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The present work investigates the effects of thermophoresis and transverse magnetic field on aerosol par-
ticle transport and deposition onto a horizontal plate in the presence of a natural convective flow. Micro
to nano sized particles (particle diameter in the range 1 nm–1 lm) are considered. A similarity solution
for the fluid flow field is formulated for natural convection with and without magnetohydrodynamic
(MHD) effects above a heated horizontal plate as well as beneath a cold horizontal plate. The mechanisms
of particle deposition include the effects of free convection, Brownian diffusion and thermophoresis.
Numerical results for the velocity and temperature fields of the fluid, and, the concentration profile
and the deposition velocity of the particles are obtained and presented graphically as a function of per-
tinent parameters. The importance of Cunningham correction on the concentration profile and deposition
velocity of ultrafine (sub-micron to nanometer) particles is demonstrated. It is found that the thicknesses
of both the hydrodynamic boundary layer and thermal boundary layer increase with an increase in mag-
netic field parameter. The deposition velocity decreases with an increase in particle diameter dp (i.e an
increase in particle Schmidt number Sc), usually decreases with an increase in magnetic field parameter
f, and increases with an increase in the value of the coefficient of diffusion due to temperature gradient
DT. It is shown that for the cold plate facing downward, the thermal drift of particles assists Brownian
diffusion. For the heated plate facing upward, the thermal drift away from the surface decreases the over-
all deposition velocity which decreases drastically above a certain particle size.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In the present paper, transport and deposition of small particles
are analyzed for a natural convective boundary layer on a
horizontal plate with or without magnetohydrodynamic effects.
Natural convection takes place if there is a temperature difference
between the plate and the quiescent fluid. A laminar natural
convective boundary layer forms on a semi-infinite plate (within
a certain range of Grashof number) if either a hot plate faces
upward or a cold plate faces downward. For small particles (in
the diameter range 1 nm–1 lm), the same temperature gradient
that establishes the natural convection in the base fluid provides
an additional force on the particles. The force due to a temperature
gradient in the flow field is known as the thermophoretic force and
the resulting transport of particles is called thermophoresis. Thus,
unlike thermophoretic movement of particles in forced convection
where the fluid flow field and the imposed temperature field can
be independently varied, the thermophoretic movement of
particles in natural convection represents a coupled problem.
Other than thermophoresis, the motion of small particles is caused
by the fluid flow and Brownian diffusion. The analysis presented in
this paper invloves all three mechanisms of particle transport.

The computation of the fluid flow field involves two important
aspects, the first being the complexity of computing natural con-
vective boundary layer on a horizontal plate. Natural convection
on a heated vertical plate is a well studied phenomenon and is cov-
ered in all textbooks on convection heat transfer. The literature on
the analysis of natural convection on a horizontal plate is much
more limited [1–3]. The natural convection boundary layer above
a horizontal plate is formed indirectly because of an induced pres-
sure gradient and thus it is termed as ‘indirect natural convection’
[4]. In the standard analysis of natural convection on a vertical
plate, it is assumed that @p/@x = � q1g and @p/@ y = 0. On the other
hand, the boundary layer on a horizontal plate due to natural con-
vection is such that @p/@y – 0 and @p/@x cannot be neglected inside
the boundary layer (even when @p1/@x is zero).

The second important aspect of the computation of the fluid
flow field is an accurate accounting of the magnetohydrodynamic
effects. Magnetohydrodynamics (MHD) refers to the study
of mutual interaction of fluid flow with magnetic fields. The
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Nomenclature

B magnetic field strength
Cc Cunningham correction
dp diameter of particles
DB Brownian diffusivity (Eq. (8))
DT coefficient of temperature-gradient-driven diffusion

(Eq. (6))
f reduced stream function (Eq. (17))
g gravitational acceleration
Grx Grashof number defined as Grx ¼ gbjTw�T1jx3

m2

h reduced pressure difference (Eq. (17))
J flux of particles
k Boltzmann constant
Kn Knudsen number (Kn � l/dp)
l mean free path of the surrounding gas
N concentration
p static pressure of the fluid
Pr Prandtl number
p1 static pressure in the undisturbed fluid
Sc Schmidt number
T static temperature of the fluid
T1 static temperature in the undisturbed fluid
MbT non-dimensional temperature difference

ðMbT ¼ ðTw � T1Þ=T1Þ
u velocity component in the x direction
v velocity component in the y direction
Vd deposition velocity
x horizontal coordinate
y vertical coordinate

Greek
a thermal diffusivity
b coefficient of thermal expansion at the reference tem-

perature
g similarity variable
j thermophoretic force coefficient (Eq. (7))
k thermal conductivity
l viscosity of fluid
m kinematic viscosity of fluid
/ non-dimensional concentration (Eq. (17))
w stream function (Eq. (17))
q density of fluid
h non-dimensional temperature (Eq. (17))
f non-dimensional number used to specify the magnetic

field strength f ¼ rB2x2

l
1

ðGrxÞ2=5

� �
Subscripts
f fluid
p particle
w condition at the wall
1 condition in undisturbed fluid

Superscripts
0 differentiation with respect to g
^ non-dimensional
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phenomenon is a subject-matter of intensive research due to its di-
verse applications [5]. The analysis of laminar magnetohydrody-
namic free convection flow of a viscous incompressible fluid past
an impermeable semi-infinite horizontal plate with uniform sur-
face temperature can be found in [6–8].

The effect of thermophoresis is included in the unified advec-
tion–diffusion theory of particle transport and deposition in lami-
nar as well as turbulent flow (forced convection) developed by
Guha [9–11]. Thermophoretic particle deposition in natural con-
vective flow on a vertical plate has been studied by Epstein et al.
[12] and Nazaroff and Cass [13] among others. In a recent study,
Alam et al. [14] considered the effects of heat generation and ther-
mophoresis in steady laminar hydromagnetic free convection flow
over an inclined plate. However an examination of the governing
equations presented in [14] reveals that they are not valid for a
horizontal flat plate. It is believed that the present paper would
be the first study of particle transport and deposition in natural
convective flow on a horizontal plate, whether with or without
MHD effects. Natural convection above a heated horizontal plate
as well as that beneath a cold horizontal plate has been considered.
The effects of magnetic field parameter (f), Schmidt number (Sc)
and nondimensional temperature ðMbT Þ on particle transport and
deposition are analyzed.

2. Mathematical formulation

Consider steady, laminar natural convection flow of a viscous
and incompressible fluid past a semi-infinite horizontal plate.
The plate is subjected to a constant wall temperature Tw. The free
stream temperature and concentration are uniform and given by
T1 and N1 respectively.

For mathematical modeling of aerosol particle flow due to nat-
ural convection past a semi-infinite horizontal plate, following
assumptions are made:
(a) The flow of fluid is two dimensional in nature. The fluid can
be assumed to be a continuum.

(b) Newton’s law of linear relationship between shear stress and
shear strain rate, and Fourier’s law of heat diffusion are
valid.

(c) The fluid is electrically conducting (for cases with magneto-
hydrodynamic effects).

(d) Viscous dissipation term in the energy equation is negligible.
Hall effects and Joule heating are neglected.

(e) There is no internal energy generation.
(f) Transport parameters, like coefficient of thermal diffusivity,

kinematic viscosity do not change with time and space, and
density variation is also neglected, except in the body force
term of momentum transport equation. Boussinesq approx-
imation for density is assumed.

(g) Walls of the plate are impermeable.
(h) The magnetic Reynolds number is very small and hence

induced magnetic field may be neglected.
(i) The particle concentration is dilute with zero particle con-

centration at the wall surface. All particles are of the same
size and the particle size is small (diameter less than
1 lm). The particles are not charged. Effects of any body
force (including gravity) on the particles are not considered.

Under the above assumptions the mass, momentum, energy
and particle concentration equations in dimensional form are given
by:
Continuity equation:
@u
@x
þ @v
@y
¼ 0 ð1Þ

x-momentum equation:

u
@u
@x
þ v @u

@y
¼ � 1

q
@p
@x
þ m

@2u
@y2 � rB2

q
u ð2Þ
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y-momentum equation:

� 1
q
@p
@y
þ gbðT � T1Þ ¼ 0 ð3Þ

Energy equation:

u
@T
@x
þ v @T

@y
¼ a

@2T
@y2 ð4Þ

Particle concentration equation:

u
@N
@x
þ v @N

@y
¼ DB

@2N
@y2 þ DT

@

@y
1
T
@T
@y

N
� �

ð5Þ

Guha [9–11] has derived generalized equations for particle
transport and deposition from fundamental conservation laws.
The equations are valid for laminar to turbulent flow, and, for wide
range of particle size (nanoparticles to large millimeter-sized par-
ticles). The theory includes the effects of inertia, Brownian diffu-
sion, thermophoresis, turbophoresis, electrical and other body
forces, gravity, shear-induced lift, surface roughness, and correc-
tions due to Knudsen effect or finite slip Reynolds number. These
equations reduce to the well known relations in the appropriate
limits. Thus, for example, Fick’s law of diffusion or the currently
popular equations for the motion of nanoparticles can be viewed
as subsets of the unified advection–diffusion theory derived.
Experiments show that the deposition velocity varies differently
with the size of particle in different ranges of particle size and it
can vary by several orders of magnitude as particle size is altered.
In the past, separate theories were needed in different particle size
ranges and it would have been difficult to apply the theories to
flow situations that are different from the situations for which
the parameters of the theories were tuned. The unified advec-
tion–diffusion theory thus settles the quest over previous fifty
years in the field for a physics-based explanation for the observed
complex behaviour of particle transport. The present version of
particle concentration Eq. (5) is a special case of the generalized
particle transport equation. Only two terms representing Brownian
diffusion and thermophoresis are retained in the RHS of Eq. (5).
Since only laminar natural convection is considered here, the terms
arising out of the interaction of the particle and fluid turbulence
are not retained. Fluid velocities (instead of separate particle veloc-
ities) are used in the LHS of Eq. (5), this implies that the equation
would be valid only for the transport of small particles (diameter
less than 1 lm). It is assumed that there are no body forces acting
on the particles, thus gravitational settling, and the effects of elec-
trical or magnetic forces are not included in the present study.

Here x and y are dimensional coordinates along and normal to
the plate, u and v are the velocity components in the x and y direc-
tions, p is the static pressure, g is the gravitational acceleration
(only magnitude is to be considered since the sign is incorporated
in the analysis), b is the coefficient of thermal expansion at the ref-
erence temperature, T1 is the ambient temperature, q,m and a are
the density, kinematic viscosity, and thermal diffusivity of the fluid
respectively, and DB is the Brownian diffusivity. DT represents the
coefficient of diffusion due to temperature gradient and is given by

DT ¼ DBð1þ j=kTÞ ð6Þ

Eq. (6), mathematically derived by Guha [9], shows that the thermal
drift has a stressphoretic component and a thermophoretic compo-
nent (the term containing j). The thermophoretic force coefficient,
j, is given by [15]

j ¼ 2:34ð6plmrÞðkr þ 4:36KnÞ
ð1þ 6:84KnÞð1þ 8:72Knþ 2krÞ

ð7Þ

where kr is the ratio of the thermal conductivity of the fluid, k, and
that of the particles, kp (kr = k/kp). The thermophoretic force may be
significant for smaller particles even in the presence of a modest
temperature gradient [9].

The Brownian diffusivity DB in Eqs. (5) and (6) is calculated by
Einstein’s relation modified by the Cunningham correction factor
CC to take account of the special situation arising at high Knudsen
number Kn when the particle diameter is small [9]:

DB ¼
kT

3pldp

� �
CC ð8Þ

There are a number of expressions for CC available in the literature.
Guha [11] has given two of the most used expressions for CC as
follows:

CC ¼ 1þ 2:7Kn ð9Þ
CC ¼ 1þ Kn½2:514þ 0:8 expð�0:55=KnÞ� ð10Þ

Since the example calculations are presented in the particle diame-
ter range 1 nm–1 lm, three separate computations are performed
for each combination of particle size and other parameters corre-
sponding to (i) CC given by Eq. (9), (ii) CC given by Eq. (10), and
(iii) CC = 1 (i.e. with no Cunningham correction), in order to assess
the importance of CC on the natural convective motion of very small
particles.

The boundary conditions for the solution of Eqs. (1)–(5) are:
at y ¼ 0; u ¼ 0; v ¼ 0; T ¼ Tw; N ¼ 0;

at y!1; u! 0; p! p1; T ! T1; N ! N1:
ð11Þ

We introduce a stream function w defined by

u ¼ @w
@y

and v ¼ � @w
@x

ð12Þ

which automatically satisfies the continuity Eq. (1).
We are then left with the following four equations

@w
@y

@2w
@x @y

� @w
@x

@2w
@y2 ¼ �

1
q
@p
@x
þ m

@3w
@y3 � rB2

q
@w
@y

ð13Þ

� 1
q
@p
@y
þ gbðT � T1Þ ¼ 0 ð14Þ

@w
@y

@T
@x
� @w
@x

@T
@y
¼ a

@2T
@y2 ð15Þ

@w
@y

@N
@x
� @w
@x

@N
@y
¼ DB

@2N
@y2 þ DT

@

@y
1
T
@T
@y

N
� �

ð16Þ

We now introduce the following transformations:

w ¼ mðGrxÞ1=5f ðgÞ; B ¼ B0x�2=5; ðp� p1Þ ¼ q
m2

x2 ðGrxÞ4=5hðgÞ;

hðgÞ ¼ T � T1
Tw � T1

; /ðgÞ ¼ N
N1

ð17Þ

where the similarity variable g is defined as g ¼ y
x ðGrxÞ1=5 and

Grx ¼ gbðTw�T1Þx3

m2 is the local Grashof number.
Then, on substitution in Eqs. (13)–(16), we obtain the following

sets of ordinary differential equations

f 000 þ 3
5

ff 00 � 1
5

f 02 þ 2
5
gh0 � 2

5
h� f f 0 ¼ 0 ð18Þ

h0 ¼ h ð19Þ

1
Pr

h00 þ 3
5

f h0 ¼ 0 ð20Þ

1
Sc

/00 þ 3
5

f /0 þ DT

m

� �
MbT

1þ MbTh
h00/þ h0/0 � MbT

1þ MbTh
h02/

 !
¼ 0

ð21Þ
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where f ¼ rB2x2

l
1

ðGrxÞ2=5 represents the magnetic field parameter

(square of the Hartmann number), B represents the strength of
the applied magnetic field, Sc = m/DB is the Schmidt number, and
MbT ¼ ðTw � T1Þ=T1 is the non-dimensional temperature difference.
For T1 = 300 K and (Tw � T1) = 30 K, MbT corresponds to an approx-
imate value of 0.1. A positive value of MbT implies that the heated
plate faces upward; a negative MbT indicates that the cold plate faces
downward.

It is important to mention in this regard that the condition
B = B0x�2/5 ensures that the magnetic field parameter 1 is indepen-
dent of the distance x. One can anticipate the fact that when
B � x�2/5, there is a singular point at x = 0 (i.e. at the leading edge
of the plate). However, the boundary layer equations are not valid
there any way.

Eqs. (18)–(21) are solved subject to the following boundary
conditions

at g ¼ 0; f ¼ 0; f 0 ¼ 0; h ¼ 1; / ¼ 0;

at g!1; f 0 ! 0; h! 0; h! 0; /! 1:
ð22Þ

The condition / = 0 at g = 0 is used as the boundary condition to re-
flect the perfectly absorbing characteristics of the surface. This is a
reasonable assumption for small particles. It is possible to include
more complex boundary condition derivable from the kinetic
theory.

2.1. Orientation of the surface

The above analysis is performed for the natural convective
boundary layer flow above a heated plate. It is found that the same
governing equations and solutions would be valid for the natural
convective flow beneath a cold plate, if the y-axis is chosen as po-
sitive downward for this case and the local Grashof number is de-
fined as Grx ¼ gbðT1�TwÞx3

m2 . Therefore, to keep the present analysis
valid for both heated and cold plates, the Grashof number is gener-
ically defined as Grx ¼ gbjTw�T1jx3

m2 . The non-dimensional temperature
difference MbT ¼ ðTw � T1Þ=T1 is positive for the flow above a
heated plate and negative for the flow beneath a cold plate. The
appropriate sign of MbT is reflected in the particle transport Eq. (21).

2.2. Natural convection without MHD effects

In the limit f ? 0, Eqs. (18)–(20) reduce to those for laminar
free convection above an isothermal horizontal plate without
MHD effects. The solutions of these equations for different Prandtl
number are thoroughly discussed in Reference [3]. Although the
fluid flow field is given in [3], the computation of the motion of
small particles in such flow field has not been performed
previously. Thus the solutions of the particle equation (Eq. (21))
given in the present paper for f ? 0 are all new. These solutions
of particle motion are of scientific importance, and are characteris-
tically distinct from existing solutions of particle motion in forced
convection with thermophoresis (i.e. with an imposed temperature
gradient). This is so because, in natural convection, the effects of
thermophoresis and fluid flow field on the motion of particles are
inextricably linked with each other; the fluid flow field also
depends on the same temperature difference between the surface
and the free stream that determines the thermal drift of the
particles. However, like the forced convection case, we wanted to
determine the contribution of thermal drift on the overall motion
of particles in the natural convection flow field. Note that one
should not switch off the contribution of thermal drift alone by
setting MbT ¼ 0 in Eq. (21) since that would give rise to an inconsis-
tent formulation (MbT ¼ 0 would simultaneously mean that there is
no natural convection). In the present study, we have therefore
isolated the effects of thermal drift by artificially setting DT = 0 in
Eq. (21), these solutions are included in some of the graphs given
later. Since one objective of the present paper is to extend the com-
putations to ultrafine particles (particle diameter of the order of
1 nm), the Cunningham correction factor has been applied to the
Brownian diffusivity term and three different expressions for the
Cunningham correction factor have been examined to assess the
sensitivity of the computed particle deposition velocity.
2.3. Stability analysis

It is possible to study the characteristics of vortex stability in
magnetohydrodynamic natural convection flow over isothermal
horizontal plates. Such analysis provides theoretical limits of Gras-
hof number beyond which the assumption of a laminar boundary
layer would not be valid. There are also engineering implications
of the study of vortex stability in natural convection flow over a
heated isothermal plate because of its industrial applications in
chemical vapor deposition process and the cooling of electronic
packages. The presence of vortices can lead to nonuniform deposi-
tion in chemical vapor deposition processes. On the other hand, it
is desirable to enhance vortex flow to increase heat transfer from a
surface [16]. The fact that in natural convection on horizontal
plates the buoyancy force acts perpendicular to the plate is respon-
sible for causing the instability. The stability of flow in laminar nat-
ural convection above an isothermal horizontal plate (without
magnetohydrodynamic effect) has been studied by a few research-
ers [17,18]. The critical Grashof number Gr�x

� �
which marks the on-

set of vortex instability can be found from the minima of the
neutral stability curve. Jang [17] considered linear stability using
parallel flow model but the values of critical Grashof number ob-
tained from such analysis are two orders lower in magnitude in
comparison to the experimental results of Cheng and Kim [19].
This is because the parallel flow model disregards the streamwise
growth of boundary layer. However, the nonparallel flow analysis
considered in [18] provides a larger critical Grashof number than
the parallel flow model, thus showing better agreement with the
experimental results of Cheng and Kim [19]. The above-mentioned
trend for natural convection is also true for the case of Blasius
boundary layer flow. The value of critical Reynolds number ob-
tained from linear stability analysis using parallel flow model for
Blasius boundary layer is 520 whereas experiments show that
the transition to turbulence occurs beyond a Reynolds number of
105[20].

Leu and Jang [21] considered hydrodynamic stability of laminar
natural convection flow over an isothermal horizontal plate in the
presence of a transverse magnetic field. The base flow equations
considered in their study are identical to the Eqs. (18)–(20) used
in the present analysis. They performed a linear stability analysis
using parallel flow model and found that the presence of a trans-
verse magnetic field destabilizes the flow and marks an early onset
of instability. It was shown in [21] that the value of the critical
Grashof number Gr�x

� �
decreases drastically as the magnetic field

parameter f is increased from 0 to 4. However the nonparallel flow
model considered by Chen [16] shows that the critical Grashof
number in natural convection boundary layer flow above an iso-
thermal horizontal plate is almost unaffected by the presence of
a transverse magnetic field of small strength (0 6 f 6 5). For f = 0,
the linear stability analysis using nonparallel flow model [16,18]
provides the value of critical Grashof number that is of the same
order of magnitude as found in experiments of Cheng and Kim
[19]. It is to be mentioned in this regard that the experimentally
measured value of critical Grashof number is 8.86 � 105 with a
standard deviation of 2.51 � 105 for laminar natural convection
above an isothermal horizontal plate in the absence of magnetic
field [19].



Table 1
Comparison of the values of f

00
(0) and �h0(0) for Pr = 0.72 and f = 0.

Present similarity
solution

Rotem and Claassen
[1]

Chen et al. [2]

f
00
(0) 0.9784 0.9799 0.9791
� h

0
(0) 0.3574 0.3590 0.3582

Fig. 1. Non-dimensional self-similar velocity profiles for an isothermal plate for
various values of magnetic field parameter f for Pr = 0.72 (� Similarity solution for
f = 0 [1]; M Numerical solution of integro-differential equations for f = 0 [2]).

46 A. Guha, S. Samanta / International Journal of Heat and Mass Transfer 68 (2014) 42–50
2.4. Non-dimensional deposition velocity

The particle deposition flux to the wall surface can be deter-
mined using the definition

Jw ¼ DB
@N
@y

� �
y¼0
¼ DB

N1
x

� �
ðGrxÞ1=5/0ð0Þ ð23Þ

The deposition velocity is defined as the particle flux divided by the
free stream concentration,

Vd ¼
Jw

N1
¼ DBx�1ðGrxÞ1=5/0ð0Þ ð24Þ

The local non-dimensional deposition velocity is defined ascVd ¼ Vdx=m, so that

cVd ¼
1
Sc

/0ð0ÞðGrxÞ1=5 ð25Þ

where /0(0) depends on f, Sc, MT̂ and DT for a fixed Pr.

3. Method of solution

The system of Eqs. (18)–(21), subject to boundary conditions
(22) has been solved numerically for various values of the mag-
netic field parameter (f), Schmidt number (Sc) and coefficient of
diffusion due to temperature gradient (DT) using the shooting
method. The thermophysical properties of air are considered at a
reference temperature of 300 K. kr is taken equal to 0.1 in all calcu-
lations. f is varied from 0 to 5 throughout the computations.
Schmidt number Sc is varied from 3.13 to 6.04 � 105 which corre-
sponds to particle diameter in the range of 0.001–1 lm. The coef-
ficient of diffusion due to temperature gradient (DT) varies from
1.38 � 10�5 to 6.48 � 10�6 in the range of particle diameter
0.001–1 lm. Unless stated otherwise, the Cunningham correction
used in all calculations is given by Eq. (10).

Eqs. (18)–(20) representing the interaction of fluid flow and
heat transfer in laminar natural convection on horizontal surface
are solved first; the particle continuity Eq. (21) is solved after the
fluid flow field has been determined. Such sequential solution
method is applicable because of the assumed one-way coupling
betwen the fluid and the particles. The system of Eqs. (18)–(20)
are first reduced to a set of six first order equations. The equations
are then solved by marching forward in g. The boundary values of
f
00
(0), g0(0) and h(0) are first guessed and these guessed values are

updated in each iteration using the Newton method for simulta-
neous equations until agreement is reached with the prescribed
conditions at g ?1. The far-field asymptotic value of g during
the numerical computation is taken equal to 15 in order to ensure
that the velocity and temperature profiles approach the ambient
fluid conditions asymptotically. A truncated domain leads to errors
in the values of wall shear stress and wall heat transfer. A knowl-
edge of the converged velocity and temperature fields is required
for the solution of particle continuity Eq. (21). After solving Eqs.
(18)–(20), the particle continuity Eq. (21) is solved with a guessed
value for /0(0). The guessed value is updated in each iteration using
Brent’s method. The value of g1 is varied from 5 to 15 depending
on the particle Schmidt number (Sc) and magnetic field parameter
f. A very high value of g1 gives rise to an ill-conditioned matrix
which presents numerical difficulty in attaining a converged solu-
tion. In the present computations, a solution is said to converge
when the difference between the computed and specified bound-
ary values at g ?1 is less than 10�6. In order to make sure that
the numerical solution is not significantly dependent on the step
size a systematic study has been carried out with step sizes equal
to 0.001, 0.01 and 0.05. It has been found that the values of f

00
(0),-

h0(0) and /0(0) do not change up to five decimal places for step size
values corresponding to 0.001 and 0.01. A fourth-order Runge–Kut-
ta method with step size of 0.01 was chosen for the integration of
differential equations.

In the absence of magnetic field and particle transport, the pres-
ent Eqs. (18)–(20) subject to boundary conditions (22) reduce to
the classical problem of laminar natural convection over a horizon-
tal plate as presented in Rotem and Claassen [1]. To check the
validity of the present code, the longitudinal velocity f0(g) and
non-dimensional temperature h(g) is plotted as a function of g
for Pr = 0.72 in the absence of magnetic field. The plotted graphs
show excellent agreement with the results of Rotem and Claassen
[1] and Chen et al. [2] and, hence, act as a validation of the devel-
oped computational scheme. Table 1 presents a comparison of the
values of f

00
(0) and h0(0) produced by the present code and that of

Rotem and Claassen [1] and Chen et al. [2]. It is observed that
the results agree well with the previously published results.
4. Results and discussion

Since the mechanisms of particle motion include Brownian dif-
fusion, convection effects caused by fluid motion and thermopho-
resis caused by temperature gradient, it is necessary to discuss the
fluid flow field and the temperature field first before analyzing the
concentration distribution.

Fig. 1 shows the effect of magnetic field parameter f on the lon-
gitudinal velocity profiles. From Eqs. (12) and (17), one can show
that the longitudinal velocity in the x � direction is proportional
to f0(g) @w=@y ¼ m

x ðGrxÞ2=5f 0ðgÞ
� �

. The figure shows that at a partic-
ular value of f, f0(g) initially increases with g, goes to a maximum
and then decreases asymptotically to zero. The thickness of the
momentum boundary layer increases with increase in f, as can
be seen from the figure. The velocity gradient at the surface of
the plate is higher when the magnetic field parameter f is small.
The skin friction coefficient, which is proportional to f

00
(0), de-

creases with an increase in f. The presence of transverse magnetic
field in an electrically conducting fluid introduces a damping effect
on the velocity field by creating a drag force. This resistive force



Fig. 2. Non-dimensional self-similar temperature profiles for an isothermal plate
for various values of magnetic field parameter f for Pr = 0.72 (� Similarity solution
for f = 0 [1]; M Numerical solution of integro-differential equations for f = 0 [2]).

(a)

(b)

Fig. 3. Particle concentration profiles for an isothermal plate for various values of
particle diameter dp for f = 0 (a) MbT ¼ 0:1, (b) MbT ¼ �0:1 (
dp = 0.001 lm; dp = 0.01 lm; dp = 0.1 lm. MbT is
positive for flow above heated plate, MbT is negative for flow beneath a cold plate.)

Fig. 4. Particle concentration profiles for an isothermal plate for various values of f
and MbT ( f ¼ 1; MbT ¼ �0:2; f ¼ 5; MbT ¼ �0:2;

f ¼ 1; MbT ¼ 0:2; f ¼ 5; MbT ¼ 0:2. For all curves,
dp = 0.01 lm. MbT is positive for flow above heated plate, MbT is negative for flow
beneath a cold plate.)
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causes the velocity to decrease with an increase in the magnetic
field parameter f. With increasing f, the maximum velocity occurs
at a smaller value of g as can be seen from the figure. An examina-
tion of Eq. (13) shows an interesting fact that the term containing
the effect of the magnetic field depends on the square of the inten-
sity of the magnetic field (B2). Hence, whatever is the direction of
the magnetic field, the force is always resistive in nature.

Fig. 2 shows the effect of magnetic field parameter f on the tem-
perature profiles. From Eq. (17) it is observed that the non-dimen-
sional fluid temperature is represented by h(g) = (T � T1)/
(Tw � T1). The figure shows that for a particular value of f, at the
surface of the plate (g = 0) the fluid temperature is equal to the
plate temperature (h(g) is unity). The fluid temperature asymptot-
ically reaches the unperturbed value of temperature T1 (h(g) is 0)
at large distance from the plate surface. The thickness of the ther-
mal boundary layer increases with increase in magnetic field
parameter f. The application of magnetic field results in fluid
deceleration which causes an increase in the temperature of the
fluid close to the surface when a heated plate faces upward (MbT
is positive) or a decrease in the temperature of the fluid close to
the surface when a cold plate faces downward (MbT is negative).
The surface heat flux, however, decreases with increasing f for both
positive and negative values of MbT .

Fig. 3 presents the non-dimensional particle concentration pro-
files /(g) in the natural convection boundary layer adjacent to a
horizontal flat plate for various values of particle diameter. From
Eq. (17) it can be seen that the non-dimensional particle concen-
tration is represented by /(g) = N/N1. Fig. 3a presents the variation
in /(g) for an upward facing heated horizontal plate. Fig. 3b pre-
sents the variation in /(g) for a downward facing cold horizontal
plate. The thickness of the concentration boundary layer decreases
with an increase in particle diameter (dp). An increase in particle
diameter causes an increase in Schmidt number (Sc) which repre-
sents the relative thicknesses of the velocity to concentration
boundary layers. For a fluid with constant Pr and at a particular
Grashof number Grx, the thickness of velocity boundary layer is
fixed and thus an increase in value of Sc causes a decrease in the
thickness of concentration boundary layer. From Fig. 3a it can be
seen that for certain combinations of positive MbT and large size
of particles, thermophoresis drives the concentration boundary
layer away to form a particle-free region close to the plate surface.

Fig. 4 depicts the influence of magnetic field parameter f and
MbT on the particle concentration profiles /(g). For the case of
heated plate facing upwards ðMbT ¼ 0:2Þ, the concentration gradi-
ent is smaller at the wall but the thickness of the concentration
boundary layer is also smaller as compared to the case of a cold
plate facing downwards ðMbT ¼ �0:2Þ. It is found that the particle
concentration gradient at the surface of the plate depends weakly
on the magnetic field parameter f. This has implication on the
deposition velocity (to be discussed later in connection with Fig. 6).

The effect of non-dimensional temperature difference MbT on the
particle concentration profiles /(g) is portrayed in Fig. 5. For the



(a)

(b)

(c)

Fig. 6. Variation in non-dimensional deposition velocity ðcVd Þ with magnetic field
parameter f for an isothermal plate (a) MbT ¼ 0:2, (b) MbT ¼ �0:2, (c) DT = 0. (MbT is
positive for flow above heated plate, MbT is negative for flow beneath a cold plate.)

Fig. 5. Particle concentration profiles for an isothermal plate for various values of
MbT for f = 0 and dp = 0.01 lm ( MbT ¼ 0:1;
MbT ¼ 0:2; MbT ¼ �0:1; MbT ¼ �0:2. MbT is positive for
flow above heated plate, MbT is negative for flow beneath a cold plate.)
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parametric conditions used in the figure, it can be seen that an in-
crease in non-dimensional temperature difference MbT (from �0.2
to 0.2) decreases the concentration gradient at the surface of the
plate /0(0). For a heated plate facing upwards, MbT is positive. The
second derivative of concentration profile /

00
is positive at the sur-

face of the plate whereas it is negative close to the edge of the
boundary layer. Thus the concentration profile has a point of
inflexion within the boundary layer and it takes a S-shape. For a
cold plate facing downwards, /

00
is negative throughout the bound-

ary layer and the particle concentration monotonically increases
until it asymptotically reaches the unperturbed value N1 far away
from the plate surface. This explains the fundamental difference in
the shapes of the concentration profiles for negative and positive
values of MbT .

Fig. 6 presents the variation in non-dimensional deposition
velocity ðcVdÞ with magnetic field parameter (f) for an isothermal
plate. Fig. 6a shows the variation in deposition velocity ðcVdÞ when
a heated surface faces upwards (i.e. positive MbT ). Fig. 6b shows the
variation in deposition velocity ðcVdÞ when a cold surface faces
downwards (i.e. negative MbT ). For the cold plate, the deposition
velocity decreases with an increase in magnetic field parameter
(f) for all sizes of the particles. For an upward facing heated hori-
zontal plate, the deposition velocity decreases with an increase
in f when the particle size is small, but the deposition velocity in-
creases when the particle size is large. The physical explanation for
the above trends is intricate in nature. The datum trend in the var-
iation of deposition velocity with increasing f for the effects of fluid
convection and Brownian diffusion (i.e. without thermal drift) may
be conceptualized by repeating all calculations shown in Fig. 6
with the imposed condition DT = 0. These calculations shown in
Fig. 6c reveal that, for all particle sizes and for both positive as well
as negative MbT , the deposition velocity decreases slowly with
increasing f. Let us symbolically designate these results as RS0 as
a reference for the subsequent discussion. Any difference between
the result set RS0 and those shown in Fig. 6(a) and (b) is due to the
effects of thermal drift. The nature of thermal drift is fully ex-
plained later in reference to Fig. 7. Here, we state a few essential
facts that are necessary to understand Fig. 6. For a particle diame-
ter of 0.001 lm, the effect of thermophoresis is negligible (as com-
pared to the Brownian diffusion). This is why the curve for these
particles shown in Fig. 6(a), that shown in Fig. 6(b) and the data
of result set RS0 show the same trend and are almost the same
in magnitude. For the cold surface facing downward (i.e. negative
MbT ), thermophoresis enhances deposition velocity of larger
particles, since both Brownian diffusion and thermophoresis act
in the same direction. This is why the magnitude of deposition
velocity shown in Fig. 6b is greater than the result set RS0, but
the deposition velocity shown in Fig. 6(b) also decreases faster
with increasing f than RS0. The last aspect may be explained as
follows. In connection with Fig. 2 it has been explained that an
increase in f decreases surface heat flux, i.e. decreases the
magnitude of temperature gradient close to the surface. This
decreases the thermophoretic movement of particles towards the
cold surface. This additional effect increases the rate of decrease
of the deposition velocity with increasing f as compared to the



(a)

(b)

(c)

Fig. 7. Variation in non-dimensional deposition velocity ðcVd Þ with particle
diameter dp for an isothermal plate for f = 0 (a) Cc = 1, (b) CC = 1 + 2.7Kn,
(c) CC = 1 + Kn[2.514 + 0.8 exp (�0.55/Kn)]. (MbT is positive for flow above heated
plate, MbT is negative for flow beneath a cold plate.)
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result set RS0. For the heated plate facing upward (i.e. positive MbT ),
an increase in the magnetic field parameter f again decreases the
magnitude of the temperature gradient close to the surface. This
decreases the thermophoretic movement of particles away from
the plate. For a particle diameter of 0.01 lm, the increase in depo-
sition velocity (toward the surface) due to the decrease in ther-
mophoretic component (away from the surface) more than
offsets the decrease inherent in result set RS0. This is why for such
combinations of particle size and MbT , the deposition velocity
increases with increasing f as shown in Fig. 6(a). The trend for
the variation of deposition velocity for a particle diameter of
0.1 lm is similar to that for a particle diameter of 0.01 lm, but
the absolute values involved are several orders of magnitude lower
and hence are not included in Fig. 6(a).

Fig. 7 presents the non-dimensional deposition velocity ðcVdÞ for
particles of diameter 0.001–1 lm as obtained from the numerical
solution of particle concentration Eq. (21). Since Eq. (25) shows
that cVd1ðGrxÞ1=5, the composite variable cVdðGrxÞ�1=5 is plotted as
the ordinate in Fig. 7: in this way data generated by comprehensive
computations can be presented in a concise manner. In order to as-
sess the importance of the Cunningham correction on the motion
of small particles, all computations are repeated with three differ-
ent expressions for Cc. Fig. 7(a) presents the variation in local depo-
sition velocity when Cc = 1. Fig. 7b shows the variation in local
deposition velocity when Cc is obtained from Eq. (9) whereas
Fig. 7c is based on computations when Cc is obtained from Eq.
(10). A comparison of the three figures show a significant differ-
ence in the predicted motion of small particles; for nanometer-
sized particles the deposition velocity for Cc = 1 is more than one
order of magnitude lower than that predicted for Cc given by Eq.
(10). However, the deposition velocities obtained by using Cc from
Eqs. (9) and (10) are almost identical.

When the Cunningham correction is incorporated, Fig. 7(b) and
(c) show that the particle deposition velocity decreases with an in-
crease in particle diameter at a particular Grashof number. With
the Cunnigham correction in place, both the Brownian diffusivity
of particles (DB) and the coefficient of diffusion due to temperature
gradient (DT) decrease with an increase in particle size. For the cold
plate facing downward (MbT is negative), both Brownian diffusion
and motion due to temperature gradient are towards the surface,
hence these two effects assist each other to produce the overall
deposition rate. When the particle size is very small (such as nano-
particles), the Brownian diffusion is the dominant mechanism. This
is why the curves with various values of negative MbT approach one
another for very small size of particles. As the particle size in-
creases, both DB and DT decrease but the decrease in DB is faster.
This is why thermophoresis component assumes dominance for
large particles. In this regime, the deposition velocity is greater
for higher values of jMbT j, and the difference in the deposition veloc-
ity as compared to the hypothetical curve for DT = 0 (giving zero
thermophoresis) grows as the particle size increases. For the
heated plate facing upward (MbT is positive), the particles tend to
move towards the surface as a result of Brownian diffusion but
tend to move away from the surface as a result of the temperature
gradient. In this case, these two effects oppose each other to pro-
duce the overall deposition rate. Since DT decreases at a lower rate
than DB with an increase in particle size, the effect of thermopho-
resis may dominate for large particles and the deposition velocity
may decrease drastically. For a given value of MbT , there is a particle
size above which virtually no particle is able to reach the surface.
This is reflected as a particle-free region in the concentration pro-
file, one example of which has been shown in Fig. 3(a).
5. Conclusions

The present work analyzes the effects of thermophoresis and
transversely applied magnetic field on the concentration and mo-
tion of aerosol particles in steady laminar natural convection
boundary layer flow on an isothermal horizontal plate. The particle
transport mechanisms include viscous drag, Brownian diffusion,
and thermophoresis. A similarity solution is formulated for the
fluid flow field due to magnetohydrodynamic natural convection.
The particle continuity equation is then solved to determine the
concentration profile and non-dimensional deposition velocity on
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the surface. Numerical results are presented to illustrate the effects
of various governing parameters on the particle deposition veloc-
ity. Even in the absence of MHD effects, the present work repre-
sents the first study of particle motion due to natural convection
on a horizontal plate.

It is found that the thicknesses of both the hydrodynamic
boundary layer and thermal boundary layer increase with an in-
crease in magnetic field parameter. The deposition velocity de-
creases with an increase in particle diameter dp (i.e an increase
in particle Schmidt number Sc), usually decreases with an increase
in magnetic field parameter f, and increases with an increase in the
value of the coefficient of diffusion due to temperature gradient DT.
It is shown that an appropriate expression for the Cunningham cor-
rection must be included in the analysis since the concentration
profile and deposition velocity of small particles depend strongly
on the Cunningham correction.

The present work considers the natural convective boundary
layer above a heated horizontal plate as well as that beneath a cold
horizontal plate. It is shown that for the heated plate facing up-
ward, the thermal drift away from the surface decreases the overall
deposition velocity which decreases drastically above a certain
particle size. For the cold plate facing downward, thermal drift of
particles assists Brownian diffusion. The curve with DT = 0 is in-
cluded in Fig. 7 to conceptually assess the importance of thermal
drift on particle motion even though natural convective fluid flow
field and thermal drift are inextricably linked through the same
temperature difference between the horizontal plate and the qui-
escent fluid.
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