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In this paper, a systematic computational and theoretical study of the thermo-fluid-dynamics governing
the flow above a heated horizontal rotating disc is presented. The fluid flow field is much more complex
here as compared to von Kármán’s original solution (which took into account only the effect of disc rota-
tion), and the effects of non-linear interaction between buoyancy and rotation are critically analysed here
by studying the separate and combined roles of disc rotation and buoyancy on the fluid dynamic and heat
transfer characteristics. The self-similarity of von Kármán’s flow field is lost, and the present paper estab-
lishes, for the first time, that the flow field above a heated rotating disc is divided into three distinct fluid
dynamic regions. The three regions are demarcated by the loci of V̂z ¼ 0 and V̂ r ¼ 0. In region 1 (R-1), V̂ r is
positive and V̂z is negative (such directions of the velocity components are characteristic of von Kármán’s
flow or pure forced convection). In region 2 (R-2), V̂ r is negative and V̂z is positive (such directions of the
velocity components are characteristic of pure natural convection near a static disc surface). In region 3
(R-3), both V̂ r and V̂z are negative. The forced convection results are obtained asymptotically at a large
non-dimensional radius R within the region R-1 showing the dominance of forced convection mecha-
nism, however, the fluid retains the signature of natural convection even at large values ofR in the region
R-3 where there is an inward radial velocity. Similarly, although a plume forms in the central portion of
the disc where the solution is dominated by the effects of buoyancy, the fluid retains a signature of the
disc rotation in the helical pathlines of fluid particles rising in the plume (whereas there is no swirl veloc-
ity present in pure natural convection above a static disc). The non-linear interaction between buoyancy
and rotation results in several peculiar, rather non-intuitive, flow phenomena. Examples of such peculiar-
ity include (i) the presence of a very sensitive spot on the upper boundary such that for a small change in
this initial position the fluid pathlines may face drastically different final outcomes, (ii) the presence of a
small portion near the centre of the disc where the fluid supplies energy to the disc, (iii) the effect of rota-
tion on the rate of convective heat transfer being diminished by buoyancy over certain part of the disc
while being enhanced over another part. This non-linear effect on Nusselt number is quantified here in
terms of a Grashof number defined for mixed convection ðGrmcÞ.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The study of fluid flow near a rotating disc is important for both
its scientific value and engineering application. The famous fluid
dynamicist von Kármán provided the first analysis [1] in this field
by developing a similarity solution for the flow due to a semi-
infinite rotating disc. The similarity solution was established for
steady, laminar, incompressible and axi-symmetric flow. Guha
and Sengupta [2] has given a lucid physical description of how
all three components of the velocity vector, viz. tangential ðVhÞ,
radial ðVrÞ and axial ðVzÞ components, arise in von Kármán’s swir-
ling flow. The tangential component is a direct consequence of the
disc rotation, whereas the (outward) radial component is an indi-
rect effect. A steady axial flow from the ambient towards the disc
occurs to supply the steady radial efflux. An important distinctive
feature of a rotational boundary layer is that it, instead of growing
continuously like the case of the flat-plate boundary layer, plateaus
to a finite thickness which is proportional to

ffiffiffiffiffiffiffiffiffi
m=X

p
where X is the

angular velocity and m is the kinematic viscosity of the fluid.
Since the publication of von Kármán’s paper, intensive research

interest in this field has continued for nearly a century and still
new papers are being published. Zandbergen and Dijkstra [3] pro-
vided a detailed review on von Kármán’s swirling flow. Some
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recent advances can be found in references [2,4–10]. A description
of the contribution of great fluid dynamicists like Ekman [11],
Batchelor [12], and Stewartson [13], and, a review of related stud-
ies on rotational boundary layer are given in reference [14].

In this paper, the thermo-fluid-dynamics of the flow above a
heated horizontal rotating disc is studied. The fluid flow field
becomes more complex than von Kármán’s swirling flow described
above because of the mutual interaction between fluid flow and
heat transfer that results into mixed convection. The physical con-
figuration is shown in Fig. 1. r (radial), h (azimuthal) and z (axial)
are the three coordinates and O is the origin of the cylindrical coor-
dinate system. The disc is rotating about the z-axis at an angular
speed X. The disc-surface is located at z ¼ 0 and the solutions given
here correspond to z P 0. The upper surface of the disc is at uni-
form temperature, which is greater than that of the ambient fluid.
The lower surface of the disc is insulated.

Previous papers related to the effect of heat transfer on von
Kármán’s swirling flow are either theoretical or experimental. A
good survey of such work can be found in the review article by
Dorfman [15], and also in the monographs written by Kreith [16],
Owen and Rogers [17], and Shevchuk [18]. Cobb and Saunders
[19] reported an experimental study of heat transfer near a verti-
cally aligned rotating disc, while Elkins and Eaton [20] performed
experiments on heat transfer above a heated horizontal rotating
disc. Since the experimental set-up and the thermal boundary con-
ditions used in ref [20] correspond to the theoretical study under-
taken here, it would be pertinent to give an outline of the
experimental procedure here. Elkins and Eaton [20] used a 1 m
diameter and 1 mm thick disc. The material of the disc was 304
stainless steel. Below the disc, Kapton thermofoil heaters were
attached; and, below the heater, an insulating balsa wood disk
15 mm thick was attached. For structural support a 15 mm thick
aluminium disc was attached to the balsa. The measurement of
the disc surface temperature could be made throughout the disk
using 40 copper-constantan thermocouples. To maintain uniform
disc-surface temperature, the disc was split into three different
annular regions. The inner disk with a 7.5 cm radius was unheated.
The region from 7.5 cm to 20 cm radius was heated by the inner
heater and from 20 cm to 48 cm by the outer heater. A control sys-
tem was used to ensure the uniformity of temperature. It is shown
later in the paper (Section 2.6) that the present theoretical predic-
tion of the temperature profile in the forced convection region
matches well with the experimental values given by Elkins and
Eaton [20]. However, no detailed temperature measurement in
the mixed convection region is available in [20].
Fig. 1. (Colour online) Schematic diagram of the physical configuration (OABR is a
two dimensional computational domain which is used to determine a three-
dimensional, axi-symmetric flow field).
Launder and Sharma [21] measured the critical Reynolds num-
ber required for the transition from laminar to turbulent flow
(details given later). Experimental observations and related discus-
sion on the onset of transition for flow above a rotating disc with-
out heat transfer can be found in Lingwood [22]. For forced
convection above a heated rotating disc (i.e. neglecting the effect
of natural convection), Wagner [23] derived a theoretical expres-
sion for the coefficient of heat transfer considering laminar flow
of air. In his paper, Wagner [23] considered approximate profiles
for Vr and Vh within the boundary layer. Theoretical studies on
pure natural convection ðX ¼ 0Þ above an isothermally heated disc
can be found in references [24–26], and interesting discussion on
natural convection above a flat, rectangular surface can be found
in references [27–30].

A theoretical analysis of mixed convection above a heated rotat-
ing disc is presented in a recent paper [31], in which the tempera-
ture of the disc-surface ðTwÞ was assumed to vary quadratically
with the radial distance from the disc-centre so that a theoretical
solution was possible. Such a temperature boundary condition is
restrictive from a practical point of view. We could not find any
previous work on mixed convection above a heated rotating disc
that is directly relevant for the present study.

1.1. Objective of the present work

The objective of the present paper is to provide a systematic
computational fluid dynamic (CFD) study of the laminar mixed
convection above an isothermally heated, horizontal rotating disc.
As far as we know, a detailed computational study on this topic is
not available in the previous literature.

The second objective of this work is to explore and critically
expound the detailed fluid dynamic features of mixed convection
above a heated rotating disc, and, to express the results in terms
of appropriate non-dimensional variables. The fluid dynamics
depends on non-linear interaction between buoyancy and rotation,
and all the subtleties cannot be quantitatively captured by theoret-
ical (analytical) methods. This establishes the utility of the compu-
tational approach.

Finally, the physical understanding is enhanced by studying the
separate and combined roles of disc rotation and buoyancy on the
fluid dynamic and heat transfer characteristics. A limiting case, in
which the effect buoyancy is absent, is devised here by setting
g ¼ 0 in the CFD simulations. This limiting case represents forced
convection for which a similarity theory is also presented. While
comparing the results ofmixed convectionwith the results of forced
convection, the special effect of buoyancy can be appreciated.

1.2. An early glimpse of the fluid dynamics revealed

The details of the fluid dynamics can be understood only after
all the results are presented and explained. However, a brief qual-
itative overview of the new physics is introduced here in the hope
that the conceptual summary given in Fig. 2 will be helpful to
interpret the quantitative details presented later. In the original
von Kármán’s swirling flow, the tendency of a fluid particle from
the ambient is to be drawn towards the rotating disc ðVz 6 0Þwhile
moving radially outward ðVr P 0Þ. On the other hand, if the disc is
static ðX ¼ 0Þ but the disc-surface temperature ðTwÞ is greater than
the temperature of the quiescent fluid ðT1Þ, then a purely natural
convective flow is established. In such flow field, the tangential
component of velocity does not exist ðVh ¼ 0Þ, the radial velocity
is inward ðVr 6 0Þ, and the axial velocity (near the disc surface)
is away from the disc surface ðVz P 0Þ which ultimately results
into a central plume. Thus, when buoyancy and rotation are simul-
taneously present, as above a heated rotating disc – the subject-
matter of the present article -, there is a non-linear interaction of



Fig. 2. (Colour online) A schematic, with generic features abstracted from the
present CFD simulations, exhibiting three distinct fluid dynamic regions, viz. R-1, R-
2 and R-3, above a heated rotating disc. [R-1: a region where V̂ r is positive and V̂z is
negative (located at the bottom of the locus of V̂ r ¼ 0Þ, R-2: a region where V̂ r is
negative and V̂z is positive (located at the left of the locus of V̂z ¼ 0Þ, R-3: a region
where V̂ r is negative and V̂ z is negative (located between the locus of V̂ r ¼ 0 and the
locus of V̂z ¼ 0Þ.].
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two opposite tendencies of fluid motion. In the central portion of
the disc, the effect of buoyancy predominates, whereas at a suffi-
ciently large radius the effect of rotation overtakes the effect of
buoyancy. The competition between these two opposing effects
results into several interesting flow features. In course of the pre-
sent investigation it is discovered that the flow field is divided into
three separate regions depending on their flow characteristics (as
shown in Fig. 2). In region 1 (denoted here as R-1), Vr is positive
and Vz is negative (this behaviour of the velocity components is
similar to that in von Kármán’s swirling flow). In region 2 (R-2),
Vr is negative and Vz is positive (as it would be in the case of pure
natural convection). There is also a third region (viz. R-3) in which
Vr is negative (as it would be in pure natural convection) but Vz is
also negative (as it would be in von Kármán’s swirling flow or in
pure forced convection). As per our knowledge, these flow regimes
are identified for the first time in this paper. In most diagrams
given later in the results section, two lines representing the loci
of Vz ¼ 0 and Vr ¼ 0, which demarcate the borders between the
three regions, are explicitly included so that the nature of the
thermo-fluid-dynamic phenomena occurring in the three distinct
regions can be appreciated.
2. Solution methodologies

In this section, the governing equations, boundary conditions
and the method of CFD simulations for the present mixed convec-
tion are given. A set of ordinary differential equations obtained
from similarity theory is also provided. The set of ordinary differ-
ential equations is obtained by neglecting buoyancy, thus repre-
sents forced convection. Under a limiting condition (large non-
dimensional radius), the temperature and velocity distributions
obtained by the present CFD simulations for mixed convection
are validated.

2.1. Governing equations and boundary conditions

Navier-Stokes equations in cylindrical coordinate system are
the governing equations for the present problem. Steady, laminar,
axisymmetric, incompressible flow of a Newtonian fluid with con-
stant dynamic viscosity l, thermal conductivity k and specific heat
cp is considered. Gravity is acting in the negative z-direction
(both gh and gr are zero). Viscous dissipation is neglected
(according to Gebhart [32], the viscous dissipation term is
important only when the induced kinetic energy becomes
appreciable compared to the heat transfer). The conservation
equations are given below [33].
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In Eqs. (1)–(5), Vr , Vh and Vz are respectively the radial, tangen-
tial and axial components of absolute velocity. The density q is
assumed to be constant except in the buoyancy term (Boussinesq
approximation). The density q in the body force term f z
ðf z � �qg, where g ¼ 9:81 m=s2Þ is modelled in the following
way [34].

q � q1 � q1bðT � T1Þ ð6Þ
where, b is the coefficient of thermal expansion. The subscript 1
represents the ambient condition. For the Boussinesq approxima-
tion to be valid, the temperature difference should not be too great.

The boundary conditions for von Kármán’s swirling flow above
a heated rotating disc are as follows:

at z ¼ 0; Vr ¼ 0; Vh ¼ rX; Vz ¼ 0 and T ¼ Tw ð7Þ

as z ! 1; Vr ! 0; Vh ! 0 and T ! T1 ð8Þ
2.2. Non-dimensional variables

For all CFD simulations, Prandtl number ðPrÞ, Reynolds number
ðReÞ and Grashof number ðGrÞ are the inputted non-dimensional
numbers. Their expressions are given below.

Pr ¼ lcp
k

; ð9Þ

Re � ðXr2Þ=m; ð10Þ
and,

Gr ¼ gbr3ðTw � T1Þ
m2

: ð11Þ

In Eqs. (10) and (11), m is the kinematic viscosity of the fluid. The
value of Pr depends on fluid properties. For forced convection,
CFD solutions depend on Pr and Re. For natural convection, CFD
solutions depend on Pr and Gr. For mixed convection, CFD solutions
depend on Pr, Re and Gr. For representing the results of mixed con-
vection, a non-dimensional parameter, Grmc , is introduced. The
expression of Grmc is as follows:
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Grmc ¼ Gr

Re3=2
¼ gbðTw � T1Þ

m1=2X3=2 ð12Þ

For fixed values of Grmc and Pr, the value of an output non-
dimensional variable at any point in a non-dimensional space
(under a steady state) is unique. Two useful coordinates of an
axi-symmetric non-dimensional space are non-dimensional radius
ðRÞ and non-dimensional axial coordinate ðfÞ. The expression of R
and f are given below.

R ¼ r=
ffiffiffiffiffiffiffiffiffi
m=X

p
¼

ffiffiffiffiffiffi
Re

p
; ð13Þ

f ¼ z=
ffiffiffiffiffiffiffiffiffi
m=X

p
: ð14Þ

The results and the analysis of this paper show that the influence of
natural convection diminishes as the radius increases and it is likely
that any transition to turbulent flow at large radius will be governed
by similar criterion as that of pure forced convection above an
unheated rotating disc. Launder and Sharma [21] gives this transi-
tion Reynolds number as 105. Eq. (13) shows that, for laminar flow
to exist, the non-dimensional radius R should not then exceed 316;
this criterion is respected in the present computations. Another
type of transition to turbulence may take place in the central plume
which probably would be governed by the value of local Grashof
number (the representative length being the distance above the disc
centre). We could not find a definite transition limit in the litera-
ture; so we have kept the computational domain such that the max-
imum Grashof number is well below the transition Grashof number
for natural convection on a vertical plate.

The computed variables are also represented in non-

dimensional form. The non-dimensional radial velocity V̂ r , the

non-dimensional tangential velocity V̂h and the non-dimensional

axial velocity V̂ z are expressed as follows:

V̂ r ¼ Vr=ðrXÞ; ð15Þ

V̂h ¼ Vh=ðrXÞ; ð16Þ

V̂ z ¼ Vz=
ffiffiffiffiffiffiffi
mX

p
: ð17Þ

The non-dimensional temperature is denoted by T̂. The expression

of T̂ is given below.

T̂ ¼ ðT � T1Þ=ðTw � T1Þ ð18Þ
Non-dimensional moment coefficient ðCm;rÞ and Nusselt num-

ber ðNuÞ are two important output parameters of the present
CFD simulations. The non-dimensional moment coefficient Cm;r

represents the non-dimensional torque for a disc segment which
is extended from disc-centre up to a radius r. The torque Cr

required to maintain a steady rotational speed of this disc-
segment (against the viscous drag) can be determined by integrat-
ing �2pr2½szh�z¼0dr as given below.

Cr ¼ �
Z r

0
2pr2½szh�z¼0dr ð19Þ

For the present study, torque is computed only on the upper side of
the disc. The definition of Cm;r [35] is as follows:

Cm;r ¼ Cr=ð0:5qX2r5Þ ð20Þ
The definition of Nusselt number is adopted from reference [15].
The local Nusselt number ðNuÞ is defined as

Nu ¼ qwr
kðTw � T1Þ ; ð21Þ

and, mean Nusselt number ðNuÞ is defined as
Nu ¼ �qwr
kðTw � T1Þ : ð22Þ

In Eq. (21), qw is the local surface heat flux. On an isothermal heated
disc, qw varies with radius r. For a disc segment of radius r, the area-
averaged surface heat flux �qw is expressed as follows:

�qw ¼ ð2=r2Þ
Z r

0
rqwdr ð23Þ
2.3. CFD method

Navier-Stokes equations are solved by a commercially available
CFD (computational fluid dynamics) software Fluent 6.3.26 [36].
Two-dimensional, steady, laminar, double-precision, pressure-
based implicit solver, using constant thermophysical properties
(viscosity, thermal conductivity and specific heat at constant pres-
sure), is used. The solver uses the time-marching technique [37] to
achieve a steady state solution as the limiting process of an
unsteady simulation. Axi-symmetric swirl model [36] is used to
compute Vh (the prediction of the axi-symmetric swirl model is
verified by comparing it with the result of full three-dimensional
simulation, see Appendix A). The SIMPLE algorithm, with second
order upwind scheme for momentum and energy equations and
second order pressure-discretization, is utilized. Under-relaxation
factors for momentum (radial and axial components), swirl (tan-
gential component), energy, pressure, density, and body force are
chosen respectively 0.7, 0.9, 1, 0.5, 1 and 1. The convergence crite-
rion for the maximum ‘scaled’ residual [36] is set as 10�7. When
converged, the CFD solution represents that of Eqs. (1)–(5).

Eq. (7), which implies no slip boundary condition on an isother-
mal disc, can be implemented directly in CFD simulations. A rota-
tional speed ðXÞ is specified on the disc-surface. In Fig. 1, OR is the
disc-surface located at z ¼ 0. Eq. (8) cannot be implemented
directly in simulations. The condition z ! 1 is replaced here by
a sufficiently large but finite value of z (which corresponds a large
fÞ. As per convention [35], a boundary-layer thickness d is defined

to be the axial distance away from the rotating disc at which V̂h

equals 0.01. For the original von Kármán’s flow (with unheated
disc-surface), the non-dimensional boundary layer thickness
d̂ ðd̂ � d=

ffiffiffiffiffiffiffiffiffiffiffi
mp=X

p Þ is 5.5 [35]. For the case of heat transfer, other than
d, the thickness of temperature boundary layer needs to be consid-
ered. The thickness of temperature boundary layer dt is defined as

the axial distance away from the rotating disc at which T̂ equals
0.01. From similarity solution (Section 2.5), the non-dimensional
temperature boundary layer thickness d̂t ðd̂t � dt=

ffiffiffiffiffiffiffiffiffiffiffi
mp=X

p Þ is found

to be 8.14. It is expected that, above a heated disc-surface, d̂ and d̂t
are, in general, greater than their respective self-similar values.
Therefore, in the present simulations, the f-value of the boundary
AB (Fig. 1) is set at a location which is much higher than 8.14. At
the boundary AB, ‘pressure outlet’ condition is applied. Present
computation demands two additional boundary conditions. The
first is an ‘axis’ boundary condition which is set at OA (Fig. 1).
The second is a pressure outlet boundary condition which is set
at BR (Fig. 1).

2.4. Grid independence test

A grid independence test has been carried out (Table 1 showing
a few pertinent details), and based on this study, a total 81361
ð413� 197Þ mapped, quadrilateral computational cells are used
for the results presented in this paper. The grids are distributed
in the radial and axial directions in accordance with the difference
in the flow physics in the two directions. The grid distribution in
the axial direction is non-uniform with very small grid size close



Table 1
Grid independence test (CFD data given at Grmc ¼ 15, Pr ¼ 0:7068Þ.

Size of the CFD domain Grid
distribution

Number of grids in r and z
directions

Total number of
computational cells

Nu at R ¼ 10 from CFD
simulations

Nu at R ¼ 75 from CFD
simulations

½R; f� ¼ ½0;0� to
½R; f� ¼ ½215;60�

Coarse (235 � 129) 30315 3.322 24.418
Standard (413 � 197) 81361 3.326 24.420
Fine (523 � 264) 138072 3.326 24.420
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to the disc-surface and with progressively larger grid size towards
the boundary AB. Such grid distribution is used to capture the
velocity and temperature gradients on the surface ðf ¼ 0Þ accu-
rately, and, to resolve the flow physics within the rotational
boundary layer. In the present investigation, it is found that both
velocity and temperature fields change rapidly at small R and
slowly at large R. In order to capture this effect properly, the grids
in the radial direction are divided into two zones � non-uniform
and uniform. In the non-uniform zone, very small grids are used
close to the disc-centre; and, with an increase in R, grid-size is
increased progressively. In the uniform zone, the grid size is equal
to the size of the last computational cell of the non-uniform zone.

Among several output parameters of the CFD simulations, local
Nusselt number ðNuÞ is selected as a testing parameter for the grid
independence test. The values of Nu at two representative non-
dimensional radius R for various grid distributions are reported
in Table 1. For each grid distribution, the implicit (many details
about implicit time-marching can be found in [38]) numerical sim-
ulation is performed following the method described in Section 2.3.
A marginal change of Nu is observed after attaining a grid distribu-
tion of 413� 197 (see Table 1). A graphical illustration of the suc-
cess of grid independence achieved close to the axis of rotation, in
the region where the gradients of the flow variables are the great-
est, has been given in Appendix A. The achieved precision of the
numerical solutions lends confidence in the accuracy of the subtle
physical characteristics deduced in Section 3.
2.5. Similarity solution

For forced convection, when the effect of buoyancy is absent, it
is possible to obtain a set of ordinary differential equations by the
application of similarity theory. The set of equations is given
below.

2V̂ r þ V̂ 0
z ¼ 0 ð24Þ
V̂2
r � V̂2

h þ V̂ zV̂ 0
r ¼ V̂ 00

r ð25Þ
2V̂ rV̂h þ V̂ zV̂ 0
h ¼ V̂ 00

h ð26Þ
T̂ 00 ¼ PrV̂zT̂ 0 ð27Þ
In Eqs. (24)–(27), the superscripts single prime and double

prime denote d=df and d2
=df2, respectively. f is defined by Eq.

(14). Eqs. (24)–(26) are the same as given by von Kármán [1]. Eq.
(27) is an additional equation for obtaining temperature distribu-
tion. The necessary boundary conditions are as follows:

at f ¼ 0; V̂ r ¼ 0; V̂h ¼ 1; V̂ z ¼ 0 and T̂ ¼ 1 ð28Þ
Fig. 3. (Colour online) f-distributions of various non-dimensional variables
obtained from present CFD simulation, similarity theory and previous literature
[Owen and Rogers [17] and Elkins and Eaton [20]]. (CFD simulation is performed at
Grmc ¼ 15, Pr ¼ 0:7068. The profiles obtained from CFD are shown for a specific
radius, R ¼ 75; other theoretical values, represented by various symbols, are not
dependent on R.).
as f ! 1; V̂ r ! 0; V̂h ! 0 and T̂ ! 0 ð29Þ

Eqs. (24)–(27) are converted into a set of seven first order ordinary

differential equations involving V̂ r , V̂h, V̂ z, V̂ 0
r , V̂

0
h, V̂

0
z, T̂ and T̂ 0; and,

are solved here by the shooting method [39].
It is possible to obtain analytical expressions for Cm;r and Nu for
the similarity solution. The analytical expression of Cm;r [35] is as
follows:

½Cm;r�similarity ¼ �pV̂ 0
hð0Þ=

ffiffiffiffiffiffi
Re

p
¼ �pV̂ 0

hð0Þ=R: ð30Þ
The analytical expression of Nu is as follows:

½Nu�similarity ¼ �
ffiffiffiffiffiffi
Re

p
T̂ 0ð0Þ ¼ �RT̂ 0ð0Þ: ð31Þ

In Eq. (30), V̂ 0
hð0Þ denotes @V̂h=@f at f ¼ 0. Similarly, in Eq. (31), T̂ 0ð0Þ

denotes @T̂=@f at f ¼ 0. From the present numerical solution of Eqs.

(24)–(27), the values of V̂ 0
hð0Þ and T̂ 0ð0Þ are found to be �0.6159 and

�0.325, respectively.
Present study demonstrates that for fixed values of Grmc and Pr,

the CFD solutions corresponding to mixed convection attain self-
similarity for a sufficiently large R (see Section 3.2).

2.6. Validation

For fixed values of Grmc and Pr ðGrmc ¼ 15, Pr ¼ 0:7068Þ, Fig. 3
shows the f-variations of V̂ r , V̂h, V̂z and T̂ obtained by CFD simula-
tions for mixed convection at R ¼ 75. For any further increase in

R, the f-profiles of V̂ r , V̂h, V̂ z and T̂ vary by a small amount.
Fig. 3 shows a good agreement between the CFD solutions at
R ¼ 75 and our own similarity solutions obtained by solving Eqs.
(24)–(27). Fig. 3 also contains the numerical solutions of Eqs.

(24)–(26), for the variations of V̂ r , V̂h and V̂z, as given by Owen
and Rogers [17]. Fig. 3 further contains the experimental data for



Fig. 4. (Colour online) Contours of non-dimensional radial velocity ðV̂ rÞ and
streamlines. (a) Contours of V̂ r for 0 < R 6 50; (b) Expanded view of the contours
of V̂ r close to axis (CFD simulation is performed at Grmc ¼ 15, Pr ¼ 0:7068.
Streamlines are not drawn according to equispaced streamfunction.).
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the variation of T̂ given by Elkins and Eaton [20]. It can be observed
that the present CFD solutions, in the forced convection region, are
in good agreement with our own similarity solutions and with
other numerical solutions and experimental data available in the
literature.

3. Results and discussion

The physical process of mixed convection above a heated rotat-
ing disc is explained in this section. The section is divided into four

subsections. In Section 3.1, the distributions of V̂ r , V̂h, V̂z and T̂ on a

R-f plane are given. In Section 3.2, the f-distributions of V̂ r , V̂h, V̂ z

and T̂ at various R are given. In Section 3.3, the distributions of
local Nusselt number Nu for various mixed convective conditions
achieved by varying Grmc are calculated. Additional computations
are performed for calculating the distributions of Nu corresponding
to forced convection. The results of mixed convection are com-
pared with the results of forced convection. In Section 3.4, a brief
discussion is provided about the trends of integrated output
parameters Nu and Cm;r under various operating conditions.

In order to have a notional feeling regarding the relation (Eq.
(13)) between the non-dimensional radius (used in this paper)
and the physical size of the disc, we cite a couple of numerical
examples. Suppose the fluid is air and the disc is rotating at
700 rpm. Then a non-dimensional radius R of 215 would corre-
spond to a disc radius of 10 cm. The same value of R (i.e. 215),
however, would correspond to a disc radius of 15 cm if the rota-
tional rate is 310 rpm.

3.1. Distributions of velocity and temperature on a R–f plane

In this section, the distributions of V̂ r , V̂h, V̂z and T̂ on a R–f
plane for mixed convection above an isothermally heated rotating
disc are provided. Several contour plots are given to describe the
details of these distributions. All contours shown in this section
are calculated for a representative value of Grm;c (i.e. 15), and for
a fixed Pr (i.e. 0.7068).

For the present axisymmetric flow field (which is expressed in
the cylindrical polar coordinate system), the relations between
the stream function ðwÞ and the velocity components are given
below:

rVr ¼ � @w
@z

; ð32Þ

rVz ¼ @w
@r

: ð33Þ

Eqs. (32) and (33) together satisfy the continuity Eq. (1).

Fig. 4a and b display contours of V̂ r and streamlines on a R–f plane.
Fig. 4b provides the details near the axis of rotation.

At the disc surface ðf ¼ 0Þ, due to no slip boundary condition, V̂ r

is zero. In region R-1, fluid flows radially outward ðVr P 0Þ. Within
R-1, with an increase in f from the disc surface ðf ¼ 0Þ, it can be

seen that V̂ r first increases, attains a maxima, then decreases and

attains a zero value (at the locus of V̂ r ¼ 0Þ. With an increase in

non-dimensional radiusR, the V̂ r for mixed convection approaches

the self-similar V̂ r . In similarity solution, the maximum V̂ r is

0.1808, whereas, at the start of R-1, V̂ r is substantially small. In
R-2, the effect of buoyancy is predominant and a plume is formed.
To feed the plume, fluid flows radially inward ðVr 6 0Þ. It is already
mentioned in Section 1.2 that V̂ r is negative in both R-2 and R-3.
The direction of the fluid flow can also be realised by observing
the streamlines. Fig. 4b displays natural convective boundary
layer-type streamlines close to disc surface within R-2 and R-3.
On the other hand, forced convective boundary layer-type stream-
lines can be seen within R-1 (Fig. 4a). Fig. 4a shows that there is a
sensitive spot on the upper boundary of the computational domain
such that two streamlines originating at two neighbouring points
may end up in very different final portions of the trajectories,
one being drawn into the forced convection domain (moving
nearly parallel to the disc surface) while the other is ejected
through the plume (moving nearly vertically upward).

Fig. 5 shows contours of V̂z on a R–f plane. At the disc surface

ðf ¼ 0Þ, V̂ z is zero due to the no penetration boundary condition.

Fig. 5a highlights the regions where V̂ z is negative (i.e. R-1 and
R-3). Fluid is entrained through the upper boundary of these
regions, and flowwithin this region is downward. Fig. 5b highlights

the region where V̂ z is positive (i.e. R-2). Flow within this region is
upward. Such representations are helpful for depicting the details

of the variation in V̂z.

Fig. 5a shows that at a fixed R, the magnitude of downward V̂z

within the region R-1 increases with an increase in f. The maxi-

mum value of downward V̂z (�0.8845), according to von Kármán’s
theory, is attained at a large f (i.e. mathematically, at f ! 1Þ. At a
sufficiently large R, it is expected that the CFD solution within R-1
will almost attain the similarity. This is reflected in Fig. 5a. Fig. 5a
shows that when R is large the contour lines within R-1 are nearly
parallel.



Fig. 5. (Colour online) Contours of non-dimensional axial velocity ðV̂ zÞ: (a) the
displayed contours correspond to V̂ z < 0 (flow is downward); (b) the displayed
contours correspond to V̂ z > 0 (flow is upward). [CFD simulation is performed at
Grmc ¼ 15, Pr ¼ 0:7068. Notice the different velocity scales for the two parts (a) and
(b). The magnitude of the upward axial velocity in the plume is significantly greater
than the downward entrainment velocity at the upper edge of the computational
domain.].

Fig. 6. (Colour online) Contours of non-dimensional tangential velocity ðV̂hÞ: (a) the
displayed contours correspond to V̂h < 1; (b) the displayed contours correspond to
V̂h > 1. [CFD simulation is performed at Grmc ¼ 15, Pr ¼ 0:7068. Notice that the
maximum value of contour interval displayed in Fig. 6(b) is 2.2, i.e. there are fluid
particles which rotate with swirl velocity which is more than 100% greater than the
tangential velocity of the disc at the same radius.].
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Fig. 5b shows that within R-2, where a plume is formed, V̂z

increases with a decrease in R. The bending of streamlines within
R-2 (Fig. 4) signifies a conversion of radial velocity into axial veloc-
ity. The magnitude of the upward axial velocity in the plume is sig-
nificantly greater than the downward entrainment velocity at the
upper edge of the computational domain (Fig. 5a and b). Many fea-
tures of an axi-symmetric plume developed above a heated static
disc are described in reference [26]. A plume developed above a
rotating disc has some distinct features which a plume developed
over a static disc does not exhibit. These features will be discussed

in the context of describing the contours of V̂h.

Fig. 6 displays contours of V̂h on a R–f plane. Contour lines, in
Fig. 6, are represented by dashed-type discontinuous lines. Due

to no-slip boundary condition, V̂h is 1 at the disc surface ðf ¼ 0Þ.
The contours for V̂h 6 1 are shown in Fig. 6a; and, the contours

for V̂h P 1 are shown in Fig. 6b. The following observations can
be made from Fig. 6a. Within R-1, it can be observed that with

an increase in f, V̂h decreases and approaches to zero. With an
increase inR, the contour-lines becomes nearly parallel. This signi-

fies that the CFD solution for V̂h approaches to the self-similar solu-
tion. (Within R-2 and R-3, the contour-lines are non-parallel.)

Fig. 6b shows that within a portion of regions R-2 and R-3, V̂h of
the fluid can be significantly greater than unity. This signifies that
there are fluid particles which rotate with swirl velocity much
greater than the tangential velocity of the disc at the same radius.

Fig. 6b shows that the f-distribution of V̂h is very different from
that obtained in von Kármán’s swirling flow. With an increase in

f from the disc surface ðf ¼ 0Þ, the value of V̂h, instead of decreas-
ing, increases, and attains a maxima (>1), and then decreases. The
displayed portion in Fig. 6b mainly encapsulates the region where
a plume is formed. Unlike a plume developed above a static disc,

the V̂h component of a plume developed above a rotating disc is
non-zero. From Figs. 5b and 6b, it can be inferred that near disc-
centre, the hot fluid rises with a swirling motion.

In this context, it is to be mentioned that although Fig. 6b, as

compared to Fig. 6a, shows much greater values of V̂h, this trend
may not hold for the dimensional value of tangential velocity
ðVhÞ. For example, keeping all operating conditions fixed, the
dimensional Vh at R ¼ 10 is much greater than the dimensional

Vh at R ¼ 1. This is so because the expression of V̂h contains the
dimensional r in the denominator (Eq. (16) shows that

V̂h ¼ Vh=ðrXÞÞ. In von Kármán’s solution, the fluid velocity at a fixed
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radius decreases with height z. In the present case, fluid entrain-
ment gives rise to complex fluid motion. In those regions, where
Vr is negative (inward flow), there is a possibility that the decrease
in (dimensional) Vh due to the action of viscosity for an inwardly
advecting fluid particle (coming from a region of greater Vh due
to a greater Vh;surface at larger radii) is such that its Vh, although
reduced, is still greater than the Vh;surface at the radial position of
its current location. This situation gives rise to the condition

V̂h > 1. This hypothesis is corroborated by the observation from

Fig. 6b that the region with V̂h > 1 is a subset of regions of R-2
and R-3 (in both regions Vr is negative).

Fig. 7 shows contours of T̂ on a R–f plane. It can be observed

that at any R, T̂ decreases with an increase in f. It is mentioned
above that a thermal plume is formed within R-2. Within a plume,
the change in temperature is, in general, small. Fig. 7 shows that

the magnitude of @T̂=@f in R-1 is greater than the magnitude of

@T̂=@f in R-2. With an increase in R, the contour-lines become
nearly parallel. The nearly parallel contour lines indicate that the

CFD solution for T̂ is close to the self-similar solution. It is also to
be noted that at a relatively small value of f, similarity is achieved
for a relatively small R.

3.2. f-distributions of velocity and temperature

Fig. 8 shows the f-distributions of V̂ r , V̂h, V̂z and T̂ at various R.
All calculations are performed for a representative Grm;c (i.e. 15),

and for a fixed Pr (i.e. 0.7068). It can be seen that V̂ r , V̂h, V̂ z and T̂
nearly attain self-similarity for a sufficiently large R. It is to be

noted that V̂h and T̂ approach their respective self-similarity pro-

files early (see the profiles at R ¼ 9Þ; and, V̂ r and V̂z approach their
respective self-similarity profiles much later (see the profiles at
R ¼ 45Þ.

The f-distributions of V̂ r are shown for four representative val-

ues of R (i.e. R ¼ 4:5,R ¼ 9, R ¼ 45 and R ¼ 75Þ. At R ¼ 4:5, V̂ r is

negative at all f. The flow is radially inward. AtR ¼ 9, V̂ r is positive

for small f; and, with a increase in f, V̂ r becomes negative. There-

fore, at R ¼ 9, V̂ r is partly positive and partly negative. At R ¼ 45
Fig. 7. (Colour online) Contours of non-dimensional temperature ðT̂Þ above an
isothermally-heated, rotating disc-surface. [CFD simulation is performed at
Grmc ¼ 15, Pr ¼ 0:7068. Note that the contour-lines are nearly parallel at large
non-dimensional radius R but the slopes change drastically with a decrease in R.].
and R ¼ 75, V̂ r is positive up to the locus of V̂ r ¼ 0, and a further

increase in f results into a very small negative value of V̂ r in the
region R-3. Therefore, at sufficiently large R, the flow is effectively

radially outward. At all R, the magnitude of V̂ r approaches zero for
sufficiently large values of f.

The f-distributions of V̂z show that at smallR, V̂z is positive (e.g.
see the profiles at R ¼ 1, R ¼ 2Þ. This occurs due to the develop-
ment of a plume near the disc centre. The profile at R ¼ 4:5 shows

both positive and negative values of V̂z (i.e. V̂ z is negative for small

f; and, with a increase in f, V̂ z becomes positive). At R ¼ 9, V̂ z is
negative. Therefore, at small values of R, the direction of the flow
is upward. On the other hand, for the other part of the domain (i.e.
at comparatively larger RÞ, the direction of the flow is downward.
The magnitude of the upward axial velocity is significantly greater
than the magnitude of downward axial velocity.

Some distinct characteristics for the variation of V̂h are men-

tioned in Section 3.1. Fig. 8 shows that at smallR, V̂h increases with
an increase in f. With an increase in R (see the profiles at R ¼ 1,

R ¼ 2 and R ¼ 3Þ, the maxima for the profiles of V̂h, which are
>1, shift to a smaller value of f. At R ¼ 4:5, the maxima occurs
almost at the disc-surface ðf ¼ 0Þ; and the value of the maxima is
nearly 1. With a further increase R, CFD solution approaches to
von Kármán’s similarity solution (compare the profiles at R ¼ 9

andR ¼ 45Þ. It is to be noted that at smallR, V̂h approaches to zero

very slowly. Similar trend is observed for the f-distributions of T̂ .

At large R (e.g. R ¼ 45Þ, comparing the f-distributions of T̂ and

V̂h, it can be stated that d̂t is greater than d̂ (typical values of d̂t
and d̂ for the similarity solution are given in Section 2.3).

It is interesting to reveal how, with increasing R, the CFD solu-
tion for mixed convection progressively approaches towards the
self-similar solution of forced convection. With this objective, for
a representative Grm;c (i.e. 15) and for a fixed Pr (i.e. 0.7068), the

axial variation of V̂ r for various values of R are calculated from

CFD simulations. Fig. 9 shows these calculated V̂ r-profiles. The

same figure also shows the unique V̂ r-profile obtained from the
similarity theory for forced convection. f is plotted as the ordinate
so that the vertical sense is retained for easy physical interpreta-
tion. The lowest R shown in this diagram (i.e. R ¼ 4:5Þ indicates
the R-location where the region R-1 just starts for the selected
Grmc and Pr. With an increase in R, the progressive development

of the V̂ r-profiles for mixed convection towards the unique self-

similar V̂ r-profile can be observed in Fig. 9. Within R-1, the

V̂ r-profile corresponding to a particular R has a maxima. The max-

imum value of V̂ r is denoted as V̂ r;max, and the value of f corre-

sponding to a V̂ r;max is denoted as fV̂r;max
. Fig. 9 shows that with an

increase in R, both V̂ r;max and fV̂r;max
for mixed convection approach

to their respective self-similar values (from similarity solution,

V̂ r;max ¼ 0:1808 and fV̂r;max
¼ 0:93). However, Fig. 9 also shows that

even for R ¼ 45, the asymptotic values of V̂ r at large f show qual-

itatively different behaviour: the V̂ r in self-similar profile asymp-

totically approaches zero from the positive side, but V̂ r in mixed
convection assumes a finite negative value (corresponding to
Region R-3).
3.3. Distribution of local Nusselt number ðNuÞ

Local Nusselt number Nu is defined in Section 2.2 (see Eq. (21)).
For a fixed Pr, CFD simulations are carried out for various Grmc.
Fig. 10a shows the variations of Nu with non-dimensional radius
R for three representative values of Grmc. The figure also contains



Fig. 8. (Colour online) f-distributions of various non-dimensional variables ðV̂ r ; V̂h , V̂ z and T̂Þ at various non-dimensional radiusR. [CFD simulation is performed at Grmc ¼ 15,
Pr ¼ 0:7068. Note that V̂h and T̂ approach their respective self-similarity profiles early (see the profiles at R ¼ 9Þ. V̂ r and V̂z approach their respective self-similarity profiles
much later (see the profiles at R ¼ 45Þ.].
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Nu versus R obtained from the similarity theory and Nu versus R
obtained from a separate CFD simulation for g ¼ 0. In both similar-
ity theory and the simulation for g ¼ 0, the effect of buoyancy is
neglected; therefore, both similarity theory and the simulation
for g ¼ 0 represent forced convection. However, in the similarity
theory, ordinary differential Eqs. (24)–(27) are solved; whereas in
the CFD simulation, we achieve the solution of the set of partial dif-
ferential Eqs. (1)–(5) with g ¼ 0 by invoking the axisymmetric
swirl model for the Navier-Stokes equations in Fluent and switch-
ing off the gravity term. The quantitative difference between Nu
versus R obtained from the similarity theory and that obtained
from the CFD simulation for g ¼ 0 is displayed in Fig. 10a and b
(for 10 6 R 6 20Þ. Unlike the similarity theory, the Nu versus R
curve for forced convection obtained from the CFD simulations is
not exactly linear. Furthermore, the prediction of similarity theory
is always greater than the prediction of the CFD simulation for
g ¼ 0; the relative difference may be appreciable at small values
of R. At sufficiently large R, the results of the similarity theory
and the CFD results come closer.
Some general observations can be made from Fig. 10a while
comparing the curves of Nu versus R for mixed convection (shown
here for three representative GrmcÞ with the curves of Nu versus R
for forced convection ðg ¼ 0Þ. When R is small the value of Nu for
mixed convection is less than the value of Nu for forced convection.
However, with an increase inR, Nu for mixed convection overtakes
Nu for forced convection. The point of crossover shifts to a greater
R-value with a decrease in Grmc (see Fig. 10a).

The above mentioned features are illustrated below using three
representative cases, viz. g ¼ 0, Grmc ¼ 10 and Grmc ¼ 25. A sche-
matic representing mixed convection ðGrmc–0Þ is shown in
Fig. 11a. Fluid enters into the region R-1 through the locus of

V̂ r ¼ 0 (due to nonzero V̂ zÞ. The radial outflow for the displayed
portion of R-1 is also shown. At any non-dimensional radius R,

the magnitude of radial outflow depends on the f-variation of V̂ r .
When R is sufficiently large, so that self-similarity is attained,

the f-variation of V̂ r will be independent of R (see Section 3.2).
Consider such a large R for Grmc ¼ 25. Suppose this large non-



Fig. 9. (Colour online) Non-dimensional radial velocity ðV̂ rÞ profiles at variousR for
mixed convection and their progressive development with an increase inR towards
the self-similar V̂ r-profile for forced convection. [CFD simulation is performed at
Grmc ¼ 15, Pr ¼ 0:7068. The lowest R shown in this diagram (i.e. R ¼ 4:5Þ indicates
the R-location from where the region R-1 just starts. The asymptotic values at large
f for the velocity profiles at R ¼ 45 are shown at the top of the diagram.].

Fig. 10. (Colour online) Effect of increasing Grmc on the distribution of local Nusselt
number ðNuÞ. (a) CFD solutions for mixed convection at three different values of
Grmc , CFD solution for forced convection ðg ¼ 0Þ, and similarity solution for forced
convection (b) Magnified comparison between similarity solution and CFD solution
with g ¼ 0. (All calculations correspond to Pr ¼ 0:7068.).
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dimensional radius is Rs. At Rs, the attainment of self-similarity is
also expected for the cases of g ¼ 0 and Grmc ¼ 10. Thus, at Rs, f-

profiles of V̂ r within R-1 for g ¼ 0, Grmc ¼ 10 and Grmc ¼ 25 will
be identical. Consequently, at Rs, the non-dimensional radial out-

flow ðQ̂ rÞ for all these three cases will be the same. Q̂ r is defined as:

Q̂ r ¼ Qr=
ffiffiffiffiffiffiffi
mX

p
pr2

� �
ð34Þ

where, the dimensional radial outflow Qr equals 2pr
R z�

0 Vrdz. z� is
the location where a circumferential plane (on which r is constant)

cuts the locus of V̂ r ¼ 0.
Now, consider that m and X are fixed; and, Grmc is varied by

changing ðTw � T1Þ. Under this situation, for all three cases (i.e.
g ¼ 0, Grmc ¼ 10 and Grmc ¼ 25Þ, the values of rs ðrs � Rs

ffiffiffiffiffiffiffiffiffi
m=X

p Þwill
be same; furthermore, the values of Qr;s ðQr at rsÞ will be same. Qr;s

is entrained within R-1 through the locus of V̂ r ¼ 0. The starting

point of the locus of V̂ r ¼ 0 is indicated by Of in Fig. 11a. By com-
paring Fig. 11c and d, it can be stated that the point Of shifts to a
greater radius with an increase in Grmc . Thus, for the same Qr;s,
the effective area for inflow within R-1 is decreased with an
increase in Grmc. (For the case of g ¼ 0, the point Of occurs at
disc-centre; therefore, the effective area for inflow is the highest).
Smaller effective area (for a greater value of GrmcÞ results into a
greater downward axial velocity Vz. This fact is demonstrated in
Fig. 11b.

Cold fluid enters into R-1 through a downward axial flow; thus,
heat is transferred from hot disc-surface to the fluid. A greater axial
velocity causes a greater heat transfer. This is reflected in the dis-
tributions of temperature. The temperature-contours for Grmc ¼ 10
and Grmc ¼ 25 are shown in Fig. 11c and d, respectively. In order to

compare the values of T̂, in both Fig. 11c and d, three dotted lines
are inserted at three representative f-locations. These three f-
locations are the same at which the radial variations of V̂ z are
shown in Fig. 11b. It is observed that within R-1, the temperature
of fluid at any f is greater for the case of Grmc ¼ 10 as compared
to the case of Grmc ¼ 25. The above description explains, for inter-
mediate values ofR, how Nu for mixed convection overtakes Nu for
forced convection, and, why Nu increases with increasing Grmc .

The other interesting phenomenon occurs close to the disc-
centre. It is discussed previously that within R-2, a plume is
formed. Therefore, within R-2, @T=@z is small. For g ¼ 0, R-2 does
not exist. Consequently, at small non-dimensional radius R, Nu
for mixed convection is less than Nu for pure forced convection

ðg ¼ 0Þ. The starting point of the locus of V̂ z ¼ 0 is indicated by
Om in Fig. 11a. By comparing Fig. 11c and d, it can be stated that
the point Om shifts to a greater radius with an increase in Grmc.
However, the radial shift of Om is less as compared to Of , therefore,
the distance between Om and Of increases with an increase in Grmc .
For this reason, theR-distribution of the Nu is affected more due to
the radial shift of Of as compared to the radial shift of Om. Fig. 10a



Fig. 11. (Colour online) Depiction of the physical processes close to the solid surface for interpreting why buoyancy increases the value of Nu (over the case of pure forced
convection) within the region R-1 and how the effect increases with increasing Grmc . (a) a schematic exhibiting three fluid dynamic regions (R-1, R-2 and R-3), three important
points O, Om and Of Þ, and, the directions of inflow and outflow for the displayed portion of R-1; (b) effect of increasing Grmc on theR-distributions of V̂z (calculations shown at
three representative f close to the solid surface); (c) contours of T̂ for Grmc ¼ 10; (d) contours of T̂ for Grmc ¼ 25.
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shows that when Grmc increases from 10 to 25, the value of Nu at
small R ðR < 5Þ alters insignificantly, and the point of crossover
(between the curve for forced convection and a curve for mixed
convection) arrives at a smaller R-value.
3.4. Comments on Cm;r and Nu

Cm;r and Nu are two important output parameters which are
defined in Section 2.2 (Eqs. (20) and (22), respectively). The aver-
aged thermo-fluid-dynamic behaviour of a disc segment, extend-
ing from disc-centre up to a radius r, can be assessed from the
values of Nu and Cm;r . Table 2 shows the calculated values of Nu
and Cm;r obtained from CFD simulations for four representative val-
ues of Grmc (5, 10, 15 and 25), from a CFD simulation for g ¼ 0, and,
from the similarity theory. Both similarity solution and the CFD
solution for g ¼ 0 represent forced convection, whereas the CFD
solutions for the four Grmc represent various mixed convective con-
ditions. For all these cases, Nu and Cm;r are calculated at five repre-
sentative R-locations (5, 10, 20, 50 and 100).

Table 2 shows that when R is large (e.g. R ¼ 100Þ both Nu and
Cm;r for mixed convection are close to their respective forced con-
vective values. With a decrease in R, the difference between Cm;r

for mixed convection and Cm;r for forced convection increases.
The difference is significant for small R (see the case of R ¼ 5Þ.
When R is small (e.g. R ¼ 5Þ and Grmc is large (e.g. Grmc ¼ 25Þ,
Cm;r for mixed convection is negative, whereas Cm;r for forced con-
vection is positive. The negative value of Cm;r occurs because at

small R, ð@V̂h=@fÞf¼0 is positive (Fig. 8). The sign convention for
Cm;r is adopted from reference [35]. The positive Cm;r signifies that
power has to be supplied from external source to maintain a steady
rotational speed X. Conversely, the negative Cm;r implies that, in
mixed convection, the fluid, instead of absorbing, may rather sup-
ply power to a small segment of the disc! (Overall, the disc needs
power supply from an external source.)



Table 2
Nu and Cm;r at various non-dimensional radius R for four representative values of Grmc (All calculations correspond to Pr ¼ 0:7068.).

R Grmc Nu for mixed
convection from CFD

Nu for g ¼ 0
from CFD

Nu for forced
convection from
similarity

Cm;r for mixed
convection from CFD

Cm;r for g ¼ 0
from CFD

Cm;r for forced
convection from
similarity

5 5 1.118 1.542 1.625 0.278 0.389 0.387
10 1.020 0.122
15 1.053 0.020
25 1.167 �0.099

10 5 2.650 3.120 3.250 0.169 0.194 0.193
10 2.719 0.151
15 2.872 0.143
25 3.216 0.141

20 5 6.046 6.354 6.500 0.091 0.095 0.097
10 6.244 0.091
15 6.464 0.091
25 6.952 0.094

50 5 16.085 16.183 16.250 0.039 0.039 0.039
10 16.220 0.039
15 16.320 0.039
25 16.516 0.039

100 5 32.463 32.472 32.500 0.019 0.019 0.019
10 32.534 0.019
15 32.581 0.019
25 32.641 0.019
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A few interesting observations derived from Table 2 about the
trend of Nu are given below. At a small R, when Grmc increases
from 5 to 25, no substantial difference is found in the values of
Nu. At an intermediate R, when Grmc increases from 5 to 25, Nu
increases. At a large R, Nu becomes nearly invariant with a change
in Grmc . Necessary explanations supporting these observations are
already provided in Section 3.3.

In this connection, the question, whether the heat transfer due
to rotation is opposed by the heat transfer due to buoyancy, can be
addressed. Fig. 10 and Table 2 show that the answer is not straight-
forward. For small values ofR, buoyancy opposes the effect of rota-
tion. Thus, Nu for mixed convection is less than Nu for forced
convection (Fig. 10a). Same qualitative trend is present in the vari-
ation of Nu (Table 2). However, at an intermediate R, when Grmc is
sufficiently large, Nu for mixed convection may exceed Nu for
forced convection. It is so because at an intermediate R, Nu for
mixed convection is greater than Nu for forced convection, and
Nu increases with an increase in Grmc (Fig. 10a). In other words,
at an intermediate R, buoyancy facilitates the effect of rotation.
At largeR, the effect of buoyancy is insignificant, and, heat transfer
is mainly governed by the effect of rotation.

4. Conclusion

The paper presents a comprehensive and systematic, theoretical
and computational study of mixed convection above a heated
rotating disc. The fluid flow field is much more complex here as
compared to von Kármán’s original solution (which took into
account only the effect of disc rotation), since the effects of buoy-
ancy and rotation are simultaneously present and they interact
non-linearly in a complex manner. The self-similarity of von
Kármán’s flow field is lost, and the present paper establishes, for
the first time, that the flow field above a heated rotating disc is
divided into three distinct fluid dynamic regions. In region 1

(R-1), V̂ r is positive and V̂ z is negative (such directions of the veloc-
ity components are characteristic of von Kármán’s flow or pure

forced convection). In region 2 (R-2), V̂ r is negative and V̂ z is posi-
tive (such directions of the velocity components are characteristic
of pure natural convection near a static disc surface). In region 3
(R-3), both V̂ r and V̂z are negative. The three regions are demar-

cated by the loci of V̂ z ¼ 0 and V̂ r ¼ 0.
The characteristics of the original von Kármán’s flow are

retained within the region R-1; however, the quantitative details
are different at intermediate values of non-dimensional radius R
due to the presence of buoyancy. For fixed values of Grmc (Grashof
number for mixed convection, Eq. (12)) and Pr (Prandtl number),
when R is sufficiently large, the contour lines shown in Figs. 4–7

are nearly parallel, and, the f-distributions of V̂ r , V̂h, V̂z and T̂
within the region R-1 are almost independent of R (see Fig. 8).
These two observations indicate that, in region R-1, the CFD solu-
tions corresponding to mixed convection approach the self-
similar solutions corresponding to forced convection. Fig. 8 shows

that for fixed Grmc and Pr, V̂h and T̂ approach their respective self-

similarity profiles early (see the profiles at R ¼ 9Þ; and, V̂ r and V̂z

approach their respective self-similarity profiles much later (see
the profiles at R ¼ 45Þ. When self-similarity is attained the value
of d̂t (8.14) is greater than the value of d̂ (5.5). It is to be realised
that even though the forced convection results are obtained
asymptotically at large R within the region R-1 showing the
dominance of forced convection mechanism, the fluid retains
the signature of natural convection even at large values of R in
the region R-3 where there is an inward radial velocity.

Within the region R-2, a plume is formed which is symptomatic
of the dominance of natural convective mechanism. The plume is
fed by a radially inward flow, and it drives the fluid axially upward.
The bending of streamlines within R-2 (Fig. 4) signifies a conver-
sion of radial velocity into axial velocity. The magnitude of the
upward axial velocity in the plume is significantly greater than
the downward entrainment velocity at the upper edge of the com-
putational domain (Fig. 5). Unlike a plume that develops above a

heated static disc, the V̂h component for a plume developed above
a rotating disc is non-zero, so the hot fluid rises with a swirling
motion. Thus, even in the central portion of the disc where the
solution is dominated by the effects of buoyancy, the fluid retains
a signature of the disc rotation.

A limiting case, in which the effect of buoyancy is absent, is
devised here by setting g ¼ 0 in the CFD simulations. This limiting
case represents forced convection for which a similarity theory is
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also presented. Ordinary differential Eqs. (24)–(27) are solved for
the similarity theory; whereas in CFD simulation, partial differen-
tial Eqs. (1)–(5), by imposing g ¼ 0, are solved. Although both
methods show the same trend, the present paper shows that there
are quantitative differences between the results of CFD simulations
for forced convection and the similarity theory (see Fig. 10a and b).
Unlike the similarity theory, the Nu versus R curve for forced con-
vection obtained from the CFD simulations is not exactly linear.
Furthermore, the prediction of similarity theory is always greater
than the prediction of the CFD simulation for g ¼ 0; the relative
difference may be appreciable at small values of R. At sufficiently
large R, the results of the similarity theory approach the CFD
results.

The complex non-linear interactions between the effects of
rotation and buoyancy are quantitatively presented in the many
Figures and Tables of this paper. We conclude here by highlighting
three rather strange, non-intuitive outcomes of this non-linear
interaction. The first strange feature is unearthed in Fig. 6b of the
present investigation, which shows that within a portion of regions

R-2 and R-3, V̂h of the fluid can be significantly greater than unity.
This signifies that there are fluid particles which rotate with swirl
velocity much greater than the tangential velocity of the disc at the

same radius. In the region where V̂h exceeds 1, the f-distribution of

V̂h is very different from that obtained in von Kármán’s flow (see

Fig. 8). Within this region, ð@V̂h=@fÞf¼0 is positive, whereas for

von Kármán’s flow, ð@V̂h=@fÞf¼0 is negative. The consequence of this

unusual f-distribution of V̂h is reflected in the results of non-
dimensional moment coefficient ðCm;rÞ given in Table 2. For large
Grmc and smallR (e.g., see the case Grmc ¼ 25 andR ¼ 5 in Table 2),
Cm;r is found to be negative. For von Kármán’s flow, Cm;r is positive,
and, the positive value implies that power has to be supplied from
external source to maintain a steady rotational speed X. Con-
versely, the negative Cm;r implies that, in mixed convection, the
fluid, instead of absorbing, may rather supply power to a small seg-
ment of the disc! (Overall, the disc needs power supply from an
external source.)

The second strange feature is displayed in Fig. 4 where it is dis-
covered that there is a sensitive spot on the upper boundary of the
computational domain such that two streamlines originating at
two neighbouring points may end up in very different final por-
tions of the trajectories, one being drawn into the forced convec-
tion domain (moving nearly parallel to the disc surface) while
the other is ejected through the plume (moving nearly vertically
upward).

The third strange outcome of the non-linear interaction of rota-
tion and buoyancy is in the value of the resultant Nusselt number.
It is found that although in terms of the direction of radial motion
the effect of buoyancy counteracts the effect of rotation (disc-
rotation pushes the fluid radially outward, whereas buoyancy
tends to create a radially inward flow), the effects of the mutual
interaction between buoyancy and rotation on the heat transfer
rate is complex. This can be appreciated from the Nu versus R
curves shown in Fig. 10a. If DNu represents the difference between
the Nusselt number for mixed convection and that for pure forced
convection (i.e. DNu ¼ Numixed � NuforcedÞ, then the present results
Table A.1
Grid independence test (CFD data for Grmc ¼ 15, Pr ¼ 0:7068Þ.

Size of the CFD domain Grid
distribution

Number of grids in r
and z directions

Total number of
computational cells

½R; f� ¼ ½0;0� to
½R; f� ¼ ½215;60�

Coarse (235 � 129) 30315
Standard (413 � 197) 81361
Fine (523 � 264) 138072
establish that not only DNu depends non-linearly on the value of
Grmc but the sign of DNu also does change. For small values of R,
Numixed < Nuforced. It is so because at small R, a plume is formed,

consequently, ð@T̂=@fÞf¼0 is small (Figs. 7 and 8). For intermediate
values of R, Numixed > Nuforced, and DNu increases with increasing

Grmc. This occurs because of the increase in V̂ z near the solid sur-
face with increasing Grmc (Fig. 11). For large R, Numixed ! Nuforced

from above. Thus, one may conclude that, in terms of heat transfer
mechanisms, buoyancy opposes the effect of rotation at small R,
whereas buoyancy facilitates the effect of rotation at intermediate
R; and, at large R, the effect of buoyancy is negligible, and, heat
transfer is chiefly controlled by the effect of rotation.
Appendix A. Choice of grids near the axis of rotation and further
computations showing the suitability of axis boundary
condition

A.1. Fine details of grid independence test near the axis of rotation

In Section 2.4, it is mentioned that both velocity and tempera-
ture fields change rapidly at small R and slowly at large R. There-
fore, apart from applying non-uniform grid distribution in the z-
direction, we have used non-uniform grid distribution also in the
r-direction. As a result, it has been possible to accommodate a large
number of grid points close to the axis of rotation. The first grid
attached to the axis of rotation is the smallest, and the grid-size
increases progressively with an increase in radius. When R is suf-
ficiently large (that the spatial variations of temperature and veloc-
ity fields are no longer drastic) uniform grid distribution is used in
the r-direction. For the computations reported in this paper, we
have used non-uniform grid spacing for R 6 50, and uniform grid
spacing for R > 50.

An overall grid independence study is given in Section 2.4. Here,
we focus our attention very close to the axis of rotation
ð0 6 R 6 5Þ to assess how well our CFD results are able to capture
the physics in a region of the highest gradients of the flow vari-
ables. Table A.1 displays the number of grids in the r direction
within 0 6 R 6 5. It may be noted that we have used 71 grid points
in this small region of flow field in the standard grid used for all
CFD results shown in Figs. 3–11 and Table 2. Table A.1 and
Fig. A.1 together show that when the number of grids (in the r
direction) within 0 6 R 6 5 is almost doubled (i.e. from 71 for
standard-grid-distribution to 136 for fine-grid-distribution), the
CFD results vary negligibly. Table A.1 and Fig. A.1 are two represen-
tative tests out of several tests which have been carried out to ver-
ify the near-axis details. The positive outcome of such
investigations gives us confidence in the accuracy of the results
reported in this paper.
A.2. ‘Axis boundary condition’ of Fluent

In the literature, differences between axisymmetric and full 3-D
simulations have been reported [40]. We implemented the ‘axis
boundary condition’ to reduce computational time since a large
number of separate simulations were needed for the present study
Number of grids in the r
direction within 0 6 R 6 5

Nu at R ¼ 5 from
CFD simulations

Nu over 0 6 R 6 5
from CFD simulations

18 1.32 1.04
71 1.33 1.05
136 1.33 1.05



Fig. A.1. (Colour online) Fine details of the grid independence test close to the axis
of rotation. (CFD simulations are performed at Grmc ¼ 15, Pr ¼ 0:7068. 71 grid
points are used in the standard grid within the small region 0 6 R 6 5. Results are
shown for three different heights ðfÞ above the disc.).

Fig. A.2. (Colour online) The prediction of axisymmetric CFD simulation versus the
result of full three dimensional CFD simulation. (CFD simulations are performed at
Grmc ¼ 10, Pr ¼ 0:7068. Results are shown for three different heights ðfÞ above the
disc.).
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and an axisymmetric flow field was expected. In order to deter-
mine whether this boundary condition can produce accurate solu-
tions, particularly very close to the axis of rotation, full three-
dimensional computations were also undertaken. These further
computations showed that there is no discernible difference
between the solutions of these carefully conducted full 3-D solu-
tions and those reported in this paper. Fig. A.2 establishes the
equivalence of the two solutions.
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