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In this article, the fluid dynamics of work transfer within the narrow spacing (usually
of the order of 100 μm) of multiple concentric discs of a Tesla disc turbomachine
(turbine or compressor) has been analysed theoretically and computationally. Both
the overall work transfer and its spatial development have been considered. It has
been established that the work transfer mechanism in a Tesla disc turbomachine is
very different from that in a conventional turbomachine, and the formulation of the
Euler’s work equation for the disc turbomachine contains several conceptual subtleties
because of the existence of complex, three dimensional, non-uniform, viscous flow
features. A work equivalence principle has been enunciated, which establishes the
equality between the magnitudes of work transfer determined rigorously from two
different approaches—one based on the shear stress acting on the disc surfaces and
the other based on the change in angular momentum of the fluid. Care is needed
in identifying the shear stress components that are responsible for the generation
or absorption of useful power. It is shown from the Reynolds transport theorem
that mass-flow-averaged tangential velocities (as opposed to the normally used area-
averaged values) must be used in determining the change in angular momentum; the
calculation has to be carefully formulated since both radial velocity (that determines
throughput) and tangential velocity (that generates torque) depend strongly on the
coordinate perpendicular to the disc surfaces. The principle of work transfer has been
examined both in the absolute and relative frames of reference, revealing the subtle
role played by Coriolis force. The concept of a new non-dimensional quantity called
the torque potential fraction (�H̃ ) is introduced. The value of �H̃ at any radial
position increases with a decrease in inter-disc spacing. The computational fluid
dynamic analysis shows that, for small value of inter-disc spacing and high value
of tangential speed ratio, most of the angular momentum of the fluid is transferred
to the surfaces of the discs in the inlet region and correspondingly, the value of the
torque potential fraction is very high even in the inlet region. On the other hand, for
larger inter-disc spacing, the change in angular momentum in the radial direction
is more uniformly distributed between the inlet and the outlet, and the value of the
torque potential fraction increases gradually with decreasing radius. The complex
(sometimes continuous, sometimes disjointed) three-dimensional shapes of the iso-
surfaces of Uθ r (product of absolute tangential velocity and radius) have been shown,
for the first time, which provide insight into the fluid dynamics of work transfer within
corotating discs. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866263]

I. INTRODUCTION

The Euler’s work equation is the most fundamental relation specifying the work transfer involved
in a conventional turbomachine. Consequently it is discussed in all textbooks of turbomachines.1–4
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FIG. 1. Schematic diagram of a conventional turbomachine.

All textbooks give a diagram similar to Figure 1 and, for the specified configuration, deduce the
Euler’s equation:

�Euler = ṁ
(
Uθ,o ro − Uθ,i ri

)
, (1)

where, ṁ is the mass flow rate, r is the radius, and Uθ is the absolute tangential velocity. The
following convention for subscripts and superscripts is adopted in this paper: the subscripts i and
o denote, respectively, the inlet and the outlet conditions; the subscripts r, θ , and z are used to
denote the corresponding components of a vector quantity along the three cylindrical coordinates;

the symbol overbar () is used to denote the area-averaged value of a variable and the symbol hat
∧
() is

used to denote the mass-flow-averaged value of a variable. In Eq. (1) and throughout this paper, �

is taken as the torque that is applied on the fluid, since this will help to develop a unified treatment
of conventional turbomachines and Tesla disc turbomachines. From Newton’s third law of motion,
the torque that is applied on the solid body is equal and opposite to that applied on the fluid: �solid

= −�fluid. The shaft power, Ẇx , can be calculated from Ẇx = �solid�, where, � is the rotational
speed of the rotor; Ẇx is positive for a turbine, Ẇx is negative for a compressor.

In a conventional turbomachine, work transfer is carried out by the dynamic action of (usually
many) blades. The flow of fluid around the aerofoil cross-section of a blade creates a pressure
difference between the suction and pressure sides of the blade. The integrated effect of this pressure
difference results in an aerodynamic force. The rotational motion of the rotor blades creates the
required velocity along the line of action of the aerodynamic force for the transfer of power between
the fluid stream and the rotor blades. The direction of the force and that of the rotational motion are
such that power is transferred from the rotor blades to the fluid stream in a compressor and power is
transferred from the fluid stream to the rotor blades in a turbine.

Unlike a conventional turbomachine in which the pressure distribution around the blades is
responsible for the generation of the torque, shear stress acting on the disc surfaces gives rise to the
torque in a Tesla disc turbine. There are other major differences in the flow features which will be
revealed in the course of the present analysis. The present paper investigates whether the Euler’s
work transfer equation would be applicable for the very different type of fluid flow that exists in
the Tesla disc turbine, and, if so, what would be the rigorous and generic form of the Euler’s work
equation. The fluid dynamics has been analysed here by mathematical theories as well as by the
computational fluid dynamics (CFD) solutions to gain fundamental physical insight into both the
overall work transfer and its spatial development. The details of the theory have been worked out for
the flow configuration of a disc turbine but it has been shown that the principle and the developed
equations are also applicable to disc pump or compressor.

The details of the working principle of a disc turbine are given in Refs. 5–13. Tesla turbine
is a bladeless turbomachine in which the rotor is constructed by a series of co-axial, parallel flat
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FIG. 2. Schematic diagram of the domain for the mathematical solution. [The gap within the two discs, in relation to the
radius, is exaggerated in the sketch for clarity.]

discs. The discs are attached to a central shaft maintaining a small gap among one another. The
combination of discs and shaft is placed inside a cylindrical casing with a small radial and axial
clearance. The working fluid is injected nearly tangentially to the rotor by means of one or more inlet
nozzles. There are exit ports near the shaft at the centre of each disc. Figure 2 shows a schematic
diagram of two consecutive discs in a Tesla disc turbine which consists of many such discs. The discs
are separated by an inter-disc-spacing b. The components of the velocity at the inlet are represented
by arrows. For a Tesla turbine, subjected to a steady rotational speed �, the components of absolute
velocity (r, z, and θ components of U) are related to the components of relative velocity (r, z, and θ

components of V ) by the following transformation:

Ur = Vr ; Uz = Vz ; Uθ = (Vθ + �r ). (2)

Guha and Sengupta14 have shown the novelty in the fluid dynamics of the rotating flow within a
Tesla disc turbine. Like the Batchelor flow15 or the Stewartson flow,16 the flow in the Tesla disc
turbine also takes place within the gap between two discs. However, unlike the cases considered by
Batchelor or Stewartson, the flow in Tesla turbine is not generated due to the rotation of the discs.
The working fluid with both tangential and radial velocity enters through the small gap between the
discs which are of finite radius. This rotating flow generates torque on the discs’ surfaces which
leads to the rotation of the rotor. The flow configuration is also different from that of Bödewadt,17

because Bödewadt had dealt with the case where there was a single static disc of infinite radius,
the rotating fluid was of infinite expanse along the axis of rotation, and moreover there was no
superposed inflow. The cases considered by some of the modern researchers like Poncet et al.18 with
superposed outflow is not applicable for Tesla turbine because they had considered a stator-rotor
system but all discs in a Tesla turbine are rotors and the superposed flow is inward. None of the
solutions given by Holodniok et al.,19, 20 is applicable for Tesla turbine because in all of their cases
the discs are imparting rotation to the fluid. Another distinguishing feature of the Tesla turbine
configuration is the small gap between two adjacent discs, which may be small enough in certain
cases to be considered as a micro-channel. Usually, the two boundary layers on the two discs would
merge together, so that a core flow of the Batchelor-type does not occur. The boundary layers near
the discs cannot also be described like the Ekman layer in which only Coriolis component of the
inertial terms is retained.

Hoya and Guha9 presented the design of a multipurpose flexible experimental rig and undertook
a systematic series of experiments on the performance and efficiency of Tesla disc turbine. One
important challenge is to measure low torque at very high angular speed. Several methods were
tested and a new method called “the angular acceleration method” was developed. Tesla turbine has
several important advantages.9 For example, the manufacturing cost of the discs would be lower
than the aerofoil-shaped blades of conventional turbomachines. The turbine has self-cleaning nature
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due the centrifugal force field. This makes it possible to operate the turbine with non-conventional
fuels like biomass which produce solid particles.

The main disadvantage of the Tesla disc turbines is that the present values of their efficiency
are lower than that of conventional turbines. However, it is hoped that the current surge of research
would improve the efficiency of the disc turbines—Guha and Smiley,11 for example, have developed
an improved design of the nozzle, greatly improving the efficiency and achieving uniformity in the
velocity profile of the jet. (The loss in the nozzle is generally recognized6, 8 as a major source of loss
in a conventional Tesla turbine.) Tesla turbines may find niche applications in the future. However,
even if this does not happen on a commercial scale, the understanding of the fluid dynamics of this
special type of rotating flow (as explained above) is important in its own right.

Many experimental Tesla disc turbines are built with one or more nozzles at the periphery
of the rotor. The fluid velocity at the nozzle exit may be large leading to compressibility effects,
including the presence of shock waves in some instances. If the fluid is a two-phase mixture, such
as a solid-particle-laden gas, then the principles of two-phase flow21 and careful consideration of
the concepts of total pressure and total temperature in two-phase flows22, 23 may be necessary. The
presence of a finite number of nozzles may introduce non-uniformity in inlet conditions for the disc
rotors. This is why the generic principle of work transfer, that includes the effects of non-uniformity
and compressibility, has been developed here.

The overall organization of the present paper is as follows. The general principle of Euler’s work
transfer equation for the flow through co-rotating discs is formulated in Sec. II. The formulation is
capable of dealing with generic forms of non-uniformity in the flow-field (such as what would be
the case if the inter-disc spacing is large or if a finite number of discrete nozzles is present at the
inlet), and the flow may be incompressible or compressible, laminar or turbulent. Section II shows
that the torque can be calculated from changes in angular momentum as well as from viscous shear
stresses (the work equivalence principle), and not all shear stress components are responsible for the
generation of useful power. After establishing the work equivalence principle in Sec. II, its validity
is assessed in two complementary ways: analytically in Sec. III and by means of CFD simulations in
Sec. V. The analytical theory is valid for small inter-disc spacing and axi-symmetric inlet condition.
The CFD simulations are based on full Navier-Stokes equations, and can handle large inter-disc
spacing and complex boundary conditions. New physical insight on the spatial development of work
transfer has been obtained from the CFD simulations. Section IV addresses the form of the work
transfer principle in stationary vis-à-vis rotating frames of reference. Additional physical reflections
and limiting cases have been discussed in Secs. VI and VII.

II. FORMULATION OF EULER’S WORK EQUATION AND WORK EQUIVALENCE
PRINCIPLE FOR TESLA DISC TURBOMACHINE

It has been explained in Sec. I that the nature of force producing the torque is different in
conventional turbomachines and Tesla disc turbomachines (pressure vs shear force). Another major
difference arises from the fact that the flow in Tesla disc turbomachine is severely non-uniform.
The serious non-uniformity in the z-direction is caused by the action of viscosity and is accentuated
because the dimension in the z-direction is very small (inter-disc-spacing b being very small). Thus
the z-variations of Uθ and Vr (and of Uz when inter-disc-spacing is relatively large) are of critical
importance. Similarly, the r-variations of the velocity components and pressure must be accounted
for. In a conventional turbomachine, the Euler’s work equation [Eq. (1)] is often applied4 for one-
dimensional steady flow. For more realistic calculations, the blades may be sub-divided into a few
segments and Eq. (1) may be applied to each segment using a quasi-one-dimensional approach. In
the Tesla disc turbine, the existence of the strong non-uniformity in multiple directions compels one
to integrate the complex flow features directly into the theoretical formulation as shown below. We
have shown the mathematical derivation for the flow configuration of a disc turbine, the interpretation
of the final equations for a disc pump or compressor is given in Sec. II D.
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FIG. 3. Schematic morphology of non-uniform flow and orientation of shear stresses within a Tesla disc turbine. [Note the
strong non-uniformity in the flow in two mutually perpendicular directions r and z. There may be additional non-uniformity
in the θ direction for complex boundary conditions.]

A. Determination of angular momentum

Figure 3 depicts the flow domain and the control volume contains the fluid between two consec-
utive discs. The control surface consists of the inlet circumferential plane, the outlet circumferential
plane, and the surfaces of the two discs.

Consider an elemental circumferential area rdθdz at an arbitrary location (θ ,z) at an arbitrary
radius r. Mass flow rate through any circumferential plane (at arbitrary radius r) can be expressed as

ṁ =
∫

dṁ =
∫ b

0

∫ 2π

0
ρr |Vr | dθdz = r

∫ b

0

∫ 2π

0
ρ |Vr | dθdz. (3)

In Steady flow, the same mass flow rate exists at inlet, outlet, and at any circumferential plane of
arbitrary radius (between the inlet and the outlet). In incompressible flow ρ (density of the working
fluid) can be taken outside the integral sign. Further, for axi-symmetric flow, |Vr | can be taken
outside the θ -integration. Therefore, for incompressible, axi-symmetric flow, Eq. (3) is simplified to

ṁ = 2πρr
∫ b

0
|Vr | dz.

Figure 3 shows that careful consideration of non-uniformity is needed in determining the flux
of angular momentum at inlet. This is because the elemental mass flow rate depends on the radial
velocity Vr,i (which is strongly non-uniform in the z-direction) and this is to be multiplied by Uθ ,i

which is perpendicular to Vr,i and is itself strongly non-uniform in the z-direction. There may be
additional non-uniformity in the θ direction for complex boundary conditions.

The total flux of angular momentum at inlet (r = ri) is given by

Hi =
∫

Uθ,i ri dṁ

= r2
i

∫ b

0

∫ 2π

0
ρUθ,i

∣∣Vr,i

∣∣ dθdz. (4)

Equation (4) may be written in a more compact form if one defines the mass-flow-averaged absolute
tangential velocity Ûθ as follows:

Ûθ =

∫ b

0

∫ 2π

0
ρUθ |Vr | dθdz

∫ b

0

∫ 2π

0
ρ |Vr | dθdz

. (5)
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For incompressible, axi-symmetric flow, Eq. (5) is simplified to Ûθ =
∫ b

0
Uθ |Vr | dz /

∫ b

0
|Vr | dz.

Combining Eqs. (4) and (5) one obtains

Hi = ṁiri Ûθ,i , (6)

where, Ûθ,i is the mass-flow-averaged absolute tangential velocity at inlet.
Similarly, the flux of angular momentum at outlet is given by

Ho = ṁoroÛθ,o. (7)

The Reynolds transport theorem24–26 applying on any system property (here, the property is H and
its specific value is h) for a non-deforming control volume can be written as

d

dt
(Hsys) =

∫
cv

∂

∂t
(hρ)dv +

∫
cs

hρ( �V · �n)d A. (8)

In Eq. (8), the term
∫
cs

hρ( �V · �n)d A signifies the net flux of angular momentum that can cross

the control surface of the control volume. Out of four control surfaces the flux of angu-
lar momentum can enter or exit the control volume from the inlet circumferential plane and
the outlet circumferential plane. Considering the sign convention of the direction normal (�n),∫
cs

hρ( �V · �n)d A = −
∫

inlet

h (ρ |Vr | d A) +
∫

outlet

h (ρ |Vr | d A) = −Hi + Ho. Under steady flow oper-

ating condition,
∫
cv

∂

∂t
(hρ)dv = 0. According to Newton’s second law of motion,

d

dt
(Hsys) [in

Eq. (8)] is equal to the torque applied on the fluid i.e. �Euler. Therefore, for the present study
Eq. (8) can be expressed as

�Euler = −Hi + Ho. (9)

B. Determination of viscous torque

The control surfaces are such that pressure does not create any moment about the z-axis; the
moment on the fluid control volume for the Tesla disc turbine is solely created by viscous shear
forces. Out of the six independent elements of the symmetric stress tensor, only two shear stresses,
viz., τ zθ and τ rθ , act on the control surfaces such that they can produce a moment about the
rotational axis z (see Figure 3). Consider a circular strip of width dr at a radius r on the surface
of the disc. The shear stress acting on the strip is τ zθ (z = 0). The shear force acting on the strip

is (rdr )
∫ 2π

0
τzθ (z = 0) dθ , and the moment of this force about z-axis is (r2dr )

∫ 2π

0
τzθ (z = 0) dθ .

The total torque produced on the disc surface is
∫ ro

ri

r2
∫ 2π

0
τzθ (z = 0) dθdr . This torque should be

multiplied by 2 since there are two such surfaces in the control volume. Now, consider a circular
strip of height dz at an arbitrary z on the inlet plane. The total moment of the shear force acting on

the inlet plane is r2
i

∫ b

0

∫ 2π

0
τrθ (r = ri ) dθdz. Similarly, the total moment of the shear force acting

on the outlet plane is −r2
o

∫ b

0

∫ 2π

0
τrθ (r = ro) dθdz. The total moment produced by the shear forces

on all control surfaces can therefore be generally written for the Tesla disc turbine as

�shear = 2
∫ ro

ri

r2
∫ 2π

0
τzθ (z = 0) dθdr + r2

i

∫ b

0

∫ 2π

0
τrθ (r = ri ) dθdz − r2

o

∫ b

0

∫ 2π

0
τrθ (r = ro) dθdz.

(10)
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The shear stresses τ zθ and τ rθ are to be treated as algebraic quantities and a consistent sign
convention must be used. τ rθ may be positive over some values of z, while it may be negative at
other values of z.

It is interesting to note that both τ zθ and τ rθ create viscous torque on the fluid and thus need to
be considered in the formulation of work equivalence principle. On the other hand, only τ zθ applies
on the disc surface and thus only this component is responsible for the transfer of useful power that
can be externally extracted from the shaft connected to the discs.

An order of magnitude analysis13 shows that the contribution of τ rθ would be small
(since r � z) in comparison to that of τ zθ . Hence τ rθ has been neglected in the analytical the-
ory given in Sec. III below. In the CFD solution given in Sec. V, however, when a uniform velocity
profile is prescribed at the inlet, the z-profile of Uθ forms rapidly and approaches the parabolic profile
(for small aspect ratio and air as working fluid) assumed in the analytical theory within the first few
grid points in the r-direction. Hence although the value of τ rθ is globally small (as expected from
the order of magnitude analysis mentioned previously), τ rθ may not be small at the inlet surface
where it matters most for the calculation of the applied viscous torque. However, the contribution of
τ rθ to the applied viscous torque still remains small even in the CFD simulation because the surface
area (2πrib) over which τ rθ acts is much smaller than the surface area over which τ zθ acts. In a
practical Tesla disc turbine with one or more nozzles arranged around the circumference, there may
be viscous stress generated in the shear layer between the rotating fluid and the stagnant fluid near
the casing—this may be a physical reason for the existence of τ rθ in such flow configurations.

C. Work equivalence principle

The work equivalence principle for a Tesla disc turbomachine may be enunciated as: “The
change in angular momentum of the fluid passing through a Tesla disc turbine is equal to the viscous
torque applied at the boundary of the control volume.” Mathematically,

�Euler = �shear . (11)

The validity of Eq. (11) has been assessed in Secs. III–V. In Sec. III A, the synopsis of
an analytical theory is given, from which the three-dimensional, axi-symmetric flow field can
be determined. Based on this analytically determined flow field, both �Euler and �shear can
be calculated: the validity of Eq. (11) can then be checked. This is done in Sec. III B. In
Sec. IV, additional physical insight is provided by analyzing the equations in the absolute and
relative frames of reference: this, in particular, clarifies the subtle role played by the Coriolis force.
In Sec. V, detailed CFD solutions are presented. This serves two purposes: the first utility is to assess
the validity of Eq. (11) using the full Navier-Stokes equations for generalized geometries such as
large aspect ratio (the analytical theory is based on several simplifying approximations), and the
second use of the CFD solutions is to enhance the physical understanding.

D. Turbine versus pump or compressor

Although the fluid dynamics of work transfer has been developed above for the flow configu-
ration of a Tesla disc turbine, the principle, and equations are equally applicable to disc pump or
compressor as well. Thus Eqs. (9)–(11) are applicable for all types of disc turbomachines.

For a disc turbine, Ho < Hi. Equation (9) then shows that �Euler is negative, which means that
Ẇx is positive. The reverse is true for disc pumps or compressors: Ho > Hi, �Euler is positive and
Ẇx is negative.

Equation (11) demands that the sign of �shear in disc turbines must also be opposite to that in
disc pumps and compressors. This is physically satisfied by the fact that, for a disc turbine, the fluid
imparts rotation to the disc and thus the tangential velocity of the disc is lower than the tangential
velocity of the fluid adjacent to the disc (∂Uθ /∂z > 0). For a disc pump or compressor, the disc
imparts rotation to the fluid and thus the tangential velocity of the disc is greater than the tangential
velocity of the fluid adjacent to the disc (∂Uθ /∂z < 0). The sign of τ zθ in disc turbine is thus opposite
to that in disc pump or compressor.
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III. ANALYTICAL DEMONSTRATION OF THE WORK EQUIVALENCE PRINCIPLE, EQ. (11)

It is to be remembered that the work equivalence principle, Eq. (11) derived above, is valid
for laminar as well as for turbulent flow. For laminar flow, the validity of Eq. (11) is assessed with
the help of a simple analytical theory giving the velocity and pressure fields within a Tesla disc
turbine.13 The essence of the analytical theory is given in Sec. III A for ready reference. Laminar
flow is considered for the example calculations given in the present paper since the chosen disc
turbine dimensions and flow conditions are such that the experiments in Ref. 10 established that the
flow is laminar even for the largest inter-disc spacing considered here.

There are various works (e.g., Refs. 8 and 27) to suggest that the flow through co-rotating discs
of a Tesla turbomachine may also become turbulent. The instability criteria for the flow over a
rotating disc in an infinite expanse of fluid and for the flow between a static and a rotating disc are
considered, respectively, by Lingwood28, 29 and Cousin-Rittemard et al.30 Cousin-Rittemard et al.30

have found that the onset of instability occurs when the value of �b2 / ν exceeds 2000. The value of
�b2 / ν considered in the present analysis is much less than 2000. However, the flow configuration
of a stator-rotor assembly is different from that of a Tesla disc turbine (as explained in Sec. I), and
there is a need for a detailed stability analysis for the present case, as noted by Rice8: “It is desirable
that it be explored further both experimentally and by additional hydrodynamic stability analysis.”

A. Synopsis of an analytical theory for determining the flow field

The domain for the mathematical solution is the three-dimensional space (Figure 2) between
two circular rotor discs separated axially (i.e., in the z-direction) by a distance b. The rotor inlet is
situated along the periphery of the discs (i.e., at radius ri). The rotor outlet is at the centre of the
discs (at radius ro).

The flow between the discs has been assumed to be steady, incompressible, laminar, and axi-
symmetric. Guha and Sengupta13 presented a detailed order of magnitude analysis of the various
terms of the three-dimensional conservation equations in the cylindrical coordinate system and
based on these the appropriate important terms for the present problem are included in the governing
equations given below.

The continuity equation, the momentum equations, and boundary conditions are written in terms
of relative velocities. For this purpose the relations between the absolute and relative velocities
(Eq. (2)) are used. For small aspect ratio, the governing conservation equations take the following
form:

Continuity equation
∂Vr

∂r
+ Vr

r
= 0, (12)

θ − Momentum equation Vr
∂Vθ

∂r
+ Vr Vθ

r
+ 2�Vr = ν

∂2Vθ

∂z2
, (13)

r − Momentum equation Vr
∂Vr

∂r
− �2r − 2�Vθ − Vθ

2

r
= − 1

ρ

dp

dr
+ ν

∂2Vr

∂z2
, (14)

z − Momentum equation
∂

∂z
(p − ρgzz) = 0. (15)

Boundary conditions at r = ri V̄ r = V̄r,i, V̄ θ = V̄ θ,i , (16)

at z = 0, b Vr = 0, Vθ = 0, (17)

at z = b/2
∂Vr

∂z
= ∂Vθ

∂z
= 0. (18)

There are three variables in Eqs. (12)–(18), which have not been described previously: kinematic
viscosity of the working fluid ν, pressure p, and gravitational acceleration g.
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Within the boundary layer developed on the flat solid discs, the relative tangential and radial
velocities at any radius between ro and ri can be modelled as

Vθ (r, z) = V̄ θ,i Gθ (z)
(
V̄ θ (r ) / V̄ θ,i

)
(19)

Vr (r, z) = V̄ r,i Gr (z)
(
V̄ r (r ) / V̄ r,i

)
, (20)

where

R = r

ri
, Gθ (z) = Vθ (r, z)

V̄ θ (r )
and Gr (z) = Vr (r, z)

V̄ r (r )
. (21)

The variable R in Eq. (21) represents the non-dimensional radius. The functions Gθ and Gr, which
are respectively the z-variation of tangential and radial velocities within the boundary layers, are
assumed to be parabolic in nature. The physical justification for the above assumptions is described
in Ref. 13. The expressions of Gθ and Gr are given by

Gθ = 6
z

b

(
1 − z

b

)
, (22)

Gr = 6
z

b

(
1 − z

b

)
. (23)

Equations (22) and (23) are applicable when the aspect ratio is small. When the aspect ratio is large,
velocity profiles cease to be parabolic. The flow field can then be calculated by another analytical
theory (currently under development) or by CFD simulations (as has been done in later example
calculations given in this paper).

Integrating the differential form of the continuity equation (12), one obtains

V̄ r (r )

V̄ r,i
= ri

r
. (24)

We introduce the following three non-dimensional variables for further theoretical development:

p′ = p − pi

ρ�2r2
i

, φi = V̄ r,i

�ri
, γ = Ū θ,i

�ri
, (25)

where p′ is the non-dimensional pressure, φi is the flow coefficient, and γ is the tangential speed ratio
at inlet. The θ -momentum equation (13) and r-momentum equation (14) are integrated partially with
respect to z over the domain (0, b/2). This makes it possible to transform the PDEs [Eqs. (13) and (14)]
into ODEs. The complete analytical solutions of the ODEs are available in Ref. 13. The variation of
Vθ along the radial direction is given by

V̄ θ (r )

V̄ θ,i
=

C2

C1
+

(
1 − C2

C1

)
exp

[
C1

2

(
1 − R2

)]

R
, (26)

where

C1 = 10ν

ϕi�b2
, C2 = −10

6(γ − 1)
. (27)

The analytical theory has been verified in Ref. 13 by comparing its predictions with experimental
measurements available in the literature. A systematic dimensional analysis (providing the appro-
priate non-dimensional numbers for explaining and quantifying the flow physics of the rotating flow
within the narrow spacing of multiple concentric discs), a similitude study (for achieving geometric,
kinematic, and dynamic similarity between a model and the prototype), the proper scaling laws for
obtaining Eqs. (12)–(15) from Navier-Stokes equations, and, the physical interpretation of C1 and
C2 of Eq. (27) are given in Ref. 31. It is shown that C1 = 10/Ds, where Ds( ≡ φi�b2/ν) is a new
non-dimensional quantity introduced in Ref. 31 and the term “dynamic similarity number” has been
coined to describe this variable. Seven non-dimensional numbers of importance have been identified
for a Tesla disc turbine: (i) radius ratio (≡ ro / ri), (ii) aspect ratio (≡ b / ri), (iii) tangential speed ratio
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at inlet (≡ Ūθ,i /�ri ), (iv) flow angle at inlet
(≡ tan−1

(∣∣Ūr,i

∣∣ / Ūθ,i
))

(which is same as the nozzle

angle), (v) dynamic similarity number Ds, (vi) power coefficient
(
≡ Ẇ /

(
ρ

∣∣Ūr,i

∣∣3
r2

i

))
, and, (vii)

pressure-drop coefficient
(≡ (pi − po) /

(
ρŪ 2

θ,i

))
. Geometric similarity is ensured by keeping the

value of radius ratio and aspect ratio of the model same as that of the prototype. After achieving
geometric similarity, dynamic similarity number, flow angle at inlet and tangential speed ratio at
inlet of the model need to be equal with those of the prototype to ensure complete dynamic similarity
between the model and the prototype. For a Tesla disc compressor (or pump), a similar analysis is ap-
plicable if two non-dimensional numbers are suitably modified: a flow coefficient

(
φi ≡ ∣∣Ūr,i

∣∣ /�ri
)

may be used instead of the flow angle at inlet, and, the non-dimensional number �b2 / ν may be used
instead of the dynamic similarity number Ds.

B. Equivalence of Euler torque (�Euler) and torque calculated from shear stress (�shear)

In this section, the equivalence between �shear and �Euler will be demonstrated from the math-
ematical theory described in Sec. III A. For this purpose, both sides of the θ -momentum equation
(13) are multiplied by r and expressed as

r
Vr

r

[
∂

∂r
{r (Vθ + �r )}

]
= rν

∂2Vθ

∂z2
. (28)

Using the relation between absolute and relative tangential velocity (Eq. (2)), Eq. (28) can be written
in the following form:

Vr

[
∂

∂r
(rUθ )

]
= rν

∂2Vθ

∂z2
. (29)

Multiplying both sides of Eq. (29) by πrρ we get

πrρVr

[
∂

∂r
(rUθ )

]
= πr2 μ

∂

∂z

(
∂Vθ

∂z

)
, (30)

where, μ is the dynamic viscosity of the working fluid. Equation (30) is integrated partially with
respect to z over the domain (0, b/2) [using Eq. (18)],

∫ b/2

0
πrρVr

[
∂

∂r
(rUθ )

]
δz = −πr2τw(r ), (31)

where, τw = τzθ (z = 0, b) is the shear stress on the disc surface. Integrating Eq. (31) in the radial
direction from outlet to inlet we get

∫ ri

ro

∫ b/2

0
πrρVr

[
∂

∂r
(rUθ )

]
δzδr = −

∫ ri

ro

πr2τw(r )δr . (32)

The order of integration is interchanged on the left-hand side of Eq. (32). The assumptions made in
the analytical theory of Sec. III A mean that τ rθ (r = ri) and τ rθ (r = ro) can be neglected. Equation
(10) then shows that for axi-symmetric flow,

�shear = 4π

∫ ro

ri

r2τw(r )dr . (33)

Therefore, Eq. (32) can be rearranged as
∫ b

0

∫ ri

ro

2πrρVr

[
∂

∂r
(rUθ )

]
δrδz = −�shear . (34)

Substituting the expression of Vr from Eqs. (20) and (24) into Eq. (34) we get
∫ b

0

∫ ri

ro

2πρri V̄r,i Gr (z)

[
∂

∂r
(rUθ )

]
δrδz = −�shear . (35)
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Equation (35) can be simplified as

∫ b

0
2πρri V̄r,i Gr (z)

(
riUθ,i − roUθ,o

)
δz = −�shear . (36)

According to Eq. (21) V̄r,i Gr (z) = Vr,i , and according to Eq. (24) Vr,i (ri/ro) = Vr,o. Eq. (36) then
becomes

2π ρr2
i

∫ b

0
Vr,iUθ,i dz − 2π ρr2

o

∫ b

0
Vr,oUθ,odz = −�shear . (37)

Using Eqs. (4)–(7) and the condition of axi-symmetry, Eq. (37) can be expressed as

Hi − Ho = ṁ
(
ri Ûθ,i − roÛθ,o

) = −�shear . (38)

Equations (9) and (38) show that

�Euler = �shear . (39)

Equation (39) is the same as Eq. (11), the proposed work equivalence principle for the non-
uniform viscous flow within a Tesla disc turbine. It is useful to summarize the route we took to
demonstrate the validity of Eq. (39). We started with the differential θ -momentum equation (13),
and used Eq. (20) and the solution of the continuity equation (24) to evaluate the LHS of Eq. (36).
While deriving Eq. (39), it has not been necessary to actually evaluate ∂Vθ /∂z using the analytical
solution for V θ (Eq. (19)) given in Sec. III A. It should be noted that Eq. (39) is valid only when
�Euler is calculated with the mass-flow-averaged absolute tangential velocities, Ûθ,i at inlet and Ûθ,o

at outlet (not with area-averaged velocities, Ūθ,i and Ūθ,o).

IV. INTERPRETATION OF TORQUE IN ABSOLUTE AND RELATIVE FRAMES:
ROLE OF CORIOLIS FORCE

�Euler, using the relation between absolute and relative velocities as described in Eq. (2), can be
divided into two parts as given below

�Euler = ṁ
(
�r2

o − �r2
i

) + ṁ
(
V̂θ,oro − V̂θ,i ri

)
. (40)

It can be observed that both of the terms of Eq. (40) are proportional to mass flow rate. The
term ṁ

(
�r2

o − �r2
i

)
depends on the rotational speed of the reference frame, whereas the term

ṁ
(
V̂θ,oro − V̂θ,i ri

)
depends on the relative tangential velocity of the fluid. These two terms will be

used multiple times in the subsequent theoretical discussion, henceforth these two terms are denoted
as

(�Euler )1 = ṁ�
(
r2

o − r2
i

)
(41)

and,

(�Euler )2 = ṁ
(
V̂θ,o ro − V̂θ,i ri

)
. (42)

It is recalled that, while demonstrating �Euler = �shear in Sec. III B, it has not been necessary to
actually evaluate ∂Vθ /∂z using the analytical solution for V θ (Eq. (19)) given in Sec. III A. We now
want to evaluate ∂Vθ /∂z using Eq. (19) to find out whether �shear can be also naturally divided into
two parts corresponding to the two components of �Euler given by Eqs. (41) and (42).

First, the wall shear stress on one side of a single disc is calculated by using the definition of Vθ

from Eq. (19). Therefore, the expression of wall shear stress is given by

τw(r ) =
[
μ

∂Vθ (r, z)

∂z

]
atz=0

= 6μV̄ θ (r )

b
. (43)
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The expression of τw(r ) from Eq. (43) is substituted in Eq. (33). Equation (33) is then integrated.
This gives

�shear = 24πμV̄ θ,i r3
i

b

⎡
⎢⎢⎣ C2

2C1
(1 − R2

o) −

(
1 − C2

C1

)

C1

{
1 − exp

[
C1

2

(
1 − R2

o

)]}⎤
⎥⎥⎦ . (44)

where, Ro is the non-dimensional radius at outlet, i.e., Ro ≡ ro/ri.
The expression �shear in Eq. (44) can be divided into two parts as given below

(�shear )1 = 24πμV̄ θ,i r3
i

b

[
C2

2C1
(1 − R2

o)

]
(45)

and

(�shear )2 =
(

24πμV̄ θ,i r3
i

b

) ⎡
⎢⎢⎣−

(
1 − C2

C1

)

C1

{
1 − exp

[
C1

2

(
1 − R2

o

)]}⎤
⎥⎥⎦ . (46)

Equations (45) and (46) apparently suggest that both parts of the torque depend on the dynamic
viscosity μ of the fluid; this seems logical from one’s expectation from other fields of fluid dynamics.
However, if the expressions of ṁ (from Eq. (3)) and C1 (from Eq. (27)) are substituted in Eq. (45),
then Eq. (45) becomes

(�shear )1 = 6

5
ṁV̄ θ,i ri

[
C2

2

(
1 − R2

o

)]
. (47)

Equation (47) is a surprising result since it shows that part of the viscous torque, (�shear)1, does
not depend on the fluid viscosity at all. In order to understand what is then the source of this term,
Eqs. (2), (25), and (27) are substituted in Eq. (47) to give

(�shear )1 = ṁ�
(
r2

o − r2
i

)
. (48)

A comparison of Eqs. (41) and (48) shows that

(�shear )1 = (�Euler )1 . (49)

If the expressions of ṁ (from Eq. (3)) and C1 (from Eq. (27)) are substituted in Eq. (46), then
Eq. (46) becomes

(�shear )2 =
(

−6

5
ṁV̄ θ,i ri

) (
1 − C2

C1

) [
1 − exp

[
C1

2

(
1 − R2

o

)]]
. (50)

For the axi-symmetric parabolic profiles, Eqs. (22) and (23), the definition of a mass-flow-
averaged quantity (Eq. (5)) shows that the mass-flow-averaged and area-averaged velocities are
related by

V̂θ = 6

5
V̄θ . (51)

Substitution of V̄θ (R)/V̄θ,i from Eq. (26), C1 from Eqs. (27) and (51) into Eq. (50) gives

(�shear )2 = ṁ
(
V̂θ,oro − V̂θ,i ri

)
. (52)

A comparison of Eqs. (42) and (52) shows that

(�shear )2 = (�Euler )2 . (53)

A study of Eqs. (48) and (52) may suggest that, like (�shear)1, (�shear)2 is also independent of
fluid viscosity. This is not however the case. Although μ does not appear explicitly in Eq. (52), its
effect is implicitly present since, for a given V̂θ,i , the value of V̂θ,o depends on the value of μ.
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A. Work equivalence principle in the relative frame

In order to understand the physical origin of the component of “shear stress,” (�shear)1 given by
Eq. (48), we now attempt to derive the work equivalence principle in the rotating frame of reference.
The proposed work transfer equation is encapsulated by the following qualitative statement:

Torque produced by the net
force acting on the fluid in the
control volume in the rotating
frame of reference

=
Change in angular
momentum of the
fluid in the rotating
frame of reference.

(54)

It is important to realize that two types of forces act on the fluid in the control volume, that have
a moment about the axis of rotation i.e. the z-axis:

(1) The shear force caused by the shear stress components, as explained in Sec. II B and Eq. (10).
(2) The fictitious Coriolis force.

The torque produced by the shear force �shear, discussed in Sec. II B, also applies to the rotating
frame of reference since Eq. (2) shows that ∂Uθ /∂z = ∂Vθ /∂z. Let the torque produced by the
fictitious Coriolis force is denoted by �Coriolis (whose magnitude is determined below). Equation
(54) then can be written as

Work equivalence principle in
the rotating frame of reference

�shear + �Coriolis = ṁ
(
V̂θ,oro − V̂θ,i ri

)
. (55)

We now turn our attention to calculate �Coriolis. Consider an annular ring of width dr and thickness
dz at a radius r. The mass of fluid contained in this ring is dm = ρ2πrdrdz. The magnitude of Coriolis
acceleration of this mass of fluid in the θ -direction is 2� |Vr |. Thus the elemental torque produced
by the Coriolis force on this elemental mass is d�Coriolis = r2� |Vr | dm = r2� |Vr | ρ2πrdzdr .
Integrating the elemental Coriolis torque over all elemental annular rings in the control volume, one
obtains

�Coriolis =
∫ ri

ro

2�r
∫ b

0
|Vr | ρ2πrdzdr . (56)

The first integral is evaluated by Eq. (3). Equation (56) then becomes �Coriolis =
∫ ri

ro

2�ṁrdr .

According to the continuity equation, ṁ remains constant at every circumferential plane at arbitrary
r. ṁ is then independent of r and therefore can be taken outside the integral. Equation (56) therefore
can be written as

�Coriolis = ṁ�
(
r2

i − r2
o

)
. (57)

The expression of �Coriolis from Eq. (57) is substituted in Eq. (55) and is transposed to the RHS. The
transposed equation (55) would then totally correspond to Eq. (40). This clearly identifies the origin
of (�shear)1 given by Eq. (48): (�shear)1 = (�Euler)1 = −�Coriolis.. It is important to recall that the
complete expression for �shear (Eq. (44)) was derived by integrating the expression of τw, which is
given by Eq. (43) and is dependent on viscosity μ, over the disc surface area. The mystery of why
a part of this viscous torque, (�shear)1, would then be independent of viscosity is thus resolved once
one takes the effect of Coriolis force in the rotating frame of reference (Eqs. (54), (55), and (57)).

V. COMPUTATIONAL FLUID DYNAMICS SOLUTION

A computational investigation of the fluid dynamics of work transfer within a Tesla disc turbine
has been reported in this section. A commercially available CFD software CFX 14.5 is used to solve
the full Navier-Stokes equation in the domain as defined in Sec. III A. CFX 14.5 is an element-based
finite volume solver. Flow conservation equations are solved for finite volumes which are generated
by discretizing the spatial domain into a mesh of discrete nodes. CFX 14.5 uses finite-element shape
functions to evaluate the velocity and pressure at integration points from the velocity and pressure
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at mesh nodes. CFX 14.5 uses co-located grid and therefore, special techniques proposed by Rhie
and Chow32 and Majumdar33 are implemented to avoid the formation of a decoupled (checkerboard)
pressure field. The detailed procedure and solution methodology are given in Ref. 34. Various
numerical schemes (upwind scheme, central difference scheme, high resolution scheme, etc.) are
available in CFX 14.5 to evaluate the advection terms at the integration points. In the present study
the high resolution scheme of CFX is used; the spatial order of the scheme may vary between one
and two. Double precision arithmetic is adopted for all numerical calculations given in this paper.

The geometry of the model and the computational grid are generated by the commercially
available software GAMBIT 2.4.6. The geometrical details (inlet radius, outlet radius, maximum
inter-disc-spacing) and input flow variables

(
Ūθ,i , Ūr,i

)
chosen for the present study are the same as

those used in the experimental study in Ref. 10. Each disc has an inlet radius (ri) of 25 mm [R = 1]
and an outlet radius (ro) of 13.2 mm [R = 0.528], and, the maximum inter-disc spacing considered
is 0.46 mm. Computations have been carried out for many values of inter-disc spacing b (hence, for
various values of aspect ratio b̃); however, only three representative computations corresponding to
three selected values of b̃ are reported in this section to highlight important observations and to keep
the discussion focussed (b = 0.46 mm, b̃ = 0.0184; b = 0.23 mm, b̃ = 0.0092; and, b = 0.115 mm,
b̃ = 0.0046).

The flow is considered to be steady and laminar. The boundary conditions used in the present
study are as follows:

1. The specified velocities at the inlet and static pressure at the outlet are assumed axi-symmetric.
2. At inlet, the area-averaged tangential velocity Ūθ,i is specified as 106 m/s and the area-averaged

radial velocity Ūr,i is −11.5 m/s. The chosen tangential and radial velocities imply a nozzle
angle of 6.2◦ with the tangential direction. For computations reported in this section, it is
assumed that there is no z-variation of the velocities. However, the effects of non-uniformity
of inlet velocities in the z-direction have been studied in Sec. VI (with the same values of Ūθ,i

and Ūr,i mentioned above).
3. At outlet, the boundary condition is modelled as pressure outlet with zero gauge pressure.
4. No slip boundary condition is set on the disc walls. A rotational speed (�) of the disc (wall)

is also set.

Numerical simulations are carried out for a large number of γ (by varying � of the disc), and out
of these many calculations, the results for three particular values of γ are discussed in this paper (�
= 1000 rad/s, γ = 4.24; � = 3000 rad/s, γ = 1.413; � = 5000 rad/s, γ = 0.848). The quantitative
solutions given in this paper are valid for a particular fluid, viz., air.

In order to systematically select an appropriate convergence criterion, the flow for the same
computational domain has been simulated thrice as the maximum residual is set respectively at
10−5, 10−6, and 10−7. It is found that when the maximum residual is changed from 10−6 to 10−7,
the corresponding changes in both area-averaged and mass-flow-averaged radial and tangential
velocities are less than 0.05%. Hence, a maximum residual of 10−6 is chosen as the convergence
criterion for the present study.

A grid-independence test has been carried out (Table I showing a few pertinent details), and
based on this study, a total of 2 280 000 (120 × 190 × 100) mapped, hexahedral computational cells
are used for the results presented in this paper. The grids are distributed differently in the r, θ , and
z directions in accordance with the difference in the flow physics in the three directions. The grid

TABLE I. Grid independence test for ri = 25 mm (R = 1), ro = 13.2 mm
(R = 0.528), b = 0.46 mm (b̃ = 0.0184), � = 3000 rad/s (γ = 1.413).

Grid Number of grids in Total number �pio

Distribution r, θ , and z directions of grids (Pa)

Coarse (60 × 95 × 50) 285 000 13 165.3
Standard (120 × 190 × 100) 2 280 000 13 233.6
Fine (168 × 266 × 140) 6 256 320 13 235
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distribution in the z-direction is non-uniform with very small grid size close to the surfaces of the
two discs (to capture the velocity gradient on the surface accurately) and with progressively larger
grid size as one moves away from the surfaces to the middle of the inter-disc gap (with a successive
ratio of 1.05). Since the applied boundary conditions are axi-symmetric, the grids in the θ -direction
are uniformly distributed. In course of the present study, it has been found that, when there is no
z-dependence in the applied boundary conditions at inlet for the radial and tangential velocities,
both velocities change very rapidly within a very short radial distance from the inlet, within which
the z-profile of both velocities are created from their uniform values at inlet. In order to capture
this effect properly, the grids in the radial direction are divided into two zones—non-uniform and
uniform. Near the inlet, non-uniform boundary-layer-type grids with 20 rows in the radial direction
are used. The size of the first grid is 0.003 mm and the successive ratio of the geometric progression
series is 1.2. The rest of the radial extent up to the outlet is meshed uniformly with 100 grid points.
The rapid attainment of the z-dependence of the absolute tangential velocity within a short radial
distance of the inlet is shown in Figure 4.

Instead of performing a detailed grid independence test for every value of inter-disc spacing b
studied in the present paper, we have performed the grid independence study only for the maximum
value of b as shown in Table I and have used the same grid (120 × 190 × 100), described above,
for all other values of b (which are lower than b = 0.46 mm). As the value of b decreases, the same
accuracy could be obtained with correspondingly reduced number of grids in the z-direction, but the
finer grid did not pose a severe constraint on the computational resources available to us.

The mass-flow-averaged and the area-averaged velocities are computed at the inlet and the
outlet. �Euler is then obtained from Eq. (9) on the basis of the mass-flow-averaged velocities.
Detailed computations reveal that there are subtle differences in the mechanism of work transfer as
the aspect ratio (b̃) is altered or the tangential speed ratio (γ ) is varied.

Table II shows the results of the numerical simulation for three different aspect ratios (b̃)
corresponding to three inter-disc-spacings (b). For each of b̃ the results are presented for two values
of γ . Mass-flow-averaged (Ûθ ) and area-averaged tangential velocities (Ūθ ) are calculated at the
inlet and the outlet. It can be observed from Table II that Ûθ and Ūθ are in general not equal. Euler
torque (�Euler) is calculated on the basis of Ûθ . The area-averaged formulation [ṁ(Ūθ,oro − Ūθ,i ri )]
is performed on the basis of Ūθ . �shear is obtained from the numerical simulations. While comparing
the values it can be seen that �shear and �Euler are almost equal in all the cases considered here. In
accordance with the analytical demonstrations contained in Sec. III, the CFD results also establish
the equality of �shear and �Euler provided the mass-flow-averaged tangential velocities are used as in
Eq. (9).

Table II shows that for smaller aspect ratios (0.0046, 0.0092) the torque calculated by using
area-averaged tangential velocities is greater than the torque calculated by using mass-flow-averaged

FIG. 4. Contour of the absolute tangential velocity (Uθ ) on a rz plane. [ri = 25 mm (R = 1, log10(5/R) = 0.699), ro =
13.2 mm (R = 0.528, log10(5/R) = 0.976), b = 0.115 mm (b̃ = 0.0046), φi = −0.46, γ = 4.24, and air is used as working
fluid. The specially stretched x-axis is chosen so that the flow details near the inlet are clearly visible.]
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TABLE II. Comparison of Euler torque (�Euler), torque calculated by area-averaged formulation
(
ṁ

(
Ūθ,oro − Ūθ,i ri

))
and

torque due to shear stress (�shear) computed from CFD simulation (For all calculations ri = 25 mm (R = 1), ro = 13.2 mm
(R = 0.528), and air is used as working fluid. For uniform velocity profile at inlet Ûθ,i = Ūθ,i = 106 m/s.)

Area-averaged
�Euler = ṁ formulation Power output

Ûθ,o Ūθ,o (Ûθ,oro-Ûθ,i ri ) ṁ(Ūθ,oro-Ūθ,i ri ) �shear from a
b̃ γ φi (m/s) (m/s) (N m) (N m) (N m) disc-pair (W)

0.0184 4.24 − 0.46 87.832 100.695 − 0.001467 − 0.001299 − 0.001471 1.47
0.0184 1.413 − 0.153 121.201 136.297 − 0.001034 − 0.000837 − 0.001035 3.11
0.0092 4.24 − 0.46 45.478 41.095 − 0.001009 − 0.001034 − 0.001016 1.02
0.0092 1.413 − 0.153 85.717 82.098 − 0.000750 − 0.000770 − 0.000750 2.25
0.0046 4.24 − 0.46 17.659 16.890 − 0.000590 − 0.000590 − 0.000600 0.60
0.0046 1.413 − 0.153 52.795 50.567 − 0.000480 − 0.000490 − 0.000480 1.44

tangential velocities. This trend is opposite to that which is observed for comparatively larger aspect
ratio (0.0184). The reason for this can be explained as follows.

For small aspect ratio, the radial and tangential velocity components starting with a uniform
distribution (both in the θ and z-directions) at inlet become parabolic (in the z-direction) within a
short radial distance. Equation (51) shows that the mass-flow-averaged tangential velocity is greater
than the area-averaged tangential velocity. Therefore, the magnitude of Ûθ,o is greater than Ūθ,o due
to the parabolic distribution. However, Ûθ,i = Ūθ,i because of the uniform velocity distribution at
inlet. This makes the magnitude of the term (Uθ ,oro − Uθ ,iri) in Eq. (1) greater while the Euler
torque is calculated using the area-averaged tangential velocities for smaller aspect ratio. When the
aspect ratio is large (e.g., 0.0184), the z-distribution of the radial velocity Vr is not parabolic but is
more complex with low values in the central region (where the tangential velocity Uθ component is
large). This makes the mass-flow-averaged Ûθ,o less than the area-averaged Ūθ,o.

Guha and Sengupta14 had shown that the variations of the area-averaged relative tangential
velocity within a Tesla disc turbine depend on the local balance of various forces. The θ -momentum

equation (13) may be interpreted as a relation that specifies the value of
∂Vθ

∂r
, i.e., how Vθ changes

with r. In Eq. (13), 2�Vr is the θ -component of Coriolis acceleration, the term (Vr Vθ ) / r takes an

important part to conserve the angular momentum of the working fluid, the term ν
∂2Vθ

∂z2
represents

the viscous (frictional) acceleration (a negative value would show that it is in fact a deceleration).

Depending on the relative magnitudes of these accelerations,
∂Vθ

∂r
may be positive, zero or negative.

For γ > 1, Vθ increases for the combined effect of
Vr Vθ

r
and 2�Vr , while it decreases due

to the effect of ν
∂2Vθ

∂z2
.14 As one moves from the inlet to the outlet, the effect of ν

∂2Vθ

∂z2
may

dominate at first, then the combined effect of (Vr Vθ ) / r and 2�Vr overtakes. With decreasing r,
Vθ then decreases to a minimum at a certain radius (whose value depends on b̃ and γ , and would
be observable only if the value of this radius is greater than the outlet radius used in the particular
design) and then onwards increases. For certain geometry and flow conditions (for example at high
�), Vθ may become quite large at the outlet. Equation (2) shows that Uθ depends on Vθ and �r.
Although, �r decreases as one moves from the inlet to the outlet, Uθ may sometimes increase since
Vθ increases. This is the reason why in Table II one finds that the absolute tangential velocity at
oulet is greater than that at inlet when b̃ = 0.0184 and γ = 1.413 (which corresponds to large �).

The magnitude of the viscous term ν
∂2Vθ

∂z2
increases with an increase in γ and with a decrease

in b̃. For large γ and small b̃, Vθ may therefore decrease rapidly and substantially as one moves
radially from the inlet to the outlet, so much so that even after the subsequent increase due to the com-
bined effect of (Vr Vθ ) / r and 2�Vr the magnitude of Vθ at the outlet remains low. This is why in



033601-17 A. Guha and S. Sengupta Phys. Fluids 26, 033601 (2014)

TABLE III. Mass-flow-averaged and area-averaged relative tangential velocities at inlet and outlet (For all calculations
ri = 25 mm (R = 1), ro = 13.2 mm (R = 0.528), and air is used as working fluid.)

b̃ γ φi V̂θ,i = V̄θ,i
a(m/s) V̂θ,o(m/s) V̄θ,o(m/s)

0.0184 4.24 − 0.46 81 74.632 87.495
0.0184 1.413 − 0.153 31 81.601 96.697
0.0092 4.24 − 0.46 81 32.278 27.895
0.0092 1.413 − 0.153 31 46.117 42.498
0.0046 4.24 − 0.46 81 4.459 3.690
0.0046 1.413 − 0.153 31 13.195 10.967

aThe equality is true only because a uniform velocity profile is assumed at inlet for these example calculations.

Table III the value of Vθ at outlet is substantially smaller than that at inlet when γ = 4.24 and
b̃ = 0.0046 or b̃ = 0.0092. For these cases, the value Uθ at outlet is also substantially smaller than
that at inlet (see Table II). However, in order to find out whether this trend in the variation of Vθ

and Uθ continues if the outlet radius is progressively reduced, a series of further computations with
outlet radius smaller than that of the experimental Tesla turbine (for whose dimensions the compu-
tational results are reported in this paper) were undertaken. A selected case (ro/ri = 0.2, b̃ = 0.006,
γ = 1.413) from these computations is depicted in Figure 5. Figures 5(a) and 5(b) show that, for γ >

1, though Vθ and Uθ initially decreases as one moves radially inward from the inlet, both quantities
eventually increase (this changeover may take place quite close to the axis of rotation if the inter-disc
spacing is very small). Figure 5(c) further shows that the absolute value of radial velocity |Ur| pro-
gressively increases in the negative r-direction i.e., towards the outlet. It is so because the flow area
(2πrb) decreases with a decrease in r and the fluid flow (steady, incompressible, and axi-symmetric)
has to satisfy the equation of continuity.

The distribution of absolute tangential velocity (Uθ ) in the flow domain is discussed above.
Equation (1) shows that �Euler depends on the product of absolute tangential velocity and radius
(i.e., Uθ r). The term �(Uθ ,oro − Uθ ,iri) signifies the change in specific enthalpy from inlet to outlet
within a Tesla disc turbine. Under steady state condition for a particular �, the parameter Uθ r
is determined by post-processing the CFD results. Iso-surfaces of Uθ r are computed to find out
the spatial distribution of specific work transfer in the narrow gap between two consecutive discs.
Figures 6 and 7 reveal the detailed fluid dynamics of the work transfer, depicting two qualitatively
different spatial distributions of Uθ r for fluid flow with two different values of aspect ratio.

Figure 6 represents the iso-surfaces of Uθ r for very small aspect ratio (i.e., 0.0046). Figure 7
represents the iso-surfaces of Uθ r for a comparatively larger aspect ratio (i.e., 0.0184). The tangential
speed ratio γ for both cases is set as 4.24. The tangential and radial velocities at inlet are the same
as discussed previously. Figures 6(a), 6(b), and 7(a) appear shorter in the z-direction as compared
to the rest of the figures. They represent iso-surfaces close to the outlet; hence the orientation of the
three-dimensional isometric views creates the impression of shorter height.

Figures 6(e) and 7(f) show that Uθ r is uniform at inlet because the uniform boundary condition
for Uθ is specified there. As the working fluid moves spirally inward, the flow becomes non-uniform
(see Figures 6(a)–6(d) and 7(a)–7(e)). The nature of non-uniformity can be assessed by observing
the bends of the iso-surfaces of Uθ r. The shapes of the surfaces signify that the value of Uθ r is
relatively small near the surfaces of the discs. This occurs because of the effect of boundary layers
which develop over the surfaces of the discs where no-slip boundary conditions in the relative frame
are specified. A comparison of Figures 6 and 7 shows that the drop of specific enthalpy in the radial
direction is more gradual for larger b̃. Figure 6 shows that for smaller b̃ (and γ = 4.24), most of the
drop in specific enthalpy occurs near the inlet. It can be seen from Figure 6(b) that near the outlet
Uθ r is more or less uniform throughout the disc spacing (whereas Figures 7(a) and 7(b) show that
low values of Uθ r are located near the surface of the disc). This feature can be verified from the
results presented in Table II. On the other hand, Figure 7 shows that, for larger b̃, non-uniformity
exists in the whole flow domain except at the inlet (for the specified boundary condition). Hence
mass-flow-averaging is a must to calculate the Euler work for a Tesla turbine with comparatively
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FIG. 5. Contour of non-dimensional velocities on a rz plane. (a) Contour of Vθ /(�ri ); (b) contour of Uθ /(�ri); (c) contour
of |Ur/(�ri)|: Results obtained from CFD simulation for Ro = 0.2, b̃ = 0.006, γ = 1.413, φi = −0.153, parabolic velocity
distribution at inlet and air as working fluid are used.

larger b̃. Table II also shows that the disparity between the Euler torque (�Euler) and torque calculated
by area-averaged formulation (ṁ

(
Ūθ,oro − Ūθ,i ri

)
) is greater in the case of larger b̃. Figures 6 and

7 signify the fact that more work within a shorter radial span can be extracted from the fluid stream
if one uses smaller b̃.

Figure 8 shows a case of flow reversal14 which occurs in the relative frame of reference when
γ < 1. The computation has been carried out for b̃ = 0.0184. The inner and outer radius of the discs
and the boundary conditions at inlet and outlet planes remain the same as mentioned above. The
rotational speed of the discs are set to 5000 rad/s for which γ = 0.848. Plane 2 of Figure 8 shows the
contour of Vθ /(�ri ) on a rz plane (as the flow is axi-symmetric Vθ does not vary in the θ -direction)
which is extended from r = ri to r = ro and from z = 0 to z = b. It can be seen that Vθ /(�ri ) is
negative at inlet (except on the surfaces of the discs where Vθ = 0) and positive at outlet.
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FIG. 6. (a)–(e) Spatial distribution of Uθ r within a Tesla disc turbine for small inter-disc spacing. [ri = 25 mm (R = 1),
ro = 13.2 mm (R = 0.528), b̃ = 0.0046, γ = 4.24, φi = −0.46, and air is used as working fluid.]

Hence, Vθ is negative at inlet but positive at outlet. Somewhere between the inlet and the outlet,
the flow reversal in the relative frame of reference has taken place. This is indicated by the dotted
line on Plane 2 in Figure 8.

FIG. 7. (a)–(f) Spatial distribution of Uθ r within a Tesla disc turbine for large inter-disc spacing. [ri = 25 mm (R = 1),
ro = 13.2 mm (R = 0.528), b̃ = 0.0184, γ = 4.24, φi = −0.46, and air is used as working fluid.]
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FIG. 8. Distribution of Uθ r − Uθ ,iri and its two components (derived from Eq. (2)) in the computational domain for γ < 1
(a case of flow reversal in the relative frame reference). [ri = 25 mm (R = 1), ro = 13.2 mm (R = 0.528), b̃ = 0.0184,
γ = 0.848, φi = −0.092, and air is used as working fluid. Plane 1: Uθ r − Uθ ,iri, Plane 2: Vθ /(�ri ), Plane 3: �(r2 − r2

i ),
Plane 4: Vθr − Vθ,i ri . Flow reversal occurs across the dotted line shown in Plane 2.]

Plane 1, Plane 3, and Plane 4 show the contours of Uθ r − Uθ ,iri, �(r2 − r2
i ) and Vθr − Vθ,i ri ,

respectively when γ < 1 (a case of flow reversal in the relative frame reference). It can be observed
from the contours on Plane 1 that, starting from zero at inlet, the value of Uθ r − Uθ ,iri is positive
near the inlet. This signifies the fact that up to some radial position, the fluid absorbs power from the
surfaces of the discs. When the working fluid moves further downstream, the value of Uθ r − Uθ ,iri

becomes negative. Hence, considering the total extent of disc-surfaces, net power is transmitted from
the fluid to the discs, and the turbine can generate shaft power output. Now, using Eq. (2) one may
divide Uθ r − Uθ ,iri into two parts: �(r2 − r2

i ) and Vθr − Vθ,i ri . It can be seen from Plane 4 that
Vθr − Vθ,i ri is always positive. This shows that the control volume can only absorb power from the
surfaces of the two discs for (�Euler)2. However, Plane 3 shows that the term �(r2 − r2

i ) is always
negative. Thus, (�Euler)1, the torque produced by the Coriolis force, is such that, even for the flow
reversal case when the value of γ is above a certain limiting value (see Eq. (60) given later), the
Tesla disc turbine is able to produce net shaft power output.

Figures 9 and 10 show how the angular momentum transfer from the fluid to the surfaces of
the discs depends on the values of aspect ratio (b̃) and tangential speed ratio (γ ), while the fluid
moves from inlet (R = 1) to outlet (R = 0.528). Both of the figures show the results obtained
from CFD simulations performed for three values of b̃. Figure 9 represents the calculations for γ

= 4.24 and Figure 10 represents the calculations for γ = 1.413. If Hi is the angular momentum
at the inlet circumferential plane and H is the angular momentum at any arbitrary circumferential
plane between the inlet and outlet, Hi − H will be the drop of angular momentum of the fluid
starting from inlet up to that plane. At this point, a new non-dimensional quantity called the torque
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FIG. 9. The drop of angular momentum in the radial direction for various aspect ratios at γ = 4.24. [ri = 25 mm (R =
1), ro = 13.2 mm (R = 0.528), γ = 4.24, φi = −0.46, and air is used as working fluid. Keys: b̃ = 0.0184,
b̃ = 0.0092, b̃ = 0.0046.]

potential fraction �H̃ , where �H̃ ≡ (Hi − H )/Hi , is introduced. In this interpretation the value
of Hi is viewed as the maximum torque potential available at the inlet of the disc turbine and the
value of �H̃ at the outlet indicates what fraction of this inlet torque potential is actually realized
at the particular operating condition. In comparison to Tables II and III which gives the data only
at the inlet and outlet planes, Figures 9 and 10 show the local variation of H from the inlet to the
outlet.

The following general observations can be made from Figures 9 and 10:
The value of �H̃ at any radial position increases with a decrease in the value of b̃. This signifies

that, for smaller values of b̃, a greater fraction of Hi can be extracted between the two rotating discs.

FIG. 10. The drop of angular momentum in the radial direction for various aspect ratios at γ = 1.413. [ri = 25 mm (R =
1), ro = 13.2 mm (R = 0.528), γ = 1.413, φi = −0.153 and air is used as working fluid. Keys: b̃ = 0.0184,
b̃ = 0.0092, b̃ = 0.0046.]
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Secondly, it can be observed from Figures 9 and 10 that for small value of aspect ratio(
b̃ = 0.0046

)
and large value of tangential speed ratio (γ = 4.24), most of the angular momen-

tum is transferred from the fluid to the surfaces of the discs in the inlet region. To comprehend this
issue, Eq. (40) is expressed in the following form:

Hi − H = ṁ
(
�r2

i − �r2) + ṁ
(
V̂θ,i ri − V̂θr

)
. (58)

The term ṁ
(
�r2

i − �r2
)

in Eq. (58) is a simple quadratic function of radius and this dependence
is universal for all values of r and b. The term ṁ

(
V̂θ,i ri − V̂θr

)
, on the other hand, is a complex

function of r and b because the local value of the relative tangential velocity V̂θ depends in a
complex fashion on r and b (and several other factors such as the viscosity of the fluid). When
b̃ is small, the frictional force is large (particularly so for low values of � which indicates high
relative velocity between the disc and fluid since the inlet absolute tangential velocity is held
constant in the analysis) and the relative tangential velocity decreases substantially within a short
radial distance from the inlet plane. Therefore, the value of �H̃ also changes rapidly within a
short radial distance from the inlet. Keeping b̃ fixed at a small value, if γ is increased (i.e., �

is decreased) then the change in �H̃ becomes greater in the inlet region but �H̃ increases at a
lower rate near the outlet. This behaviour can be seen if Figures 9 and 10 are compared with each
other.

Thirdly, it is found that, when the value of b̃ is large (say 0.0184), the rapid change of �H̃ in
the inlet region does not take place. The change in angular momentum in the radial direction is more
uniformly distributed between the inlet and outlet.

VI. EXACT THEORY VERSUS AREA-AVERAGING APPROACH

In turbomachinery calculations, the area-averaged quantities are sometimes used (e.g.,
Ref. 35). Area-averaged quantities have also been used for the calculation of performance of Tesla
disc turbines (e.g., Ref. 36). The advantage of the area-averaging approach is the simplicity of the
formulation. It may be useful in engineering solutions of overall parameters when details are not
known.

The analysis of Sec. II A shows how the presence of flow non-uniformity can be re-
flected in the calculation of flow rate of angular momentum through any circumferential surface(

H = r2

∫ b

0

∫ 2π

0
ρUθ |Vr | dθdz

)
, and, in particular, how the simultaneous z-variation of two mutu-

ally perpendicular velocity components Uθ and Vr can be accommodated in a consistent theoretical
formulation. The mathematical analysis shows how the mass-flow-averaged tangential velocities
arise naturally in Eqs. (6) and (7), and should be the adopted methodology for accurately analyzing
the flow through Tesla disc turbomachines. Accurate accounting is required in the enunciation of a
scientific principle such as the equality of �Euler (determined from the change in angular momentum)
and �shear (determined from the integrated effect of the shear stress acting on the disc surface), as
encapsulated by Eq. (11).

Although the terminology “mass-flow-averaged” is used in the present paper to evoke familiarity
with a concept used in conventional turbomachine, the application of the concept in the present work
is subtly unique. Conventionally, the mass-flow-average of a scalar quantity is used (e.g., mass-
flow-averaged enthalpy, mass-flow-averaged entropy, mass-flow-averaged total pressure, etc.). In
the present work, mass-flow-average of a velocity component, which is at right angle to the velocity
component that determines the mass flow rate, is involved. Both velocity components are non-
uniform: they are certainly strongly non-uniform in the z-direction, there can also be non-uniformity
in the θ -direction.

A study of Table II shows that for certain geometries and flow conditions, the difference
between the mass-flow-averaging and area-averaging approaches may be small in determin-
ing the overall torque, though very large differences are also possible. It may not be possible
to predict how large the difference would be, a priori, without performing both calculations
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TABLE IV. Comparison of Euler torque (�Euler), torque calculated by area-averaged formulation
(
ṁ

(
Ūθ,oro − Ūθ,i ri

))
and

torque due to shear stress (�shear) computed from CFD simulation for non-uniform inlet velocity profile (parabolic in the
z-direction: Eqs. (22) and (23)). (For all calculations ri = 25 mm (R = 1), ro = 13.2 mm (R = 0.528), γ = 4.24, φi = −0.46,
Ûθ,i = 122.196 m/s, Ūθ,i = 106 m/s, and air is used as working fluid.)

Area-averaged
�Euler = formulation Power output

Ûθ,o Ūθ,o ṁ(Ûθ,oro-Ûθ,i ri ) ṁ(Ūθ,oro-Ūθ,i ri ) �shear from a
b̃ (m/s) (m/s) (N m) (N m) (N m) �H̃o disc-pair (W)

0.01 56.478 52.389 − 0.001277 − 0.001083 − 0.001277 0.755959 1.28
0.008 40.397 36.317 − 0.001116 − 0.000961 − 0.001116 0.825447 1.12
0.006 24.254 22.378 − 0.000908 − 0.000781 − 0.000908 0.895198 0.91
0.004 16.790 16.168 − 0.000627 − 0.000539 − 0.000627 0.927451 0.63

(i.e., the exact formulation and the area-averaging approach). It has also been shown (Table III;
Eq. (51)), that V̂θ,o is significantly different from V̄θ,o. Equation (51) implies that, for parabolic
velocity profiles, the final results of the mass-flow-averaging approach is as simple as that of
the area-averaging approach, differing only by a numerical factor (6/5). The formulation given in
Sec. II A for determining the angular momentum in a Tesla turbomachine has, moreover, the fol-
lowing advantages.

First of all, it is a rigorous and generic mathematical formulation. As an example, the
present formulation is applicable to incompressible as well as compressible flow; the simple
area-averaging approach would be limited to incompressible flow where density does not change
appreciably.

Secondly, the present formulation of Sec. II A can deal with flow non-uniformity of arbitrary
complexity. As an example, a practical Tesla disc turbine may have one or more discrete nozzles at
the periphery, destroying the axi-symmetry of the flow field. The present formulation would be able
to tackle such (or any other arbitrarily complex) non-uniformity, whereas the simple area-averaging
approach would not be appropriate in such situations.

The example calculations shown in Tables II and III assume that, at inlet, the prescribed tan-
gential and radial velocities are uniform. The implication of having non-uniform (z-dependence)
velocities at inlet has been explored in the example calculations shown in Table IV. (Axi-
symmetric boundary conditions have been applied at both inlet and outlet for all calculations
shown in Tables II–IV.) The cases presented in Table IV are chosen such that �H̃o is large for
all cases. The results show that, even for high values of �H̃o, the difference between mass-flow-
averaged and area-averaged formulations can be significant (more so when the inlet conditions are
non-uniform).

Thirdly, computation of �Euler is not the only objective of the present paper, it also explores
several other subtle aspects of the fluid dynamics of work transfer, including its spatial development,
in a Tesla disc turbomachine. For example, the complex (sometimes continuous, sometimes dis-
jointed) three-dimensional shapes of the iso-surfaces of Uθ r have been shown, for the first time, in
Figures 6 and 7. The radial distribution of the torque potential fraction is investigated in Figures 9
and 10, so that one can determine the amount of torque transfer between any two arbitrary radial
positions. The subtle role played by the Coriolis force in the fluid dynamics of work transfer has been
elucidated in Sec. IV. Such detailed investigation and understanding of the fluid dynamics of work
transfer in the Tesla disc turbomachine would not be possible through the simple area-averaging
approach.

Figure 11 shows the spatial development of the percent difference in torque potential
(= 100[(H̄i − H̄ (r )) − (Ĥi − Ĥ (r ))]/[Ĥi − Ĥ (r )], where Ĥ and H̄ denote angular momentum
based respectively on the mass-flow-averaging and area-averaging). The figure shows that, because
of the large deviations involved, the spatial development of torque and work transfer cannot be
studied by the area-averaging technique.
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FIG. 11. The spatial development of the percent difference between area-averaged and mass-averaged torque potentials for
uniform boundary condition at inlet. [ri = 25 mm (R = 1), ro = 13.2 mm (R = 0.528), Ūθ,i = 106 m/s, Ūr,i = −11.5 m/s,
and air is used as working fluid. Keys: • b̃ = 0.0184, φi = −0.153, and γ = 1.413; b̃ = 0.0184, φi = −0.46, and γ =
4.24; ----- b̃ = 0.0092, φi = −0.153, and γ = 1.413; —— b̃ = 0.0092, φi = −0.46, and γ = 4.24; © b̃ = 0.0046, φi =
−0.153, and γ = 1.413; � b̃ = 0.0046, φi = −0.46, and γ = 4.24.]

VII. FURTHER PHYSICAL REFLECTIONS FOR DISC TURBINE

1. When there is no shear stress, �shear = 0. Equation (39) then shows that �Euler = 0. Equation
(9) gives Ûθ,oro = Ûθ,i ri . Equation (2) can then be used to transform velocities in the absolute
frame to those in the relative frame. This gives

V̂θ,oro − V̂θ,i ri = �
(
r2

i − r2
o

)
. (59)

The LHS of Eq. (59) represents the change in angular momentum in the relative frame and the
RHS of Eq. (59) is the specific torque due to Coriolis force. So, in the absence of shear stress,
the two parts balance each other.

2. Equation (42) shows that (�Euler)2 will be zero if
(
V̂θ,oro − V̂θ,i ri

) = 0. In this case, the
description in the relative frame would be that the torque acting on the control volume is only
because of the θ -component of Coriolis force. According to Eq. (53), (�shear)2 is zero when
(�Euler)2 is zero. One can then conclude from Eq. (50) that this condition will be achieved when
C2/C1 = 1. In summary, the condition

(
V̂θ,oro − V̂θ,i ri

) = 0 may happen if the fluid properties,
disc geometry, and operational parameters satisfy the condition

(∣∣V̄r,i

∣∣ b2
)
/ (6(γ − 1)νri ) = 1.

3. (�Euler)1 is always negative. Equation (42) shows that (�Euler)2, however, may become positive
if

(
V̂θ,oro − V̂θ,i ri

)
> 0. In this case, (�Euler)2 will act opposite to the (�Euler)1 and the net

torque will be reduced. The previous condition regarding relative velocities may be satisfied
either when γ ≥ 1 (usually when γ is close to 1) or when γ < 1 (the case of flow reversal in
the relative frame of reference). Many possible types of variation in Vθ between the inlet and
outlet are discussed in Ref. 14.
Out of all the cases for which

(
V̂θ,oro − V̂θ,i ri

)
> 0 is satisfied, one limiting case may arise

such that (�Euler)1 = −(�Euler)2 or, �Euler = �Shear = 0, and therefore the turbine will produce
no power output. The condition of no torque can be obtained from Eq. (44) as follows:

[γ ]notorque = 1 − 10

6

⎡
⎢⎢⎣

C1
(1 − R2

o)

2
+

{
1 − exp

[
C1

2

(
1 − R2

o

)]}

C1

{
1 − exp

[
C1

2

(
1 − R2

o

)]}
⎤
⎥⎥⎦ . (60)
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4. Guha and Sengupta14 had shown that under a flow reversal condition in the relative frame
of reference V̄θ,i < 0 and V̄θ,o > 0. Now, it has been discussed in Sec. V that V̂θ,i = V̄θ,i for
uniform velocity profile at inlet and V̂θ,o > V̄θ,o at outlet for small disc spacing. Hence, for
flow reversal with small inter-disc-spacing

(
V̂θ,oro − V̂θ,i ri

)
> 0. This represents a situation

when the Tesla disc turbine can generate net torque because of the torque produced by the
θ -component of Coriolis force which reverses the direction of Vθ in the direction of the rotation
of the discs.

5. When the inter-disc spacing is small so that a parabolic variation of Vθ in the z-direction is a
good assumption, the analytical theory described in Sec. III A is valid. Equation (26) can then
be recast to show the radial variation in r Vθ :

r V̂ θ (r )

ri V̂ θ,i
= C2

C1
+

(
1 − C2

C1

)
exp

[
C1

2

(
1 − r2

r2
i

)]
. (61)

For small inter-disc spacing, Eqs. (58) and (61) can be used to determine (design) the combina-
tion of geometrical details and flow input variables for which desirable values of the overall work
transfer can be obtained. Equation (58) shows that a low value of r V̂θ at rotor outlet is required to
achieve a low value of the torque potential fraction at outlet �H̃o.

The fluid dynamics of the torque and work transfer in a Tesla disc turbine has been examined
from several angles in the present paper. The newly defined torque potential fraction has emerged
as an important design parameter. There are other important aspects such as the radial pressure
drop and efficiency, which have not been presented here to keep the discussion focussed. Equation
(14), the radial r-momentum equation, gives the magnitude of pressure drop, and, shows that there
are four terms which contribute to the change of pressure—inertial, centrifugal, Coriolis, viscous.
Computation of pressure drop and efficiency may be found in Refs. 13 and 14. A similitude analysis
and scaling laws for Tesla disc turbomachines are given in Ref. 31. In Ref. 31, it is shown that
appropriate scales for non-dimensionalizing the power output and the pressure drop of Tesla disc
turbomachines are respectively ρ

∣∣Ūr,i

∣∣3
r2

i (or ρ�3b5) and ρŪ 2
θ,i (or ρ�2b2).

VIII. CONCLUSION

The fluid dynamics of work transfer within a Tesla disc turbomachine (turbine or compressor) has
been investigated theoretically and computationally. Both the overall work transfer and its spatial
development have been considered. It has been established that the work transfer mechanism in
a Tesla disc turbomachine is very different from that in a conventional turbomachine, and the
formulation of the Euler’s work equation for the disc turbomachine (Sec. II) contains several
conceptual subtleties because of the existence of complex, three dimensional, non-uniform, viscous
flow features within the narrow gaps (of the order of hundred micron) between successive discs. The
work equivalence principle, Eq. (11), for this most unusual type of turbomachine involves setting
up the equality between the magnitudes of work transfer determined rigorously from two different
approaches—one based on the shear stress acting on the disc surfaces and the other based on the
change in angular momentum of the fluid. With the help of the Reynolds transport theorem it is
shown that mass-flow-averaged tangential velocities (as opposed to the normally used area-averaged
values) must be used for an exact determination of the angular momentum, and, the calculation has
to be carefully formulated since both radial velocity (that determines throughput) and tangential
velocity (that generates torque) depend strongly on the coordinate perpendicular to the disc surfaces
(Eq. (5)).

It is shown that both τ zθ and τ rθ create viscous torque on the fluid (Eq. (10)) and thus need to
be considered in a rigorous formulation of work equivalence principle. On the other hand, only τ zθ

applies on the disc surface and thus only this component is responsible for the transfer of useful
power that can be externally extracted from the shaft connected to the discs. It is only if τ rθ is
negligible that the relation Ẇx = −�Euler� is strictly valid, where Ẇx is the shaft power output
and �Euler is given by Eq. (9). The novelty of the analysis of Sec. III B is that �shear is determined
from the θ -momentum equation without evaluating the term ∂Vθ /∂z, i.e., a more general analytical
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demonstration of the work equivalence principle has been achieved without assuming any specific
z-variation of Vθ (such as parabolic profile).

The formulated principle of work transfer has been examined for a disc turbine both analytically
as well as computationally, and, in the absolute as well as in relative (rotational) frames of reference.
A description of the work equivalence principle in the relative frame of reference shows that torque
may be created due to the shear force and Coriolis force. The mathematical analysis automatically
leads to a division of both �Euler and �shear into two parts. The several subtle ways regarding
how these two parts of torque may vary (and may reach limiting values) have been discussed.
An expression for tangential speed ratio corresponding to the no torque condition [when (�Euler)1

equals −(�Euler)2] has been formulated. The subtle role of (�Euler)1to produce net power output
when flow reversal occurs has been analysed from the mathematical theory as well as from the CFD
solutions.

Numerical illustrations given in this paper are for a particular working fluid (air). The results of
CFD simulations carried for various values of inter-disc-spacing show that, for smaller disc spacing,
iso-surfaces of Uθ r are continuous surfaces and deviate from the circumferential planes by only a
small amount. On the contrary, for larger disc spacings, iso-surfaces of Uθ r may consist of disjointed
surfaces and show complex three-dimensional variations (deviating from the circumferential planes
by large extents).

The concept of a new non-dimensional quantity called the torque potential fraction (�H̃ ) is
introduced. The value of �H̃ at the outlet indicates what fraction of the inlet torque potential is
actually realized at the particular operating condition. This would be an important design parameter.
The value of torque potential fraction at any radial position increases with a decrease in the value
of the inter-disc-spacing. It has been observed from the CFD analysis that for small values of b̃ and
large values of γ , most of the angular momentum of the fluid is transferred to the surfaces of the
discs in the inlet region and correspondingly, the value of �H̃ is very high even in the inlet region.
On the other hand, for larger disc spacing, the change of angular momentum in the radial direction is
more uniformly distributed between the inlet and the outlet, and the value of �H̃ increases gradually
with decreasing radius.
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