Vr; Uz ¼ Vz; U� ¼ ðV� þ�rÞ ð1Þ

After the success of Whittle and von Ohain, the gas
turbine became the centrepoint of research and devel-
opment and the understanding of its performance and
optimization has reached quite a mature stage
(Guha3,4). The understanding of the performance of
Tesla turbines is not nearly as thorough. Rice5 in his
article had described the advances (upto 1991) in the
field of Tesla turbomachinery (pump, fan and tur-
bine). Experimental and theoretical studies in this
field are still being reported. Lemma et al.,6 Hoya
and Guha7 and Guha and Smiley8 had performed
detailed experiments with Tesla disc turbines. A
simple but very effective method for measuring the
net power output and overall loss (the bearing and
other losses), called the ‘‘angular acceleration
method’’, has been developed and fully described by
Hoya and Guha.7 This is a successful method for
measuring very low torque at very high angular
speed. The reference also provides detailed measure-
ments and operational experience for Tesla disc tur-
bines. Guha and Smiley8 have developed an improved
design of the nozzle, greatly improving the efficiency
and achieving uniformity in the velocity profile of the
jet. [The loss in the nozzle is generally recognized
(Rice5,9) as a major source of loss in a conventional
Tesla turbine.] Recent advancement in theoretical
study of Tesla disc turbine can be found in Carey,10

Sengupta and Guha11 and Guha and Sengupta.12

Carey10 developed a one-dimensional idealized

momentum transfer model of Tesla turbine.
Sengupta and Guha11 have developed closed-form
analytical solution for three-dimensional axi-sym-
metric flow fields inside the narrow disc-gap of a
Tesla disc turbine (considering cylindrical co-ordinate
system in a relative rotational frame of reference).
Guha and Sengupta12 have shown how the dynamics
of fluid flow between the two discs of a Tesla turbine
is governed by the centrifugal, Coriolis, viscous and
inertial components of force.

The rotor of some other devices, e.g. rotating air
cleaner,13 is also composed of multiple parallel, con-
centric discs. However, the Tesla turbine is a power-
producing device and the gap between two adjacent
discs is small, which may be small enough in certain
cases to be considered as a micro-channel. Usually the
two boundary layers on the two discs would merge
together, so that a core flow of the Batchelor-type14

does not occur.
TheTesla disc turbine has several advantages, one of

them is that a variety of working fluids may be used.
Other than the usual fluids such as air, steamandwater,
two phase mixture (many aspects of two-phase flow
may be found in Guha15–19) such as biomass fuel has
also been used by previous researchers.20 Tesla turbine
was also used to generate power in geothermal power
stations.21 A review of the literature shows that Tesla
turbines of various length scales have been used by the
previous researchers. Starting from Tesla,2 some of the
researchers like Armstrong,22 and Beans23 had used
large scale Tesla turbines (ri ¼ 228:6mm in Tesla2,
ri ¼ 88:9mm in Armstrong22 and ri ¼ 76:2mm in
Beans23). On the other hand, Davydov and
Sherstyuk,24 and Lemma et al.6 had used Tesla tur-
bines of small size (ri ¼ 20mm in Davydov and
Sherstyuk24 and ri ¼ 25mm in Lemma et al.6). Hoya
and Guha7 and Guha and Smiley8 had used a Tesla
turbine of intermediate size (ri ¼ 46mm in both Hoya
and Guha7 Guha and Smiley8). It is clear from the
above discussion that there is a real need for a proper
dimensional analysis to determine the most suitable
Tesla turbine for a particular situation. However, as
per our knowledge there is no article available in the
literature which describes the dimensional analysis of a
Tesla disc turbine in details.

The present work formulates the appropriate non-
dimensional numbers which can be used to design a
Tesla disc turbine or to explain the flow physics of the
rotating flow within the narrow spacing of multiple
concentric discs. The criteria for achieving similitude
between a model and the prototype, and appropriate
scaling laws have been established. It is shown that
proper non-dimensionalization and order of magni-
tude analysis lead to simplification of the conservation
equations for which closed-form solution can be
obtained. The validity of the principle of similitude
formulated here has been demonstrated by several
three-dimensional computational fluid dynamics
(CFD) simulations.

Figure 1. Schematic diagram of the domain for the math-

ematical solution. (The gap within the two discs, in relation to

the radius, is exaggerated in the sketch for clarity.)
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Dimensional analysis and criteria
for similitude

Fundamental conservation equations

In this section, a dimensional analysis for the three-
dimensional rotating flow within the narrow spacing
of multiple concentric discs is provided. The present
analysis is also applicable for a Tesla turbine. The
domain for mathematical solutions is represented in
Figure 1. The analysis starts with Navier-Stokes equa-
tions in cylindrical coordinate system for steady,
incompressible flow of a Newtonian fluid with
constant density and viscosity.
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Appropriate non-dimensional numbers

Equations (2) to (5) are in dimensional form. In order
to turn these equations into appropriate non-
dimensional forms, a formal dimensional analysis
using the Buckingham Pi theorem has been performed
in Appendix 2. This analysis identifies seven non-
dimensional numbers or Pi-terms. Instead of using
these Pi-terms directly, we have recombined them in
various manners to construct seven other non-
dimensional terms for each of which a direct physical
interpretation can be ascribed. These newly derived
non-dimensional numbers and their relations with
the original Pi-terms have been described below.

1. Radius ratio:

r̂o ¼ �2 ¼
ro
ri

ð6Þ

2. Aspect ratio:

b̂ ¼ �3 ¼
b

ri
ð7Þ

3. Tangential speed ratio at inlet:

� ¼
�5

�6
¼

�U�,i

�ri
ð8Þ

4. Flow angle at inlet:

� ¼ tan�1ð1=�5Þ ¼ tan�1
�Ur,i

�� ��
�U�,i

ð9Þ

5. Dynamic similarity number:

Ds ¼
�2

3

�7
¼

b

ri

�Ur,i

�� ��b
�

 !
ð10Þ

6. Power coefficient:

_̂W ¼ �1 ¼
_W

ð� �Ur,i

�� ��3r2i Þ ð11Þ

7. Pressure-drop coefficient:

�p̂io ¼
�4

�2
5

¼
�pio

� �U2
�,i

ð12Þ

Criteria for similitude

For geometric similarity between the model tested
and the prototype to be designed, the radius ratio
r̂o and aspect ratio b̂ of the model should be the
same as that of the prototype. For kinematic simi-
larity between a geometrically similar model and the
prototype, the tangential speed ratio at inlet � and
the flow angle at inlet � of the model should be the
same as those of the prototype. After achieving both
geometric and kinematic similarity, the attainment of
dynamic similarity further requires that the dynamic
similarity number Ds used for the model should be
the same as that of the prototype. When dynamic
similarity is achieved, the principle of similitude

enunciates that the power coefficient _̂W and the
pressure-drop coefficient �p̂io of a model would be
the same as those of the prototype. Later in the
paper, we have tested the principle of similitude by
determining the power and pressure-drop coefficients
for widely different geometries, fluids and flow con-
ditions with the help of CFD.

Guha and Sengupta 431

 at INDIAN INSTITUTE OF TECH on May 6, 2014pia.sagepub.comDownloaded from 

http://pia.sagepub.com/


Non-dimensional conservation equations and
boundary conditions

Equations (2) to (5) are non-dimensionalized using the
following non-dimensional variables:

r̂ ¼
r

ri
, ẑ ¼

z

b
, Û� ¼

U�

�ri
, Ûr ¼

Ur

�Ur,i

�� �� ,
Ûz ¼

Uz

�Ur,i

�� �� rib , p̂ ¼ p

� �U2
�,i

ð13Þ

The non-dimensional equations are as follows:
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[In equation (17), p0 is the modified pressure which is
equal to p� �gzzð Þ and gr and g� are considered to
be zero.]

Equations (14) to (17) can be solved for the bound-
ary conditions given below.

at ẑ ¼ 0 and 1, Ûr ¼ 0, Û� ¼ r̂, Ûz ¼ 0 ð18Þ

at r̂ ¼ 1, Ûr ¼ Ûr,i, Û� ¼ Û�,i, Ûz ¼ 0 ð19Þ

at r̂ ¼
ro
ri
, p̂ ¼ 0 ð20Þ

Equation (19) is written on the basis of the assump-
tion that the flow rate is uniform throughout the per-
iphery of the inlet plane. This condition can be
achieved for a Tesla turbine either by increasing the
number of nozzles at rotor inlet or by using a plenum
chamber at rotor inlet (which is found in the design of
a Tesla disc turbine given by Lemma et al.6).

Application of the principle of similitude

CFD simulation

A commercially available CFD software Fluent 6.3.26
is utilized for the present computation. Three-dimen-
sional, double precision, pressure based, steady and
implicit solver is used. Velocity formulation is in the
absolute frame of reference and flow is considered to
be laminar. The SIMPLE algorithm, with upwind
scheme for momentum and ‘standard’ scheme for dis-
cretizing the pressure equation, is utilized. Under-
relaxation factors for momentum, pressure, density,
and body force are chosen, respectively, 0.7, 0.3, 1
and 1.

The geometry and the computational grid are gen-
erated by the commercially available software
GAMBIT 2.4.6. Two successive discs, separated by
a small gap (b), are considered as the domain for
the present CFD analysis. Each disc has an inlet
radius (ri) and an outlet radius (ro). The results of
CFD simulations have been presented for two
widely different values of radius ratio r̂o which
are 0.528 (corresponding to ri ¼ 25mm and
ro ¼ 13:2mm) and 0.2 (corresponding to ri ¼ 25mm
and ro ¼ 5mm). Absolute tangential velocity ( �U�,i),
radial velocity ( �Ur,i) and z component of velocity
(Uz) are specified at the inlet (for the present
study, �U�,i 6¼ 0, �Ur,i 6¼ 0 and Uz,i ¼ 0). Outlet bound-
ary condition at the exit is modelled as pressure outlet
with zero gauge pressure. No slip boundary condition
is set on the disc walls. A rotational speed (�) of the
disc is also set. Air is used as a working fluid for the
CFD simulations of the prototype.

In order to systematically select an appropriate
convergence criterion, the flow for the same compu-
tational domain has been simulated thrice as the max-
imum residual is set respectively at 10�9, 10�10 and
10�11. It is found that when the maximum residual is
changed from 10�10 to 10�11, the corresponding
change in �pio is less than 10�5%. Hence, a maximum
residual of 10�10 is chosen as the convergence criter-
ion for the present study.

A grid-independence test has been carried out
(Table 1 showing a few pertinent details), and based
on this study, a total of 1,140,000 60� 190� 100ð Þ

mapped, hexahedral computational cells are used
for r̂o ¼ 0:528 (for r̂o ¼ 0:2, a total of 2,280,000
60� 190� 200ð Þ cells are used). Among several
output parameters, �pio, for its relatively high sensi-
tivity with the change in the number of computational
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cells, is chosen as a testing parameter to determine the
optimum number of cells. Table 1 shows the com-
puted values of �pio for three different grid distribu-
tions (coarse, standard and fine). While increasing
the number of cells simultaneously in the r, � and z
directions, it has been observed that, the computed
value of �pio varies until a grid distribution of
100� 190� 60, which corresponds to a total of
1,140,000 computational cells, is attained. However,
any further increase in the number of computational
cells in the r, � and z directions leads to a marginal
change of �pio (e.g. the computed value of �pio for
3,847,500 cells differs marginally from the computed
value of �pio for 1,140,000 cells; see Table 1).

The validation of the numerical results has been
discussed by Sengupta and Guha.25 These issues are
therefore not described here for the sake of brevity
and for keeping the discussion focussed.

Figure 2 shows the contours of non-dimensional
velocities on a rz plane for r̂o ¼ 0:2. Figures 2a and
2b show, respectively, contours of the non-dimen-
sional absolute and relative tangential velocities.
Figure 2c shows a contour of the absolute value
(modulus) of non-dimensional radial velocity.

For no slip boundary condition on the surface of
both discs (ẑ ¼ 0 and ẑ ¼ 1), the non-dimensional rela-
tive tangential velocity V̂� ð¼ V�=ð�riÞ) in Figure 2a
and the modulus of non-dimensional radial velocity
Ûr

��� ���ð¼ Ur= �Ur,i

�� ��Þ in Figure 2c are zero, and, the non-
dimensional absolute tangential velocity
Û� ð¼ U�=ð�riÞ) in Figure 2b is equal to the non-
dimensional radius r̂. Figure 2 shows that V̂�, Û� and
jÛrj gradually increase from the disc-surfaces
(ẑ ¼ 0 and ẑ ¼ 1) and obtain a maximum value at the
middle of the disc spacing (ẑ ¼ 1=2).

Figure 2 also shows the r-variation of V̂�, Û� and
jÛrj. It can be seen from Figure 2a that, with decreas-
ing r̂ from r̂ ¼ 1 (inlet), V̂� decreases to a minimum at
a certain radius and then onwards increases. It can be
shown from equation (1) that Û� depends on V̂� and r̂.
r̂ decreases as one moves from the inlet (r̂ ¼ 1) to the
outlet (r̂ ¼ ro=ri). It can be observed from Figure 2b
that Û� decreases rapidly at the region where V̂�
decreases. This region is near the inlet. With further
decrease of r̂, Figure 2b shows a region where Û�

varies slowly. In this region, the effect of increase in

V̂� opposes and suppresses the effect of decrease in r̂.
Near outlet, the effect of increase in V̂� dominates
over the effect of decrease in r̂. Figure 2b shows that
Û� increases near outlet. Figure 2c shows that jÛrj

progressively increases in the r direction towards

Figure 2. Contour of non-dimensional velocities on a rz

plane. (a) Contour of V̂� ; (b) contour of Û� ; (c) contour of jÛrj.

(Results obtained from CFD simulation for r̂o ¼ 0:2,
b̂ ¼ 0:0058, � ¼ 1:462, � ¼ 6:2�, Ds ¼ 0:66 and parabolic

velocity distribution at inlet.). A color version of this figure is

available in online.

Table 1. Grid-independence test (for ri¼ 0.025 m, ro¼ 0.0132 m, b ¼ 10�4 m, �¼ 1000 rad/s,
�Ur,i ¼ �11:5 m=s, �U�,i ¼ 106 m=s, Uz,i ¼ 0 m=s, velocity profiles are uniform at inlet, air is used as working

fluid).

Grid distribution

Number of grids in r, �
and z directions Total number of cells �pio (Pa)

Coarse 50� 95� 30ð Þ 142,500 5005

Standard 100� 190� 60ð Þ 1,140,000 5021

Fine 150� 285� 90ð Þ 3,847,500 5020
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outlet. It is so because the flow area (2�rb) decreases
with a decrease in r̂ and the fluid flow (steady, incom-
pressible and axi-symmetric) has to satisfy the equa-
tion of continuity.

Example calculations demonstrating the principle
of similitude

In this section, the similarity between the model and
prototype has been demonstrated with example calcu-
lations. The aspect ratio (b̂), radius ratio (r̂o), tangential
speed ratio at inlet (�), flow angle at inlet (�) and
dynamic similarity number (Ds) of the model should
be same as those of the prototype to achieve geometric,
kinematic and dynamic similarity simultaneously. The
geometrical and operational details of the model and
prototype used in the example calculations have been
provided in Table 2. The calculations are performed
for both uniform and parabolic inlet velocity
distributions.

Example calculation 1. As the first example, variation of
geometry is considered while keeping the same fluid.
Let us consider a case when the value of b for the
model (denoted as bm) is twice than that of the proto-
type (denoted as bp). Therefore, bm=bp ¼ 2.

Geometric similarity is ensured by keeping
the value of b=ri and ro=ri of the model same as
that of the prototype. Hence, rið Þm= rið Þp ¼ 2 and
roð Þm= roð Þp ¼ 2.
After achieving geometric similarity, Ds, � and � of

the model need to be equal with those of the proto-
type to ensure complete dynamic similarity between
the model and the prototype. The condition which

is required for Ds of the model to be equal with Ds
of the prototype is ð �Ur,iÞm=ð �Ur,iÞp ¼ 1=2.

Constancy of � requires ð �U�,iÞm=ð �U�,iÞp ¼ 1=2.
Moreover, the additional condition which is

needed for equalizing � of the model to that of the
prototype is �m=�p ¼ 1=4.

Example calculation 2. Now, consider a separate case
when the geometry of the model is the same as that
of the prototype; however, the kinematic viscosity of
the working fluid used in case of the model is half as
that for the case of the prototype. Hence, to conserve
the value of Ds one needs the following condition

�Ur,i

� �
m
= �Ur,i

� �
p
¼ 1=2.

Additionally, to conserve � one needs
�U�,i

� �
m
= �U�,i

� �
p
¼ 1=2.

Also to maintain a fixed value of � one further
needs �m=�p ¼ 1=2.

Observations. Table 2 shows the results of the example
calculations performed for both uniform and para-
bolic velocity distributions at inlet. It can be observed
from Table 2 that for both cases the power coefficient

( _̂W) and the pressure-drop coefficient (�p̂io) of the
models (calculated by three-dimensional CFD) are
exactly equal to those of the prototype (also calcu-
lated by three-dimensional CFD). Hence, the prin-
ciple of similitude is demonstrated.

Figure 3 shows the z-variation of the non-dimen-
sional z-velocity Ûz at a particular non-dimensional
radius r̂ ¼ 0:8 for the prototype and its models. The
results obtained from three separate CFD simulations
are found to be exactly superposed on one another.

Table 2. Values of input and output parameters of CFD simulations.

Similitude example 1 Similitude example 2

Model 1 Prototype Model 2 Prototype

b (m) 2� 10�4 10�4 10�4 10�4

ri (m) 0.05 0.025 0.025 0.025

ro (m) 0.0264 0.0132 0.0132 0.0132

�Ur,i (m/s) �5:75 �11:5 �5:75 �11:5
�U�,i (m/s) 53 106 53 106

V (rad/s) 250 1000 500 1000

� ðm2=sÞ 1:46� 10�5 1:46� 10�5 0:73� 10�5 1:46� 10�5

Uniform velocity distribution at inlet
_W

� �Ur,i

�� ��3r2
i

0.46 0.46 0.46 0.46

�pio

� �U2
�,i

0.36 0.36 0.36 0.36

Parabolic velocity distribution at inlet
_W

� �Ur,i

�� ��3r2
i

0.54 0.54 0.54 0.54

�pio

� �U2
�,i

0.37 0.37 0.37 0.37
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This equality of the values of the non-dimensional
z-velocity demonstrates the principle of similitude
in the same way the equality of the power coefficient
and the pressure-drop coefficient does so. However,
the equality of the values of the non-dimensional
z-velocity is perhaps more impressive when one con-
siders the fact that the only physical boundary condi-
tion applied is Uz ¼ 0 at the inlet and on disc surfaces.
The fact that such non-zero values of Ûz are evolved
in the various cases of CFD simulation that the prin-
ciple of similitude is exactly preserved indeed is a
powerful evidence of the correctness of the dimen-
sional analysis formulated in the present paper.

Simplification of the non-dimensional
conservation equations

In this section, a systematic method for arriving at
simplified conservation equations of a Tesla turbine
is presented. The geometry and operational details for
the present simulations are the same as that of the
prototype shown in Table 2. CFD simulations reveal
that, for axi-symmetric boundary conditions, all three
components (Ur, U� and Uz) of velocity along with the
pressure can be assumed axi-symmetric throughout
the flow field. The non-dimensional conservation
equations (14) to (17), simplified by the assumption
of axi-symmetry, are given below.

1

r̂

@ ðr̂ÛrÞ

@r̂
þ
@Ûz

@ẑ
¼ 0 ð21Þ

Ûr
@Ûr

@r̂
þ Ûz

@Ûr

@ẑ
�

Û2
�

r̂ � tan�ð Þ
2

¼ �
1

tan �ð Þ
2

@p̂

@r̂
þ

1

Ds

@2Ûr

@ẑ2
þ
b2

r2i

1

r̂

@

@r̂
ðr̂
@Ûr

@r̂
Þ �

Ûr

r̂2

 !" #

ð22Þ

Ûr
@Û�

@r̂
þ Ûz

@Û�

@ẑ
þ
ÛrÛ�

r̂

¼
1

Ds

@2Û�

@ẑ2
þ
b2

r2i

1

r̂

@

@r̂
ðr̂
@Û�

@r̂
Þ �

Û�

r̂2

 !" # ð23Þ

Ûr
@Ûz

@r̂
þ Ûz

@Ûz

@ẑ
¼ �

r2i
b2 tan�ð Þ

2

@p̂0

@ẑ

� �

þ
1

Ds

b2

r2i

1

r̂

@

@r̂
ðr̂
@Ûz

@r̂
Þ

 !
þ
@2Ûz

@ẑ2

" #

ð24Þ

The term b=ri (b̂) is small for all practical Tesla disc
turbines and therefore the terms associated with b̂2

and b̂4 are neglected. Hence, equations (22) to (24)
can be further simplified as follows:

Ûr
@Ûr

@r̂
þ Ûz

@Ûr

@ẑ
�

Û2
�

r̂ � tan�ð Þ
2
¼ �

1

tan �ð Þ
2

@p̂

@r̂
þ

1

Ds

@2Ûr

@ẑ2

ð25Þ

Ûr
@Û�

@r̂
þ Ûz

@Û�

@ẑ
þ
ÛrÛ�

r̂
¼

1

Ds

@2Û�

@ẑ2
ð26Þ

@p̂0

@ẑ
¼ 0 ð27Þ

When b̂ is small and r̂o is not small, a further
simplification is possible. CFD simulations presented
in Figure 3 show that, under such conditions, the
order of magnitude of Ûz is very small (10�3 for
the example calculations). Therefore, equation (21)
and equations (25) to (27) can be further simplified
as follows.

1

r̂

@ ðr̂ÛrÞ

@r̂
¼ 0 ð28Þ

tan�ð Þ
2Ûr

@Ûr

@r̂
�

1

�2
Û2
�

r̂
¼ �

dp̂

dr̂
þ

tan�ð Þ
2

Ds

@2Ûr

@ẑ2

ð29Þ

Ûr
@Û�

@r̂
þ
ÛrÛ�

r̂
¼

1

Ds

@2Û�

@ẑ2
ð30Þ

Sengupta and Guha11 have given a closed-form ana-
lytical solution of equations (28) to (30) by transform-
ing the absolute velocity components into the relative
frame of reference. A deeper understanding of Figure
2 may be obtained with the help of this simple ana-
lytical theory.

According to the prediction of this analytical theory,
the variation of the area-averaged non-dimensional

Figure 3. Variation of Ûz at a particular radial location

(r̂ ¼ 0:8): results obtained from CFD simulation.

(Keys: Prototype, Model 1, Model 2.

All calculations have been performed for parabolic velocity

distribution at inlet.)
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relative tangential velocity �̂V� along the radial
direction is:

�̂V� ¼ �V�=�ri ¼ ð� � 1Þ

�
C2=C1 þ 1� C2=C1ð Þexp C1 1� r̂2

� �
=2

	 

r̂

� �

where

C1 ¼
10

Ds
, C2 ¼

�10

6ð� � 1Þ
ð31Þ

The expression for the non-dimensional number C1

was written in terms of several dimensional variables
in Sengupta and Guha.11 Here, we have established
the connection between C1 and Ds giving further
physical insight.

Equation (31) shows that the variation of �̂V� along
the radial direction depends on the values of Ds and �.
Hence, the predictions, which are inferred from
Figures 2a and 2b, are not universal. Guha and
Sengupta12 had shown that the variation of area-
averaged relative tangential velocity along radial dir-
ection depends on inertial, viscous and Coriolis forces.
The relative magnitude of inertial, viscous and
Coriolis forces at any radius will vary with the
change in Ds and �.

According to the analytical theory, the closed-form
expression for torque produced by one side of a single
disc of a Tesla turbine is as follows:

� ¼
12�� �V�,ir

3
i

b

�Ds

12ð� � 1Þ
ð1� r̂2oÞ �

Ds

10

�

� 1þ
Ds

6ð� � 1Þ

� �
1� exp

5

Ds
1� r̂2o
� �� �� ��

ð32Þ

The power coefficient due to viscous drag for the
fluid flow between two successive discs can be

expressed as _̂W ¼ 2��=ð� �Ur,i

�� ��3r2i Þ. In reality, a
Tesla turbine consists of multiple discs. The total

power coefficient of a rotor consisting of n discs is
given by:

_̂W ¼
2ðn� 1Þ��

� �Ur,i

�� ��3r2i ð33Þ

The power coefficients for various values of �, cal-
culated both by CFD and the analytical relation,
are given in Table 3. The geometry and inlet velocity
components for all calculations are same as that of
the prototype given in Table 2, and parabolic vel-
ocity distributions are considered at inlet. It can be
seen that the power coefficients calculated from the
analytical expressions (equations (32) and (33))
match well with those obtained from the CFD simu-
lations, particularly when second order upwind
scheme is used.

The variation of power output and pressure drop
for two similar models (such as Model A and Model
B, whose descriptions are given in Table 4) with the
variation of rotational speed of the discs can be pre-
dicted by solving equations (28) to (30) using the ana-
lytical method developed by Sengupta and Guha.11 In
order to set a critical test for the principle of similitude
developed in the present work, Model A and Model B
are chosen to differ simultaneously in geometry, oper-
ating flow conditions and the working fluid. Each of
the curves shown in Figures 4a and 4b contains many
data points. If each data point were to be calculated
by making a complete run of the CFD code up to
convergence, then the total computational time
would be very large. Thus the analytical theory (equa-
tions (28) to (30)) has been used. Figures 4a and 4b
show the dimensional representation of the relevant
parameters applicable for Model A and Model B
respectively. �pio, in Figure 4a, increases from 4565
Pa to 26,119 Pa corresponding to an increase of �
from 424 rad/s to 8480 rad/s; and, �pio, in Figure
4b, increases from 7776 Pa to 44,491 Pa correspond-
ing to an increase of � from 13 rad/s to 258 rad/s.
Both figures show that, with an increase in �, _W
increases until _W obtains a maximum value, and,
any further increase of � leads to a decrease of _W.
The maximum value of _W in Figure 4a is 1.7 W and it

Table 3. Comparison between the analytical results and the results obtained from CFD simulations.*

Tangential speed

ratio at inlet (�)

_W=ð� �Ur,i

�� ��3r2
i Þ

from analytical

expression (equations

(32) and (33))

_W=ð� �Ur,i

�� ��3r2
i Þ

from CFD simulation

(using 1st order upwind

scheme)

_W=ð� �Ur,i

�� ��3r2
i Þ

from CFD simulation

(using 2nd order

upwind scheme)

4.24 0.54 0.53 0.54

1.696 1.10 1.07 1.10

0.848 1.40 1.20 1.38

*Values of all input parameters except � are the same as those for the prototype given in Table 2. For all calculations parabolic velocity distribution is

considered at inlet.
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is obtained for � ¼ 4711 rad=s whereas, the maximum
value of _W in Figure 4b is 0.3 W and it is obtained
for � ¼ 144 rad=s. Figures 4c shows that the
widely different dimensional data given in Figures
4a and 4b collapse into the same non-dimensional
representation, demonstrating the validity of the
criteria for similitude of Tesla disc turbines
developed here.

Conclusion

A dimensional analysis for the three-dimensional
rotating flow within the narrow spacing of multiple
concentric discs is presented. The analysis has three
important outcomes.

First of all, the present analysis provides the appro-
priate non-dimensional numbers by which the flow
physics of the rotating flow within the narrow spacing
of multiple concentric discs can be explained and
quantified. The criteria for achieving geometric, kine-
matic and dynamic similarity between a model and
the prototype have been established. The principle
of similitude has been demonstrated analytically as
well as through many three-dimensional CFD simu-
lations. Seven non-dimensional numbers of import-
ance have been identified for a Tesla disc turbine:
(i) radius ratio: r̂o ¼ ro=ri, (ii) aspect ratio: b̂ ¼ b=ri,
(iii) tangential speed ratio at inlet: � ¼ �U�,i=ð�riÞ,
(iv) flow angle at inlet: � ¼ tan�1ð �Ur,i

�� ��= �U�,iÞ (which
is same as the nozzle angle), (v) dynamic similarity

number: Ds ¼ ðb=riÞ �Ur,i

�� ��b=�� �
, (vi) power coefficient:

_̂W ¼ _W=ð� �Ur,i

�� ��3r2i Þ, and (vii) pressure-drop coeffi-

cient: �p̂io ¼ �pio=ð� �U2
�,iÞ. Geometric similarity is

ensured by keeping the value of r̂o and b̂ of the
model same as that of the prototype. After achieving
geometric similarity, Ds, � and � of the model need to
be equal with those of the prototype to ensure com-
plete dynamic similarity between the model and the
prototype. For a Tesla disc compressor (or pump), a
similar analysis is applicable if two non-dimensional
numbers are suitably modified: a flow coefficient 	
(	 � �Ur,i

�� ��=�ri) may be used instead of �, and, the
Pohlhausen number (�b2=�) may be used instead of
the dynamic similarity number Ds formulated here
(the name ‘‘dynamic similarity number’’ is coined in
this work).

The second important outcome of the present work
is that the analysis leads to proper scaling laws. These
can directly be used, for example, to design an efficient
Tesla disc turbine under any particular working con-
dition. The performance and efficiency of Tesla tur-
bines with various length scales and operating
conditions can thus be theoretically assessed before
manufacturing or experimentation. For a prototype
and a dynamically similar model, the power coeffi-
cient and the pressure-drop coefficient remain the
same. The formula for power coefficient given above
may also be interpreted to mean that the power of
dynamically similar Tesla disc turbines would also
scale with ��3b5. Similarly, the pressure-drop of
dynamically similar Tesla disc turbines would also
scale with ��2b2.

Thirdly, the conservation equations can be simpli-
fied depending on the relative magnitudes of some of
the non-dimensional numbers. Such simplification
makes it possible to arrive at a closed-form analytical
solution for the three-dimensional flow field within a
Tesla disc turbine.
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Figure 4. Dimensional and non-dimensional representations

of the variations of power output and pressure drop with the

rotational speed of the discs for two similar models.

(a) Dimensional representation for Model A; (b) Dimensional

representation for Model B; (c) Non-dimensional representa-

tion applicable for both Model A and Model B. (Descriptions of

the models are given in Table 4.)

Table 4. Geometric details and operating parameters for two

similar models.

Parameters Model A Model B

b (m) 0.0001 0.00015

ri (m) 0.025 0.0375

ro (m) 0.0132 0.0198

Working fluid Air Water

� (kg/m3) 1.225 998.2

� (kg=ms) 1.7894e�05 0.001

�Ur,i (m/s) �11:5 �11:5 bA=bBð Þ �B=�Að Þ ¼�0:53

�U�,i (m/s) 106 106 bA=bBð Þ �B=�Að Þ ¼ 4.85
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Appendix 1

Notation

b gap between the two discs
b̂ aspect ratio
Ds dynamic similarity number
p pressure
p0 modified pressure, p0 � p� �gzz
r radial direction in cylindrical co-

ordinate system
r̂o radius ratio
U absolute velocity of fluid
V relative velocity of fluid
_W power output

_̂W power coefficient, _̂W �
_W

ð� �Ur,ij j
3
r2
i
Þ

z z direction in cylindrical co-ordinate
system

� flow angle at inlet
� torque produced by one side of a single

disc
� tangential speed ratio at inlet, � �

�U�,i

�ri

�pio pressure drop between inlet and outlet
�p̂io pressure-drop coefficient,

�p̂io � �pio=� �U2
�,i

� Azimuthal direction in cylindrical
co-ordinate system

� viscosity of the working fluid
� kinematic viscosity of working fluid
� density of the working fluid
V rotational speed of the disc

Subscripts

i at rotor inlet
m model
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o at rotor outlet
p prototype
r component along the r direction
z component along the z direction
� component along the � direction

Superscripts

ðÞ
�

area-averaged flow variables

ðÞ
^

non-dimensional flow variables

Appendix 2

The functional relationship between the input vari-
ables (ri, ro, b, �Ur,i

�� ��, �U�,i,�, �,�) and the output vari-
ables ( _W,�pio) can be written as

Fðri, ro, b, �Ur,i

�� ��, �U�,i,�, �,�, _W,�pioÞ ¼ 0:

Table 5 shows the variables and their dimensions.
In the present analysis, ri, �Ur,i

�� �� and � are selected
as repeating variables. According to Buckingham Pi

theorem, there will be 10� 3ð Þ ¼ 7 independent
dimensionless groups or Pi groups. A Pi group can
be formed as

� ¼ rx1i
�Ur,i

�� ��x2�x3X
where X is a non-repeating variable.

Substituting the dimension of each variable and
equating the exponents of M, L and T individually
to zero, one can get a set of algebraic equations. x1,
x2 and x3 can be found out by solving the set of
algebraic equations. This procedure is followed to
derive the Pi terms given below.

1. �1 ¼ rx1i
�Ur,i

�� ��x2�x3 _W
Solution of the algebraic equations gives x1 ¼ �2,
x2 ¼ �3 and x3 ¼ �1
Hence, �1 ¼

_W

� �Ur,ij j
3
r2
i

2. �2 ¼ rx1i
�Ur,i

�� ��x2�x3ro
Solution of the algebraic equations gives x1 ¼ �1,
x2 ¼ 0 and x3 ¼ 0
Hence, �2 ¼

ro
ri

3. �3 ¼ rx1i
�Ur,i

�� ��x2�x3b
Solution of the algebraic equations gives x1 ¼ �1,
x2 ¼ 0 and x3 ¼ 0
Hence, �3 ¼

b
ri

4. �4 ¼ rx1i
�Ur,i

�� ��x2�x3�pio
Solution of the algebraic equations gives x1 ¼ 0,
x2 ¼ �2 and x3 ¼ �1.
Hence, �4 ¼

�pio

� �Ur,ij j
2

5. �5 ¼ rx1i
�Ur,i

�� ��x2�x3 �U�,i.
Solution of the algebraic equations gives x1 ¼ 0,
x2 ¼ �1 and x3 ¼ 0.

Hence, �5 ¼
�U�,i

�Ur,ij j

6. �6 ¼ rx1i
�Ur,i

�� ��x2�x3�
Solution of the algebraic equations gives x1 ¼ 1,
x2 ¼ �1 and x3 ¼ 0.
Hence, �6 ¼

�ri
�Ur,ij j

7. �7 ¼ rx1i
�Ur,i

�� ��x2�x3�
Solution of the algebraic equations gives x1 ¼ �1,
x2 ¼ �1 and x3 ¼ �1.
Hence, �7 ¼

�

� �Ur,ij jri
.

Table 5. List of the variables and their dimensions:

Variable _W ri ro b �pio
�Ur,i

�� �� �U�,i � � �

Dimension ML2T�3 L L L ML�1T�2 LT�1 LT�1 T�1 ML�3 ML�1T�1
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