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An analysis is performed to study aerosol particle transport and deposition onto an
isothermal horizontal or vertical plate due to the combined effects of laminar natural
convection, Brownian diffusion and thermophoresis. Four configurations are considered: flow
above a heated horizontal plate, flow beneath a cold horizontal plate, flow due to a heated
vertical plate and that due to a cold vertical plate. Nano- to micro-sized particles (particle
diameter in the range 1 nm to 5 μm) in air are considered. It is found that the deposition
velocity decreases with an increase in particle diameter dp (i.e. an increase in particle Schmidt
number Sc), and increases with a decrease in the value of non-dimensional temperature
difference ΔT̂ (from positive to negative values). For a downward-facing cold horizontal plate
or cooled vertical plate, the thermal drift of particles assists Brownian diffusion which
enhances deposition velocity. For an upward facing heated horizontal plate or heated vertical
plate, the thermal drift away from the surface decreases the overall deposition velocity which
decreases drastically above a certain particle size. It is shown that the thermal drift may
enhance the deposition rate by several orders of magnitude under certain circumstances. The
profound role of using different expressions for the thermophoretic force coefficient (κ) is
assessed. It is found that the deposition velocity calculated using the expression for
κ suggested by Talbot et al. (1980) is always higher than the values predicted by employing
the expression proposed by Beresnev and Chernyak (1995). The difference in the calculated
deposition velocity for the two thermophoretic models is significant when the particle
diameter dp is large and the fluid to particle thermal conductivity ratio λr is small.
For example, at dp�1 μm, the Talbot et al. model may overpredict the deposition velocity
by a factor 3, and at dp�5 μm, the Talbot et al. model may overpredict the deposition velocity
by a factor 10. There is negligible difference between the two models when dpo100 nm.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Particles suspended in a fluid streammaymove for various reasons. The motionmay be due to viscous drag, Brownian diffusion,
gravitational settling, inertia, and electrical or other body forces. A diffusive mass flux may also arise due to a gradient in fluid
temperature: suspended particles usually tend to move from regions of high temperature to low temperature. The force which
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Nomenclature

Cc Cunningham correction
dp diameter of particles
DB Brownian diffusivity
DT coefficient of temperature-gradient driven

diffusion
f reduced stream function
g gravitational acceleration
Grx Grashof number defined as

Grx ¼ ðgβjTw�T1jx3Þ=ν2
h reduced pressure difference
J flux of particles
k Boltzmann constant
Kn Knudsen number ðKn¼ l=dpÞ
l mean free path of the surrounding gas
N concentration
p static pressure of the fluid
Pr Prandtl number (Pr¼ ν=α)
p1 static pressure in the undisturbed fluid
Sc Schmidt number ðSc¼ ν=DBÞ
T static temperature of the fluid
T1 static temperature in the undisturbed fluid
ΔT̂ non-dimensional temperature difference

ðΔT̂ ¼ ðTw�T1Þ=T1Þ
u velocity component in the x-direction
v velocity component in the y-direction
Vd deposition velocity
x coordinate measured along the plate
y coordinate measured normal to the plate

Greek

α thermal diffusivity
β coefficient of thermal expansion at the refer-

ence temperature
η similarity variable
κ thermophoretic force coefficient
λ thermal conductivity
λr thermal conductivity ratio (λr ≡ λf =λp)
μ dynamic viscosity of fluid
ν kinematic viscosity of fluid
ϕ non-dimensional concentration ðϕ¼N=N1Þ
ψ stream function
ρ density of fluid
θ non-dimensional temperature

ðθ¼ ðT�T1Þ=ðTw�T1ÞÞ

Subscripts

f fluid
p particle
w condition at the wall
1 condition in the undisturbed fluid

Superscripts

0 differentiation with respect to η
^ non-dimensional deposition velocity
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produces this movement of particles is called thermophoretic force and the resulting motion of particles is called thermophoresis
(details about theories and experiments on thermophoresis are given in Section 2). If the fluid motion is turbulent, additional
mechanisms of particle transport are provided by diffusion due to turbulent eddies and turbophoresis. Deposition of particles is also
modified by the presence of roughness elements on the surface onwhich deposition takes place. All such mechanisms are included
in the unified advection-diffusion theory (Guha (1997, 2008a, 2008b)) of particle transport and deposition applicable for laminar as
well as turbulent flow. The paper by Guha (1997) also contains the first solution of thermophoretic movement of particles
suspended in a flowing fluid (forced convection) with the application of the unified advection-diffusion theory, unearthing complex
interaction between thermophoresis and turbophoresis for certain sizes of particle.

In this paper, the motion of nano- to micro-sized aerosol particles (particle diameter in the range 1 nm–5 μm) as a result of
(laminar) natural convection of the base fluid is considered. Since natural convection arises due to a temperature difference
between the bounding surface and the quiescent fluid, Brownian diffusion and thermophoresis are inextricably linked.
Nevertheless, an artefact has been devised in this paper to separate the effects of Brownian diffusion and thermophoresis. Four
flow configurations (Fig. 1) are considered for the sake of developing a comprehensive physical picture: natural convective
boundary layer developing in the upward direction (i.e. against the direction of gravity) along a heated vertical plate, that
developing in the downward direction along a cooled vertical plate, that developing above a heated horizontal plate, and a natural
convective boundary layer developing beneath a cooled horizontal plate. Only a few such studies have been published previously
[Epstein et al. (1985), Nazaroff and Cass (1987), and Tsai (2001) for deposition on a vertical plate, and Guha and Samanta (2014) for
deposition on a horizontal plate], but all of them employed older expressions [e.g. the well-known formula given by Talbot et al.
(1980)] for computing the thermophoretic force. Recently, however, Sagot et al. (2009) and Brugiére et al. (2013) have concluded
that the expression for thermophoretic force coefficient proposed by Beresnev and Chernyak (1995) provides the best agreement
with experimental measurements. This paper, therefore, investigates in detail how the various expressions of thermophoretic force
coefficient affect the predicted natural convective motion of nano- to micro-sized aerosol particles. There appears to be no available
experimental data for thermophoresis in natural convective flow on a vertical plate or a horizontal plate. The number of available
theoretical studies on this topic is also very limited (as explained above). It is in this context that we have attempted to provide a
comprehensive theoretical treatment of the subject-matter.

The mathematical treatment for the determination of fluid flow field due to natural convection along a vertical plate is
standard and is available in any textbook on convection (e.g. Burmeister, 1983). In contrast, the literature on the analysis of



Fig. 1. Physical model and coordinate system. (a) Heated horizontal plate facing upward ðTw4T1Þ. (b) Cold horizontal plate facing downward ðT14TwÞ.
(c) Heated vertical plate ðTw4T1Þ. (d) Cold vertical plate ðT14TwÞ.
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laminar natural convection over a horizontal plate is rather limited (Stewartson, 1958; Rotem and Claassen, 1969;
Schlichting and Gersten, 2004; Samanta and Guha, 2012). The natural convection boundary layer above a horizontal plate
is formed indirectly because of an induced pressure gradient and thus it is termed as ‘indirect natural convection’
(Schlichting and Gersten, 2004). In the standard analysis of natural convection on a vertical plate, it is assumed that
∂p=∂x¼ �ρ1g and ∂p=∂y¼ 0. On the other hand, the boundary layer on a horizontal plate due to natural convection is such
that ∂p=∂ya0 and ∂p=∂x cannot be neglected inside the boundary layer (even when ∂p1=∂x is zero). Particle transport and
deposition on both vertical and horizontal plates are analyzed in the present paper.
2. Mathematical formulation for horizontal plate

Consider steady, laminar natural convection boundary layer flow of a viscous and incompressible fluid past a semi-
infinite horizontal plate. The plate is subjected to a constant wall temperature Tw. The quiescent ambient fluid is maintained
at a uniform temperature T1 and pressure p1. The flow configuration is presented in Fig. 1(a).

The boundary layer equations in dimensional form governing natural convection flow over a horizontal plate under
Boussinesq approximation are

Continuity equation:

∂u
∂x

þ∂v
∂y

¼ 0 ð1Þ

x-momentum equation:

u
∂u
∂x

þv
∂u
∂y

¼ �1
ρ

∂p
∂x

þν
∂2u
∂y2

ð2Þ

y-momentum equation:

�1
ρ

∂p
∂y

þgβðT�T1Þ¼ 0 ð3Þ

Energy equation:

u
∂T
∂x

þv
∂T
∂y

¼ α
∂2T
∂y2

ð4Þ
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The motion of small particles in such a flow field is governed by the following equation:

u
∂ N
∂ x

þv
∂ N
∂ y

¼DB
∂2N
∂ y2

þDT
∂
∂y

1
T
∂T
∂y

N
� �

ð5Þ

Guha (1997, 2008a, 2008b) has derived, from fundamental conservation equations of mass and momentum for the
particles, a unified Eulerian advection-diffusion theory in which the various mechanisms of particle transport and
deposition arise automatically. The equations are valid for laminar to turbulent flow and for a wide range of particle size
(nanoparticles to large millimeter-sized particles). The theory incorporates the effects of inertia, Brownian diffusion,
thermophoresis, turbophoresis, electrical and other body forces, gravity, shear-induced lift, surface roughness, and
corrections due to Knudsen effect or finite slip Reynolds number. These equations reduce to the well-known relations in
the appropriate limits. Thus, for example, Fick's law of diffusion or the currently popular equations for the motion of
nanoparticles can be viewed as subsets of the unified advection-diffusion theory derived. Experiments show that the
deposition velocity varies differently with the size of particle in different ranges of particle size and it can vary by several
orders of magnitude as particle size is altered. In the past, separate theories were needed in different particle size ranges and
it would have been difficult to apply the theories to flow situations that are different from the situations for which the
parameters of the theories were tuned. The unified advection-diffusion theory thus settles the quest over previous 70 years
in the field for a physics-based explanation for the observed complex behavior of particle transport.

In the literature, often deposition “velocities” are determined separately for various physical mechanisms and then added
to calculate the overall deposition rate. The work of Guha (1997) takes a more fundamental approach in which the forces
acting on particles are properly accounted for and are vectorially added in the momentum equation. The overall deposition
rate is then computed from the solution of fundamental conservation equations. This ought to be a superior approach than
the more usual linear superposition of the respective “velocities”.

The present version of particle concentration equation (5) is a special case of the generalized particle transport equation
of Guha (1997). The relevant mechanisms of particle transport and deposition for the present work include Brownian
diffusion and thermophoresis. Since laminar natural convection is considered here, the terms arising out of the interaction
of the particle and fluid turbulence are not retained. In this work fluid velocities are used in the LHS of Eq. (5) instead of
separate particle velocities; hence the equation would be valid only for small particles; however, the original equation used
by Guha (1997) for the inertial relaxation time includes necessary correction to Stoke's drag law due to large slip velocity
between the two phases. Effect of any body forces (including gravity) on the particles is not considered in the present study.

Here x and y are dimensional coordinates along and normal to the plate, u and v are the velocity components in the x and
y directions, p is the static pressure, g is the gravitational acceleration (only magnitude is to be considered, the sign is
incorporated in the analysis), β is the coefficient of thermal expansion at the reference temperature, ρ, v and α are the
density, kinematic viscosity and thermal diffusivity of the fluid, respectively, and DB is the Brownian diffusivity.
DT represents the coefficient of diffusion due to temperature gradient and is given by

DT ¼DBð1þκ=kTÞ ð6Þ
The Brownian diffusivity DB in Eqs. (5) and (6) is given by the Einstein equation incorporating the Cunningham correction
for rarefied gas effects:

DB ¼
kT

3πμ dp

� �
Cc ð7Þ

where k is the Boltzmann constant, T is the absolute temperature, μ is the dynamic viscosity of the fluid, Cc ¼ 1þ
Kn½2:514þ0:8expð�0:55=KnÞ� is the Cunningham correction factor and Kn is the Knudsen number defined by Kn� l=dp,
where l is the mean free path of the surrounding gas and dp is the diameter of a particle. l is calculated by the expression

l¼
ffiffiffiffiffiffiffiffi
π=2

p
μð1= ffiffiffiffiffiffiffi

ρ p
p Þ.

Equation (6), which was mathematically derived by Guha (1997), shows that the thermal drift has a “stressphoretic”
component and a thermophoretic component (the term containing κ). The “stressphoretic” component of the thermal drift
of the particles arises from the evaluation of the term ∇pp in particle momentum equation (Guha, 1997), where pp is the
partial pressure of the particle cloud. Theoretical determination of the thermophoretic force coefficient κ usually involves a
single particle. κ depends on the particle size and on the ratio ðλr � λf =λpÞ of the thermal conductivity of the fluid ðλf Þ and
that of the particle ðλpÞ. Since the publication of the pioneering work on thermophoresis by Tyndall (1870), who described
the migration of dust particles away from a heated surface forming a dust-free layer close to the surface, many theories have
been constructed to describe the phenomenon (Epstein, 1929; Waldmann, 1959; Brock, 1962; Dwyer, 1967; Ivchenko and
Yalamov, 1970; Sone, 1972; Talbot et al., 1980; Sone and Aoki, 1981; Yamamoto and Ishihara, 1988; Beresnev and Chernyak,
1995). The theoretical treatments are based on continuum equations with slip-corrected boundary conditions, phenom-
enological equations based on postulates of irreversible thermodynamics or various forms of the kinetic theory. Epstein
(1929) was the first to use the analysis by Maxwell (1879) for gaseous thermal creep in order to develop a theory for the
thermophoretic force on a spherical particle in a gas with a temperature gradient. Later theories have incorporated features
required to deal with the effect of particle thermal conductivity and large particle Knudsen number (giving rise to
slip, transitional and free molecular regimes). In the continuum limit ðKn-0Þ, Epstein's formula shows that κ depends on
λr (κ decreases as λr decreases) but is independent of Kn. In the free molecule limit ðKn-1Þ, Waldmann's expression



Fig. 2. Thermophoretic force coefficient ðκÞ for various values of particle diameter ðdpÞ at selected values of λr . The solid lines are the interpolation of Talbot
et al. (1980). The open symbols are the data from Beresnev and Chernyak (1995). (Keys: □ λr ¼ 0:317 (Beresnev and Chernyak, 1995), △ λr ¼ 0:1 (Beresnev
and Chernyak, 1995), ◇ λr ¼ 0:01 (Beresnev and Chernyak, 1995), ▲ λr ¼ 0:1 (Sagot et al., 2009), ■ λr ¼ 0:317 (Brugiére et al., 2013). (For all calculations
l¼68 nm).
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demonstrates that κ is independent of λr (κ varies as 1=Kn in this limit). In the slip flow and transition regimes (where Kn
takes intermediate values), κ is a function of both λr and Kn. Developing a reliable theory for these regimes is a challenging
task. More details are available in the review articles by Talbot et al. (1980), Bakanov (1991), and Zheng (2002).

For the purpose of the present work two theoretical expressions for κ have been considered: the expression given by
Talbot et al. (1980) and that given by Beresnev and Chernyak (1995). An important aspect of both expressions is that they are
intended for the entire range of the Knudsen number (i.e. from the continuum to the free molecule regime). The expression
proposed by Talbot et al. (1980) is the most used so far; the expression proposed by Beresnev and Chernyak (1995) is shown
by Sagot et al. (2009) to be more accurate in the transition regime ð0:05oKno5Þ.

Talbot et al. (1980), by slightly adjusting the values of thermal slip coefficient ðCsÞ and momentum exchange coefficient
ðCmÞ in Brock's theory (Brock (1962)), which was originally developed to model the continuum and slip flow regime
ðKno � 0:05Þ and based on the continuum equations with slip-corrected boundary conditions, proposed an interpolation
formula intended for all Knudsen numbers including the free molecular regime. The thermophoretic force coefficient (κ)
given by Talbot et al. (1980) is

κ¼ 2:34ð6πμν rÞðλrþ4:36KnÞ
ð1þ6:84KnÞð1þ8:72Knþ2λrÞ

: ð8Þ

This expression for κ proposed by Talbot et al. has been widely used in the literature for all regimes of Knudsen number
ð0oKno1Þ. Recent experimental measurements (Sagot et al., 2009; Brugiére et al., 2013; Sagot, 2013), however, suggest
that the thermophoretic force predicted by using the expression of Talbot et al. gives considerably higher values, especially
in the transition regime ð0:05oKno5Þ.

Beresnev and Chernyak (1995) developed an approach to predict the values of thermophoretic force coefficient (κ) of a
spherical particle at arbitrary Knudsen number. Their theory is based on the linearized Bhatnagar–Gross–Krook (BGK)
(Bhatnagar et al., 1954) and S model kinetic equations (Shakhov, 1968). The analysis of Beresnev and Chernyak (denoted as
B&C in a few places of this paper) introduced accommodation factors for energy ðαEÞ and momentum ðατÞ to consider the
manner in which colliding molecules are reflected by the particle. The thermophoretic force coefficient (κ) as given by
Beresnev and Chernyak (1995) considering complete accommodation ðαE ¼ ατ ¼ 1Þ is

κ¼ π

Kn
μνr

λrf 11þ f 21
λrf 31þðλrþ5KnÞf 41

� �
ð9Þ

where f ij are coefficients tabulated for various Knudsen numbers (Kn) in the original paper by Beresnev and Chernyak
(1995).

Eqs. (8) and (9) both tend to the free molecule limit of Waldmann (1959) as Kn-1, and to the continuum limit of
Epstein (1929) as Kn-0. The discrepancies in the values of κ as given by the two Eqs. (8) and (9) are, however, significant in
the transition and slip flow regime, particularly at small values of λr . A comparison of the values of κ obtained from Eqs. (8)
and (9) is presented in Fig. 2 which also includes recent experimental data. The experiments of Sagot et al. (2009) and
Brugiére et al. (2013), within the range of parameters investigated, tend to support the expression for κ proposed by
Beresnev and Chernyak (B&C). Sagot et al. suggest that better agreement with the B&C theory would be obtained if the value
of energy accommodation coefficient αE is adjusted to 0.93 instead of unity. The experimental data of Sagot et al. (2009)
were, however, obtained only for one value of thermal conductivity ratio ðλr ¼ 0:1Þ. The experimental data of Brugiére et al.



Table 1
Values of the function κ=μνr using Eq. (9) at λr ¼ 0:001.

dp (μm) Kn¼ l=dp κ=μνr dp (μm) Kn¼ l=dp κ=μνr Comment

0.0061 11.1475 0.279 1.2277 0.0554 0.8619
0.0092 7.3913 0.4147 1.5346 0.0443 0.4433
0.0123 5.5285 0.5483 3.0692 0.0222 �0.0792

9>>>>>>=
>>>>>>;

Reversed
thermophoresis

0.0153 4.4444 0.6777 6.1384 0.0111 �0.0754
0.0307 2.215 1.2836 9.2076 0.0074 �0.0388
0.0614 1.1075 2.2776 12.2768 0.0055 �0.0184
0.0921 0.7383 3.0116 15.346 0.0044 �0.006
0.1228 0.5537 3.5339 30.6919 0.0022 0.0188
0.1535 0.443 3.8884 61.3838 0.0011 0.0307
0.3069 0.2216 4.2132 92.0757 0.0007 0.0347
0.6138 0.1108 2.819 122.7677 0.0006 0.0366
0.9208 0.0738 1.5979 153.4596 0.0004 0.0378
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(2013) is also limited as they cover only a small part of the important transition regime. It is to be noted that both Sagot et al.
and Brugiére et al. have given data for thermophoretic velocity. For plotting the experimental data in Fig. 2, the
thermophoretic velocity data need to be converted to thermophoretic force. This conversion is achieved by assuming that
the thermophoretic force is balanced by the drag force which is calculated using the expression given by Beresnev and
Chernyak (1995) (their Eq. (30)).

A continuous function (Eq. (8)) for the thermophoretic force coefficient (κ) is provided by Talbot et al. It allowed us to
calculate the value of κ for any value of the particle diameter. However, the expression for κ (Eq. (9)) provided by Beresnev
and Chernyak contains coefficients that are to be obtained from the numerical solution of the BGK and S model equations.
Beresnev and Chernyak have provided values of the coefficients for a few discrete values of particle diameter. We have
calculated the values of κ at these points which fall within the range of particle diameter 0:001rdpr5 μm
ð68ZKnZ0:0136Þ. This is why we have shown B&C results at discrete points but Talbot et al. results by continuous lines
in Fig. 2 and in the subsequent figures. Incidentally, this aspect also makes the expression of Talbot et al. easier to apply for
practical calculations.

An interesting feature of a few theories of thermophoresis is that when λr is small, the direction of the thermophoretic
force may be reversed for some low values of Kn. When λr is small ðλr⪡1Þ, the temperature on the particle surface is almost
uniform and Maxwell's thermal creep flow is negligible. A higher order effect may then determine the flow field and the
force on the particle. Reversed thermophoresis, in which the force acts along the temperature gradient (i.e. from low to high
temperatures), was, for example, predicted by Dwyer (1967) and Sone (1972). We have computed the values of κ using the
expression of Beresnev and Chernyak (1995) for a low value of thermal conductivity ratio ðλr ¼ 0:001Þ as an example; these
values are given in Table 1. It can be seen from Table 1 that for λr ¼ 0:001 and 0:0044rKnr0:0222, the theory of Beresnev
and Chernyak predicts reversed thermophoresis. The extent of reversed thermophoresis that arises according to the
Beresnev and Chernyak theory is, however, much less than what is obtained by the theories of Sone and Aoki (1981), and
Yamamoto and Ishihara (1988), who solved the original BGK equation. Equation (8), the expression given by Talbot et al.
(1980), on the other hand, does not admit reversed thermophoresis for any values of the parameters. Though theoretically
interesting, reversed thermophoresis has not so far been demonstrated experimentally.

Having discussed various theories for thermophoresis, it would be relevant to briefly mention about the experiments
available. The experimental study of thermophoretic movement of aerosol particles is usually based on one of the following
three techniques: (a) measurement of thermophoretic force, (b) measurement of thermophoretic velocity, or
(c) measurement of deposition efficiency. Measurement of thermophoretic force is based on either a force balance within
a modified Millikan cell (Jacobsen and Brock, 1965) or using an electrodynamic balance (Li and Davis, 1995). Prodi et al.
(1979) developed a set-up for the experimental determination of thermophoretic velocity, which was designed to measure
the deviation of a particle's trajectory due to an imposed temperature gradient in a jet flow. Recently, Brugiére et al. (2013)
have reported the development of a new device called the radial flow thermophoretic analyzer for measuring the
thermophoretic velocity. Determination of deposition efficiency is based on the measurement of aerosol particle
concentration upstream and downstream of the test section. Sagot et al. (2009) measured aerosol deposition efficiency
for flow through a concentric tube annulus in the presence of an imposed temperature gradient. An analytical model was
developed to calculate thermophoretic velocity from the measured deposition efficiency. Details on relative advantages and
disadvantages of various measurement techniques have been documented by Zheng (2002) and Sagot et al. (2009). In this
connection, it may be noted that caution is needed to compare and understand various published theoretical and
experimental works on thermophoretic motion of particles since different researchers may have used different methods for
inter-conversion between thermophoretic force and thermophoretic velocity.

Most of the reported experiments on particle deposition affected by thermophoresis are for cases where the fluid
convective velocity is externally imposed (i.e. forced convection). There are a few available studies for natural convection
inside a cavity. Unfortunately there appears to be no available experimental data for thermophoresis in natural convective
flow on a vertical plate or a horizontal plate, which is the subject-matter of the present theoretical study.
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The boundary conditions for the solution of Eqs. (1)–(5) are

at y¼ 0; u¼ 0; v¼ 0; T ¼ Tw; N¼ 0;

at y-1; u-0; p-p1; T-T1; N-N1: ð10Þ
We introduce a stream function ψ defined by

u¼ ∂ψ
∂y

and v¼ �∂ψ
∂x

ð11Þ

which automatically satisfies the continuity equation (1).
We are then left with the following four equations:

∂ψ
∂y

∂2ψ
∂x∂y

�∂ψ
∂x

∂2ψ
∂y2

¼ �1
ρ

∂p
∂x

þν
∂3ψ
∂y3

ð12Þ

�1
ρ

∂p
∂y

þgβðT�T1Þ¼ 0 ð13Þ

∂ψ
∂y

∂T
∂x

�∂ψ
∂x

∂T
∂y

¼ α
∂2T
∂y2

ð14Þ

∂ψ
∂y

∂ N
∂ x

�∂ψ
∂x

∂ N
∂ y

¼DB
∂2N
∂ y2

þDT
∂
∂y

1
T
∂T
∂y

N
� �

ð15Þ

Using the generalized stretching transformation, the similarity forms of Eqs. (12)–(15) can be obtained as

ψ ¼ νðGrxÞ1=5f ðηÞ; ðp�p1Þ ¼ ρ
ν2

x2
ðGrxÞ4=5hðηÞ; θðηÞ ¼ ðT�T1Þ

ðTw�T1Þ; ϕðηÞ ¼ N
N1

ð16Þ

where the similarity variable η is defined as η¼ ðy=xÞðGrxÞ1=5 and Grx ¼ ðgβðTw�T1Þx3Þ=ν2 is the local Grashof number.
The criterion for transition from laminar to turbulent flow in natural convection is expressed in terms of the Grashof
number. For isothermal horizontal plates, the transition takes place at Grx � 106 (Faghri et al., 2010).

Substituting Eq. (16) into Eqs. (12)–(15), we obtain the following nonlinear ordinary differential equations:

f ″0 þ3
5
f f ″�1

5
f 02þ2

5
ηh0 �2

5
h¼ 0 ð17Þ

h0 ¼ θ ð18Þ

1
Pr
θ″þ3

5
f θ0 ¼ 0 ð19Þ

1
Sc
ϕ″þ3

5
fϕ0 þ DT

ν

� �
ΔT̂

1þΔT̂θ

 !
θ″ϕþθ0ϕ0 � ΔT̂

1þΔT̂θ
θ02ϕ

 !
¼ 0 ð20Þ

Here Pr ¼ ν=α is the Prandtl number, Sc¼ ν=DB is the Schmidt number, and ΔT̂ ¼ ðTw�T1Þ=T1 is the non-dimensional
temperature difference. For T1 ¼ 300 K and ðTw�T1Þ ¼ 30 K, ΔT̂ equals 0.1. A positive value of ΔT̂ implies that the heated
plate faces upward; a negative ΔT̂ indicates that the cold plate faces downward.

Eqs. (17)–(20) are solved subject to the following boundary conditions:

at η¼ 0; f ¼ 0; f 0 ¼ 0; θ¼ 1; ϕ¼ 0;

at η-1; f 0-0; h-0; θ-0; ϕ-1: ð21Þ
The condition ϕ¼ 0 at η¼ 0 is used as the boundary condition to reflect the perfectly absorbing characteristics of the surface.
This is a reasonable assumption for small particles. For a proper formulation of the boundary condition for the particle
concentration at the wall, one would have to resort to kinetic theory. More comments on the concentration boundary
condition at the surface may be found in Guha (1997, p. 1530) and in Guha (2008a, Section 4). Related aspects of two-phase
flow are given by Guha (1998a, 1998b, 1998c, 1994, 1992).

3. Mathematical formulation for vertical plate

Natural convection of the base fluid past a vertical plate is a well-studied phenomenon and the analysis can be found in
many textbooks (Burmeister, 1983; Schlichting and Gersten, 2004). In this paper we investigate the motion of small
particles, particularly the thermophoretic component, in the natural convective flow-field of the base fluid. The flow
configuration is presented in Fig. 1(c). The governing equations for mass, momentum and energy in laminar natural
convective flow over an isothermal vertical plate are given by
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Continuity equation:

∂u
∂x

þ∂v
∂y

¼ 0 ð22Þ

x-momentum equation:

u
∂u
∂x

þv
∂u
∂y

¼ gβðT�T1Þþν
∂2u
∂y2

ð23Þ

y-momentum equation:

∂p
∂y

¼ 0 ð24Þ

Energy equation:

u
∂T
∂x

þv
∂T
∂y

¼ α
∂2T
∂y2

ð25Þ

The motion of small particles in such a flow field is governed by the following equation:

u
∂ N
∂ x

þv
∂ N
∂ y

¼DB
∂2N
∂ y2

þDT
∂
∂y

1
T
∂T
∂y

N
� �

ð26Þ

The boundary conditions for the solution of Eqs. (22)–(26) are

at y¼ 0; u¼ 0; v¼ 0; T ¼ Tw; N¼ 0;

at y-1; u-0; T-T1; N-N1: ð27Þ
The similarity forms of Eqs. (22)–(26) are given by

ψ ¼ νðGrxÞ1=4f ðηÞ; θðηÞ ¼ ðT�T1Þ
ðTw�T1Þ; ϕðηÞ ¼ N

N1
ð28Þ

where the similarity variable η is defined as η¼ ðy=xÞðGrxÞ1=4 and Grx ¼ ðgβðTw�T1Þx3Þ=ν2 is the local Grashof number.
The fluid flow is laminar in the case of natural convection from a vertical isothermal plate if Grxr109 (Faghri et al., 2010).

Substitution of (28) into the boundary layer Eqs. (22)–(25) gives the following set of ordinary differential equations:

f ″0 þ3
4
f f ″�1

2
f 02þθ¼ 0 ð29Þ

1
Pr
θ″þ3

4
f θ0 ¼ 0 ð30Þ

1
Sc
ϕ″þ3

4
fϕ0 þ DT

ν

� �
ΔT̂

1þΔT̂θ

 !
θ0ϕ0 þθ″ϕ� ΔT̂

1þΔT̂θ
θ02ϕ

 !
¼ 0 ð31Þ

The corresponding boundary conditions are

at η¼ 0; f ¼ 0; f 0 ¼ 0; θ¼ 1; ϕ¼ 0;

at η-1; f 0-0; θ-0; ϕ-1: ð32Þ

4. Orientation of the surface

The analysis in Section 2 is performed for laminar natural convective boundary flow above an upward-facing heated
horizontal plate. It can be established by coordinate transformation that the same governing equations for the base fluid
flow (Eqs. (17)–(19)) and their solutions would be valid for the case of laminar natural convection beneath a downward
facing cold horizontal plate. The y-axis is chosen as positive in a direction normal to the plate for this case (Fig. 1(b)) and the
local Grashof number is defined as Grx ¼ ðgβðT1�TwÞx3Þ=ν2. Similarly, the analysis in Section 3 is done for a heated vertical
plate. Eqs. (29)–(30) for the base fluid flow can also be used for a cooled vertical plate if the coordinate system shown in
Fig. 1(d) is used for the analysis and the local Grashof number is defined as Grx ¼ ðgβðT1�TwÞx3Þ=ν2. Therefore, to keep the
present analysis valid for both heated and cold plates, the Grashof number is generically defined as Grx ¼ ðgβjTw�T1jx3Þ=ν2.

The non-dimensional temperature difference ΔT̂ is considered positive when the fluid is heated by the plate (Fig. 1(a)
and (c)) whereas it is negative when the fluid is cooled by the plate (Fig. 1(b) and (d)). The appropriate sign of ΔT̂ is to be
incorporated in the solution of the particle concentration Eqs. (20) or (31). It is to be noted that only the third term (i.e. not
all terms) in the LHS of Eq. (20) or (31) changes sign when the sign of ΔT̂ changes; hence the particle concentration equation
needs to be solved afresh.
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5. Non-dimensional deposition velocity

The particle deposition flux to the wall surface can be determined using the definition

Jw ¼DB
∂N
∂y

� �
y ¼ 0

ð33Þ

For a horizontal plate:

Jw ¼DB
N1
x

� �
ðGrxÞ1=5ϕ0ð0Þ ð34Þ

For a vertical plate:

Jw ¼DB
N1
x

� �
ðGrxÞ1=4ϕ0ð0Þ ð35Þ

The deposition velocity is defined as the particle flux divided by the free stream concentration,

Vd ¼ Jw=N1 ð36Þ
For a horizontal plate:

Vd ¼
DB

x
ðGrxÞ1=5ϕ0ð0Þ ð37Þ

For a vertical plate:

Vd ¼
DB

x
ðGrxÞ1=4ϕ0ð0Þ ð38Þ

The local non-dimensional deposition velocity is defined as V̂d ¼ Vdx=ν, so that
For a horizontal plate:

V̂d ¼
1
Sc
ϕ0ð0ÞðGrxÞ1=5 ð39Þ

For a vertical plate:

V̂d ¼
1
Sc
ϕ0ð0ÞðGrxÞ1=4 ð40Þ

where ϕ0ð0Þ depends on Sc, ΔT̂ and DT for a fixed Pr.

6. Method of solution

For determining the fluid flow field, the system of Eqs. (17) and (19) for natural convection above a horizontal plate,
subject to the boundary conditions (21), or the system of Eqs. (29)–(30) for laminar natural convection from a vertical plate,
subject to the boundary conditions (32), is solved numerically for Pr¼ 0:72 (considering the fluid to be air) using the
shooting iteration technique (Bradie, 2007). The system of equations is first reduced to first order ordinary differential
equations which are then solved by marching forward in η. The boundary conditions for the first order equations at η¼ 0 are
first guessed and these guessed values are updated in each iteration using the Newton method for simultaneous equations
until agreement is reached with the prescribed boundary conditions at η-1. The far-field asymptotic value of η during the
numerical computation is taken to be 15 in order to ensure that the velocity and temperature profiles approach the
quiescent ambient fluid conditions asymptotically.

In the present computations, a solution is said to converge when the difference between the specified and computed
boundary values at η-1 is less than 10�6. In order to make sure that the numerical solution of fluid flow and heat transfer
equations are not significantly dependent on the computational step size, a systematic study has been carried out with
uniform step sizes equal to 0.001, 0.01 and 0.05. A fourth order Runge–Kutta method with step size of 0.01 was chosen for
the numerical integration of governing differential equations.

Having described the numerical scheme for determining the fluid flow field we now turn our attention to the solution
method for the particle continuity equation – Eq. (20) for natural convection over or underneath a horizontal plate and
Eq. (31) for natural convection on a vertical plate. Since we consider only dilute mixtures (i.e. the volume of the dispersed
phase is low) and one-way coupling (i.e., the particle motion depends on the fluid flow field but not vice versa), a knowledge
of the converged velocity and temperature fields is required before the solution of the particle continuity equations (20)
or (31). A value of ϕ0ð0Þ is first guessed and this guessed value is updated in each iteration using Brent's method (Bradie, 2007).

A reference temperature of T1 ¼ 300 K is used in the present study. The mean free path of air l is taken equal to 68 nm in
all calculations. The particle diameter dp is varied from 0.001 to 5 μm. The Schmidt number Sc correspondingly varies from
3.13 to 3:42� 106. For Sc values greater than unity, the concentration boundary layer is thinner than the hydrodynamic and
thermal boundary layers. When the value of Sc is sufficiently large, the resulting concentration boundary layer is much
thinner than the hydrodynamic and thermal boundary layers. Since the largest order (second order) term in the particle
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continuity equation [Eq. (20) for a horizontal plate and Eq. (31) for a vertical plate] is multiplied by 1=Sc; which becomes a
very small number when Sc becomes large, the case would be similar to a singular perturbation problem. The particle
concentration then changes rapidly close to the wall. An accurate and efficient solution for Eqs. (20) and (31) requires non-
uniform computational step size with an extremely small size for the first computational cell ðΔη1Þ at the solid boundary.
The value of the non-dimensional deposition velocity depends appreciably on the size of the first computational cell ðΔη1Þ
and on the geometric progression (GP) ratio between the sizes of any two neighboring computational cells.

A reduction in either Δη1 or GP ratio improves the accuracy of the solution but requires more computational time for
convergence. A systematic grid independence test for both parameters was therefore undertaken along two strands (a) the
GP ratio was progressively reduced from 1.2 to 1.01 while Δη1 was maintained at a mean level (which was decreased
significantly as the value of Sc increased), and (b) Δη1 was progressively reduced while the GP ratio was maintained at a
mean level. All computations are performed on a 64 bit Windows 7 platform with an Intel Core i5 desktop processor
(3.26 GHz). The CPU time for computation increases approximately by a factor of 4 as the GP ratio decreases from 1.2 to 1.01
for a particular plate orientation, particle size, ΔT̂ , Δη1 and η1;p (computational boundary for particle continuity equation).
The grid independence study showed that adopting a GP ratio between 1.02 and 1.05 would be a judicious choice
considering necessary accuracy and affordable CPU time. A reduction in Δη1 also increases the CPU time significantly. From a
large number of such grid independence tests we have been able to formulate an empirical rule for adopting the optimum
value of Δη1: ðΔη1Þoptimum � ðDB in m2=sÞ=ð100 m2=sÞ. This developed prescription seems to work for all the computations
presented in this work (both vertical and horizontal plates).

A convergence criterion of 10�6 is used for solving the particle continuity equation. From the above discussions, it would
be clear that, depending on the value of Sc, many more grid points (particularly close to the solid wall) may be necessary for
solving the particle continuity equation than what are required for solving the fluid flow field. The values of fluid flow
variables such as f , θ and θ0 are therefore determined at the new grid points through interpolation. In order to save CPU time,
the value of η1;p is varied from 2 to 15 for the solution of particle continuity equation depending on the particle Schmidt
Fig. 3. Particle concentration profiles for an isothermal horizontal plate for various values of particle diameter dp at λr ¼ 0:33 (a) ΔT̂ ¼ �0:05, (b) ΔT̂ ¼ 0:05
(—— dp ¼ 0:001 μm; -d-d- dp ¼ 0:01 μm; —— dp ¼ 0:1 μm. ΔT̂ is positive for natural convection above a heated horizontal plate, ΔT̂ is negative for natural
convection beneath a cold horizontal plate. For all calculations l¼68 nm. η¼ yðGrxÞ1=5=x).
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number ðScÞ. The computational challenge at high values of Sc may be appreciated by the fact that the CPU time increases
dramatically at high values of Sc (while at dp¼1 nm, the CPU time may be a few seconds, at dp¼5 μm, the CPU time may rise
to a few hours).
7. Results and discussion

The mechanisms of particle motion considered in the present study include Brownian diffusion, convection effects
caused by fluid motion and thermophoresis caused by temperature gradient. Solutions are presented for particles of
diameter 1 nm to 5 μm.

Figure 3 presents the non-dimensional self-similar particle concentration profiles ϕðηÞ ½ϕðηÞ ¼N=N1� for an isothermal
horizontal plate for various values of particle diameter dp. It can be seen from the figure that the thickness of the
concentration boundary layer decreases with an increase in particle diameter ðdpÞ. This can be attributed to the fact that the
Schmidt number ðScÞ, which indicates the ratio of the thicknesses of velocity and concentration boundary layers, increases
with an increase in particle diameter ðSc¼ ν=DB ¼ ð3πμν=kTCcÞdpÞ. For a fluid with constant Pr and at a particular Grashof
number Grx, the thickness of the velocity boundary layer is fixed and thus an increase in the value of Sc causes a decrease in
the thickness of concentration boundary layer. A comparative analysis of Fig. 3(a) and 3(b) shows that, for a particular dp, the
thickness of the concentration boundary layer is slightly greater for a cooled horizontal plate as compared to a heated
horizontal plate. From Fig. 3(b) it can be seen that for certain combinations of positive ΔT̂ and a large size of particles,
thermophoresis drives the concentration boundary layer away to form a particle-free region close to a heated horizontal
surface. This particle-free region is similar to the “dust-free layer” shown previously in the context of natural convection
(Tyndall, 1870; Guha and Samanta, 2014) or in forced convection flow of aerosol over a plate (Talbot et al., 1980) and that
over a wedge (García-Ybarra and Castillo, 1997).
Fig. 4. Particle concentration profiles for an isothermal vertical plate for various values of particle diameter dp at λr ¼ 0:33 (a) ΔT̂ ¼ �0:05, (b) ΔT̂ ¼ 0:05
(—— dp ¼ 0:001 μm; -d-d- dp ¼ 0:01 μm; —— dp ¼ 0:1 μm. ΔT̂ is positive for natural convection on a heated vertical plate, ΔT̂ is negative for natural
convection on a cold vertical plate. For all calculations l¼68 nm. η¼ yðGrxÞ1=4=x).
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Figure 4 presents the non-dimensional particle concentration profiles ϕðηÞ in the natural convection boundary layer
adjacent to a vertical plate for various values of particle diameter dp. The qualitative trends of Fig. 4(a) and 4(b) are similar to
the ones presented in Fig. 3(a) and 3(b). Figure 4(b) demonstrates that for certain combinations of positive ΔT̂ and large size
of particles, a particle-free region may develop close to a heated vertical plate. A comparative analysis of Fig. 4(a) and 4(b)
shows that, for a particular dp, the thickness of the concentration boundary layer is slightly greater for a cooled vertical plate
as compared to a heated vertical plate. Similarly, a comparative analysis of Figs. 3 and 4 will show that for a particular value
of dp and Grx, the thickness of concentration boundary layer for a horizontal plate is higher than that for a vertical plate.

Figure 5 presents the non-dimensional deposition velocity ðV̂dÞ with particle diameter ðdpÞ as obtained from the
numerical solution of particle concentration equation for a horizontal plate (Eq. (20)). Since Eq. (39) shows that
V̂dpðGrxÞ1=5, the composite variable V̂dðGrxÞ�1=5 is plotted as the ordinate in Fig. 5: in this way data generated by
comprehensive computations can be presented in a concise manner. In order to assess the consequence of using different
expressions for the thermophoretic force coefficient ðκÞ on predicted deposition velocity, all computations are carried out
using two different expressions for κ: (a) the expression proposed by Talbot et al. (Eq. (8)) and (b) that proposed by Beresnev
and Chernyak (Eq. (9)).

Since the variable plotted along the y-axis (in Fig. 5 and in subsequent figures) is non-dimensional, it would be
theoretically more appropriate to use a non-dimensional particle size along the x-axis, e.g. the Knudsen number. However,
our engineering instinct suggests that a direct reference to the particle diameter may make the results more useful
practically. In order to bridge the gap we have mentioned the gas mean free path in the figure captions so that the reader
can easily convert the diameter to the corresponding Knudsen number.

Figure 6 presents the variation in non-dimensional deposition velocity (V̂d) with particle diameter ðdpÞ as obtained from
the numerical solution of particle concentration equation for a vertical plate (Eq. (31)). The curves show a similar trend as in
the case of particle deposition on an isothermal horizontal plate.
Fig. 5. Variation in non-dimensional deposition velocity ðV̂dÞ with particle diameter dp for an isothermal horizontal plate. [ΔT̂ is positive for natural
convection above a heated horizontal plate, ΔT̂ is negative for natural convection beneath a cold horizontal plate. For all calculations l¼68 nm. The solid
lines are the calculations incorporating the model of Talbot et al. The symbols are the calculations incorporating the model of Beresnev and Chernyak.
Keys: □ ΔT̂ ¼ �0:2, △ ΔT̂ ¼ �0:1, ○ DT ¼ 0, ▲ ΔT̂ ¼ 0:1, ■ ΔT̂ ¼ 0:2�: (a) λr ¼ 0:33, (b) λr ¼ 0:1 and (c) λr ¼ 0:01.
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The Brownian diffusivity of particles ðDBÞ decreases with an increase in particle diameter. The thermophoretic force
coefficient κ mostly increases with particle diameter (with the B&C model, it may decrease slightly or even become negative
over a small range of diameter in the transition regime particularly at small values of λr). The variation of DBκ or DT is thus
slightly more complex than that of DB, though DT generally decreases with increasing particle diameter when the diameter
is small. Figures 5 and 6 show that the deposition velocity, in general, decreases with increasing diameter; however, for
negative ΔT̂ and B&C model, the deposition velocity may increase slightly when the particle diameter is close to 5 μm.

When ΔT̂ is negative i.e. for a cold horizontal plate facing downward or for a cooled vertical plate, both Brownian
diffusion and motion due to temperature gradient are towards the surface; hence these two effects aid each other to
produce the overall deposition rate. When the particle size is very small (such as nanoparticles), the Brownian diffusion is
the dominant mechanism. This is why the curves with various values of negative ΔT̂ approach one another for very small
size of particles. As the particle size increases, DB decreases and DT also usually decreases but the decrease in DB is faster.
This is why thermophoresis component assumes dominance for large particles. In this regime, the deposition velocity is
greater for higher values of jΔT̂ j. For a heated plate facing upward or heated vertical plate (ΔT̂ is positive), the particles tend
to move towards the surface as a result of Brownian diffusion but tend to move away from the surface as a result of the
temperature gradient. In this case, these two effects oppose each other to produce the overall deposition rate. Since
DT decreases at a lower rate than DB with an increase in particle size, the effect of thermophoresis may dominate for large
particles and the deposition velocity may decrease remarkably. This is why for both horizontal and vertical plates, the
deposition velocity curves of Figs. 5 and 6 drop sharply towards the abscissa when ΔT̂ is positive.

A direct comparison of Figs. 5 and 6 show that the order of magnitude of non-dimensional deposition velocity for a
horizontal plate is the same as that for a vertical plate for the same values of Prandtl number, particle size and temperature
difference. Furthermore, the deposition velocity calculated by employing the expression of Talbot et al. (Eq. (8)) decreases
continuously with increasing values of dp. The rate of decrease in deposition velocity is small at large λr and negative ΔT̂ . In
the range dP�1–5 μm, the deposition velocity decreases significantly with increasing radius, more so as λr is decreased. This
decrease is more pronounced when the Beresenev and Chernyak model is used.
Fig. 6. Variation in non-dimensional deposition velocity ðV̂dÞ with particle diameter dp for an isothermal vertical plate.
[ΔT̂ is positive for natural convection on a heated vertical plate, ΔT̂ is negative for natural convection on a cold vertical plate. For all calculations l¼68 nm.
The solid lines are the calculations incorporating the model of Talbot et al. The symbols are the calculations incorporating the model of Beresnev and
Chernyak. Keys: □ ΔT̂ ¼ �0:2, △ ΔT̂ ¼ �0:1, ○ DT ¼ 0, ▲ ΔT̂ ¼ 0:1, ■ ΔT̂ ¼ 0:2]. (a) λr =0.33, (b) λr =0.1 and (c) λr =0.01.
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For very small particles (e.g. dP�1 nm), deposition velocity is dominated by Brownian diffusion. That the contribution of
thermal drift in determining the overall deposition rate is negligible for very small particles can be appreciated from Figs. 5
and 6 in which all curves, including the curve for DT ¼ 0 signifying the value of deposition velocity without thermal drift,
approach the same value as dp-0, or as Kn-1 (please refer to the top-left corners of the graphs). In other words, in this
limit of particle size, the deposition velocity is nearly insensitive to whatever expression for DT is adopted.

We now want to examine in greater detail the contribution of thermophoresis in the overall deposition of aerosol
particles in the natural convective flow of the base fluid. Therefore, two sets of differences are constructed: (i) the difference
between the overall deposition velocity and that in the hypothetical case with DT ¼ 0; this difference signifying the role of
thermophoresis in the context of other mechanisms of particle transport and deposition, and (ii) the difference between the
overall deposition with κ given by Talbot et al. and that with κ given by Beresnev and Chernyak; this difference signifying the
role of mathematical model in capturing the physical phenomenon called thermophoresis. Figures 7 and 8 correspond to the
first set of difference quantities and Figure 9 corresponds to the second set. In order to save space we have presented results
only for the horizontal plate (that too only for a fixed ΔT̂) since the results are similar at other values of ΔT̂ and for the case
of the vertical plate.

Both absolute and relative values of the difference quantities are considered and their definitions are given directly in the
ordinates of Figs. 7–9 in a self-explanatory manner. Thermophoresis may enhance deposition velocity by several order of
magnitude (particularly for large λr and large dp) as can be seen from Figs. 7(b) and 8(b). For both expressions of κ (Eqs. (8) and
(9)), the effect of thermophoresis in increasing deposition velocity increases as λr ðλr ¼ λf =λpÞ increases, as can be seen from
Figs. 7(a) and 8(a). The expression for κ suggested by Talbot et al. invariably predicts higher values of particle deposition velocity
at a particular value of temperature difference ΔT̂ and particle diameter dp. This can also be examined from Fig. 2 where it is
seen that the values of κ are always higher for a particular dp and λr when Eq. (8) is used instead of Eq. (9). Figure 9 shows that
the difference between the model of Talbot et al. and that of Beresnev and Chernyak is most pronounced for low λr and large dp.

The experimental data of Brugiére et al. (Fig. 2) were obtained for particles in the size range of 64–500 nm (64, 100, 200,
430, 500) and for two values of thermal conductivity ratio (λr ¼ 0:317 and λr ¼ 0:252, where λr � λf =λp). The experimental
Fig. 7. Difference between overall deposition velocity and deposition velocity when DT ¼ 0 for ΔT̂ ¼ �0:2 and κ given by Eq. (8) in the case of a horizontal
plate. (a) Absolute difference in deposition velocity and (b) relative difference in deposition velocity. For all calculations l¼68 nm.



Fig. 8. Difference between overall deposition velocity and deposition velocity when DT ¼ 0 for ΔT̂ ¼ �0:2 and κ given by Eq. (9) in the case of a horizontal
plate. (a) Absolute difference in deposition velocity and (b) relative difference in deposition velocity. (Keys: B & C Beresnev and Chernyak, λr ¼ 0:33,

λr ¼ 0:1, λr ¼ 0:01). (For all calculations l¼68 nm).
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data of Sagot et al. (Fig. 2) were obtained for particles in the size range 39–5130 nm for only one value of thermal
conductivity ratio ðλr ¼ 0:1Þ. These experiments indicate that the expression provided by Beresnev and Chernyak is superior
to that given by Talbot et al. in the range of parameters investigated. Nevertheless, the work of Beresnev and Chernyak has
caught the imagination of other researchers only in the last few years and there is no doubt that the work will be explored
more thoroughly in the near future. The work of Talbot et al. has, on the other hand, become very popular and deeply
entrenched both in the work of the research community as well as in computational software. One objective of the present
paper is to assess the influence of the mathematical models of thermophoresis in the prediction of particle motion in natural
convective flow. For this purpose, we have selected two models as the subject-matter: the model that has been used most so
far and the model that is claimed to be most accurate so far. By looking into the comparative calculations, the researcher will
be able to appreciate the influence of selecting a thermophoretic model in the prediction of particle motion in natural
convective flow, and a code developer will be able to assess the necessity to revise one's computational codes.
8. Conclusions

The present work analyzes the effects of Brownian diffusion and thermophoresis on the motion of aerosol particles in
steady laminar natural convection boundary layer flow on an isothermal plate. Four flow configurations are considered:
(a) flow above a heated horizontal plate, (b) flow beneath a cold horizontal plate, (c) flow due to a heated vertical plate, and
(d) that due to a cold vertical plate. Similarity solutions are formulated to determine the fluid flow field. The particle
continuity equation is then solved to determine the non-dimensional deposition velocity on the surface.

It is found that the deposition velocity decreases with an increase in particle diameter dp (i.e. an increase in particle
Schmidt number Sc), and increases with a decrease in the value of non-dimensional temperature difference ΔT̂ (from
positive to negative values).



Fig. 9. Difference in non-dimensional deposition velocity using two different expressions for κ (Eqs. (8) and (9)) for an isothermal horizontal plate for
ΔT̂ ¼ �0:2. (a) Absolute difference in deposition velocity and (b) relative difference in deposition velocity. (Keys: B and C Beresnev and Chernyak,

λr ¼ 0:33, λr ¼ 0:1, λr ¼ 0:01). (For all calculations l¼68 nm).
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The non-dimensional quantities V̂dSc=ðGrxÞ1=4 and V̂dSc=ðGrxÞ1=5 signify the gradient of particle concentration on the
surface, ϕ0ð0Þ. The present study shows that, for the same values of Prandtl number, particle size and temperature difference,
the value of the non-dimensional quantity V̂dSc=ðGrxÞ1=4 (obtained from Eq. (40)) for vertical plates is comparable to the
value of the non-dimensional quantity V̂dSc=ðGrxÞ1=5 (obtained from Eq. (39)) for horizontal plates. This can be appreciated
by comparing the corresponding magnitudes of deposition velocity given in Figs. 5 and 6.

It is shown that when the fluid is heated by the plate (heated vertical plate or heated horizontal plate facing upward), the
thermal drift away from the surface decreases the overall deposition velocity which decreases drastically above a certain
particle size. When the fluid is cooled by the plate (cold vertical plate or cold horizontal plate facing downward), thermal
drift of particles assists Brownian diffusion. The curve with DT ¼ 0 is included in Figs. 5 and 6 to conceptually assess the
importance of thermal drift on particle motion even though natural convective fluid flow field and thermal drift are
inextricably linked through the same temperature difference between the plate and the quiescent fluid. Figures 7 (b) and 8
(b) show that thermophoresis may enhance deposition velocity by several orders of magnitude (particularly for large λr and
large dp).
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The influence of various expressions for the thermophoretic force coefficient in determining the natural convective
deposition rate is assessed in the present work. Two relations for the thermophoretic force coefficient are considered: (a)
the commonly used expression proposed by Talbot et al. (1980) (Eq. (8)), and (b) the expression for thermophoretic force
coefficient proposed by Beresnev and Chernyak (1995) (Eq. (9)). It is found that the non-dimensional deposition velocity
obtained by using Eq. (8) is always higher than that obtained by using Eq. (9). Figure 9 shows that the difference between
the model of Talbot et al. and that of Beresnev and Chernyak is most pronounced for low λr and large dp. For example, at
dp�1 μm, the Talbot et al. model may overpredict the deposition velocity by a factor 3, and at dp�5 μm, the Talbot et al.
model may overpredict the deposition velocity by a factor 10. There is negligible difference between the two models when
dpo100 nm.

References

Bakanov, S.P. (1991). Thermophoresis in gases at small Knudsen numbers. Aerosol Science and Technology, 15, 77–92.
Beresnev, S., & Chernyak, V. (1995). Thermophoresis of a spherical particle in a rarefied gas: numerical analysis based on the model kinetic equations.

Physics of Fluids, 7, 1743–1756.
Bhatnagar, P.L., Gross, E.P., & Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component

systems. Physical Review, 94, 511–525.
Bradie, B. (2007). A Friendly Introduction to Numerical Analysis. Pearson Education: New Delhi.
Brock, J.R. (1962). On the theory of thermal forces acting on aerosol particles. Journal of Colloid Science, 17, 768–780.
Brugiére, E., Gensdarmes, F., Ouf, F-X., Yon, J., Coppalle, A., & Boulaud, D. (2013). Design and performance of a new device for the study of thermophoresis:

the radial flow thermophoretic analyser. Journal of Aerosol Science, 61, 1–12.
Burmeister, L.C. (1983). Convective Heat Transfer. John Wiley and Sons: New York.
Dwyer, H.A. (1967). Thirteen-moment theory of the thermal force on a spherical particle. Physics of Fluids, 10, 976–984.
Epstein, P.S. (1929). Zur Theorie des Radiometers. Zeitschrift für Physik, 54, 537–563.
Epstein, M., Hauser, G.M., & Henry, R.E. (1985). Thermophoretic deposition of particles in natural convection flow from a vertical plate. Journal of Heat

Transfer, 107, 272–276.
Faghri, A., Zhang, Y., & Howell, J. (2010). Advanced Heat and Mass Transfer. Global Digital Press: Columbia.
García-Ybarra, P.L., & Castillo, J.L. (1997). Mass transfer dominated by thermal diffusion in laminar boundary layers. Journal of Fluid Mechanics, 336, 379–409.
Guha, A. (1997). A unified Eulerian theory of turbulent deposition to smooth and rough surfaces. Journal of Aerosol Science, 28, 1517–1537.
Guha, A. (2008a). A generalized mass transfer law unifying various particle transport mechanisms in dilute dispersions. Heat and Mass Transfer, 44,

1289–1303.
Guha, A. (2008b). Transport and deposition of particles in turbulent and laminar flow. Annual Review of Fluid Mechanics, 40, 311–341.
Guha, A. (1998a). Computation, analysis and theory of two-phase flows. The Aeronautical Journal, 102(1012), 71–82.
Guha, A. (1998b). A unified theory for the interpretation of total pressure and temperature in two-phase flows at subsonic and supersonic speeds.

Proceedings of the Royal Society, 454, 671–695.
Guha, A. (1998c). A simple, analytical theory for interpreting measured total pressure in multiphase flows. ASME Journal of Fluids Engineering, 120, 385–389.
Guha, A. (1994). A unified theory of aerodynamic and condensation shock waves in vapour-droplet flows with or without a carrier gas. Physics of Fluids, 6(5),

1893–1913.
Guha, A. (1992). Jump conditions across normal shock waves in pure vapour-droplet flows. Journal of Fluid Mechanics, 241, 349–369.
Guha, A., & Samanta, S. (2014). Effect of thermophoresis on the motion of aerosol particles in natural convective flow on horizontal plates. International

Journal of Heat and Mass Transfer, 68, 42–50.
Ivchenko, I.N., & Yalamov, Y.I. (1970). Thermophoresis of aerosol particles in the nearly free molecular regime. Fluid Dynamics, 5, 355–358.
Jacobsen, S., & Brock, J.R. (1965). The thermal force on spherical sodium chloride aerosols. Journal of Colloid Science, 20, 544–554.
Li, W., & Davis, E.J. (1995). Measurement of the thermophoretic force by electrodynamic levitation: Microspheres in air. Journal of Aerosol Science, 26,

1063–1083.
Maxwell, J.C. (1879). On stresses in rarified gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society of London, 170,

231–256.
Nazaroff, W.W., & Cass, G.R. (1987). Particle deposition from a natural convection flow onto a vertical isothermal flat plate. Journal of Aerosol Science, 18,

445–455.
Prodi, F., Santachiara, G., & Prodi, V. (1979). Measurements of thermophoretic velocities of aerosol particles in the transition region. Journal of Aerosol

Science, 10, 421–425.
Rotem, Z., & Claassen, L. (1969). Natural convection above unconfined horizontal surfaces. Journal of Fluid Mechanics, 39, 173–192.
Sagot, B., Antonini, G., & Buron, F. (2009). Annular flow configuration with high deposition efficiency for the experimental determination of thermophoretic

diffusion coefficients. Journal of Aerosol Science, 40, 1030–1049.
Sagot, B. (2013). Thermophoresis for spherical particles. Journal of Aerosol Science, 65, 10–20.
Samanta, S., & Guha, A. (2012). A similarity theory for natural convection from a horizontal plate for prescribed heat flux or wall temperature. International

Journal of Heat and Mass Transfer, 55(13–14), 3857–3868.
Schlichting, H., & Gersten, K. (2004). Boundary-Layer Theory. Springer: New Delhi.
Shakhov, E.M. (1968). Generalisation of the Krook kinetic relaxation equation. Fluid Dynamics, 3, 95–96.
Sone, Y. (1972). Flow induced by thermal stress in rarefied gas. Physics of Fluids, 15, 1418–1423.
Sone, Y., & Aoki, K. (1981). Negative thermophoresis: thermal stress slip flow around a spherical particle in a rarefied gas. In S.S. Fisher (Ed.), Rarefied Gas

Dynamics. AIAA: New York, pp. 489–503.
Stewartson, K. (1958). On the free convection from a horizontal plate. Zeitschrift für angewandte Mathematik und Physik ZAMP, 9, 276–282.
Talbot, L., Cheng, R.K., Schefer, R.W., & Willis, D.R. (1980). Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics, 101, 737–758.
Tsai, R. (2001). Aerosol particle transport in a natural convection flow onto a vertical flat plate. International Journal of Heat and Mass Transfer, 44, 867–870.
Tyndall, J. (1870). On dust and disease. Proceedings of the Royal Institution of Great Britain, 6, 1–14.
Waldmann, L. (1959). Über die Kraft eines inhomogenen Gases auf kleine suspendierte Kugeln. Zeitschrift für Naturforschung, 14a, 589–599.
Yamamoto, K., & Ishihara, Y. (1988). Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Physics of Fluids, 31, 3618–3624.
Zheng, F. (2002). Thermophoresis of spherical and non-spherical particles: a review of theories and experiments. Advances in Colloid and Interface Science,

97, 255–278.

http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref1
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref2
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref2
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref3
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref3
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref4
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref5
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref6
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref6
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref7
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref8
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref9
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref10
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref10
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref11
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref12
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref13
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref14
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref14
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref15
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref16
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref17
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref17
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref18
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref19
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref19
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref20
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref21
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref21
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref22
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref23
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref24
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref24
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref25
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref25
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref26
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref26
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref27
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref27
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref28
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref29
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref29
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref30
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref31
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref31
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref32
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref33
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref34
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref35
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref35
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref36
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref37
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref38
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref39
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref40
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref41
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref42
http://refhub.elsevier.com/S0021-8502(14)00094-9/sbref42

	Effect of thermophoresis and its mathematical models on the transport and deposition of aerosol particles in natural...
	Introduction
	Mathematical formulation for horizontal plate
	Mathematical formulation for vertical plate
	Orientation of the surface
	Non-dimensional deposition velocity
	Method of solution
	Results and discussion
	Conclusions
	References




