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Abstract A generalized mass transfer law for dilute

dispersion of particles (or droplets) of any sizes suspended

in a fluid has been described, which can be applied to

turbulent or laminar flow. The generalized law reduces to

the Fick’s law of diffusion in the limit of very small par-

ticles. Thus the study shows how the well-known and

much-used Fick’s law of diffusion fits into the broader

context of particle transport. The general expression for

particle flux comprises a diffusive flux due to Brownian

motion and turbulent fluctuation, a diffusive flux due to

temperature gradient (thermophoresis plus stressphoresis)

and a convective flux that arises primarily due to the

interaction of particle inertia and the inhomogeneity of the

fluid turbulence field (turbophoresis). Shear-induced lift

force, electrical force, gravity, etc. also contribute to the

convective flux. The present study includes the effects of

surface roughness, and the calculations show that the

presence of small surface roughness even in the hydrauli-

cally smooth regime significantly enhances deposition

especially of small particles. Thermophoresis can have

equally strong effects, even with a modest temperature

difference between the wall and the bulk fluid. For particles

of the intermediate size range, turbophoresis, thermopho-

resis and roughness are all important contributors to the

overall deposition rate. The paper includes a parametric

study of the effects of electrostatic forces due to mirror

charging. The present work provides a unified framework

to determine the combined effect of various particle

transport mechanisms on mass transfer rate and the

inclusion of other mechanisms not considered in this paper

is possible.

List of symbols

c concentration

DB Brownian diffusivity

Dt turbulent diffusivity

DT coefficient of temperature-gradient-driven

diffusion (Eq. 14)

E field strength of externally applied electric field

FS shear induced lift force (per unit mass of a

particle)

GE electrical force (per unit mass of a particle)

J flux of particles

k Boltzmann constant

Kn Knudsen number

ks effective roughness height

m mass of a particle ðm ¼ 4
3
pr3q0

pÞ
p pressure

q total charge on a particle

r radius of particles

T temperature

u* frictional velocity

V velocity

Vdep deposition velocity

Vp,turbo turbophoretic velocity of particle (Eq. 20)

x co-ordinate along the flow direction

y co-ordinate perpendicular to the wall

DT temperature difference between wall and

y+ = 200

< ratio of particle and fluid mean-square velocities

n non-dimensional number used to specify

electrical charge on aparticle
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e eddy viscosity

g thermophoretic force coefficient

k thermal conductivity

l viscosity of fluid

m kinematic viscosity of fluid

q density

qp partial density of particles

s relaxation time of particles

Superscripts

c convective

+ non-dimensional
0 fluctuating quantities

ð Þ mean quantities

Subscripts

f fluid

p particle

x along x-direction

y along y-direction

1 Introduction

Mass transfer can be effected in various ways. It may be

due to Brownian diffusion or turbulent diffusion of parti-

cles (or droplets) suspended in a flowing fluid, which

depends on the gradient of particle concentration. A dif-

fusive mass flux may also arise due to a gradient in

temperature (thermophoresis). A convective mass flux may

arise due to various reasons: the inability of inertial parti-

cles to follow curved fluid streamlines (inertial impaction)

or to quickly respond to changes in fluid speed, the action

of body forces such as gravity (gravitational settling),

electrical forces and magnetic forces, the effects of shear-

induced lift force, and the interaction of particle inertia and

the inhomogeneity of the fluid turbulence field (turbopho-

resis). Mass transfer rate is also affected by surface

conditions such as the effective heights of roughness ele-

ments. In this paper, a generalized mass transfer law is

described, which shows that the most commonly used mass

transfer law, the Fick’s law of diffusion, is valid only in the

limit of small particles. The paper provides a unified

framework to treat various particle transport mechanisms.

Example calculations are included to show how particular

models for various transport mechanisms can be incorpo-

rated in this general framework (the users can easily

replace these example models with more accurate versions

if desired).

We have discussed the physical processes by which

solid particles (or liquid droplets) suspended in a fluid are

transported to and deposited on solid walls. Measuring,

predicting and understanding the rate of deposition are

both scientifically interesting and of engineering impor-

tance, and consequently these have been the subject-matter

of an extremely large number of studies. Some or all of

the described physical processes are responsible, for

example, in deposition of drugs and aerosols in the

respiratory tract (medical science and engineering), foul-

ing of mechanical equipments such as heat exchangers, the

deposition of particles in gas turbines and droplets in

steam turbines (mechanical engineering), dispersal of

pollutants in the atmosphere and determining indoor air

quality (environmental science), transport of chemical

aerosols, etc. The presented theory covers both laminar

and turbulent flow of the fluid. So the equations, for

example, can describe macroscopic transport due to a

convective velocity set up in the laminar flow. Natural

convection may also contribute in setting up the fluid flow

field. Some of the particle transport mechanisms are also

operative in a static fluid (for example, gravitational set-

tling, Brownian diffusion, etc.). Only dilute mixtures, i.e.,

when the volume fraction of the dispersed phase is low,

are considered here. The particles or droplets are therefore

assumed not to interact with each other and to exhibit one-

way coupling (i.e., the particle motion depends on the fluid

flow field but not vice versa). This paper attempts to bring

the modern developments in the theory of deposition to

the domain of mass transfer so that cross-fertilization is

effected and to describe Fick’s law in the broader context

of particle transport. The emphasis is given here on the

physical understanding of the particle transport

mechanisms.

Most textbooks on mass transfer [12, 28] show that the

flux of small particles in a turbulent boundary layer can be

calculated by integrating a modified Fick’s law of

diffusion,

J ¼ �ðDB þ DtÞ
dc

dy
ð1Þ

where DB is the Brownian diffusivity, Dt is the turbulent

diffusivity which varies with position, y is the

perpendicular distance from the wall, and dc/dy is the

concentration gradient. DB is given by the Einstein

equation incorporating the Cunningham correction [11]

for rarefied gas effects (CC = 1 + 2.7 Kn),

DB ¼
kT

6plr
CC ð2Þ

where k is the Boltzmann constant, T is the absolute tem-

perature, l is the dynamic viscosity and Kn is the Knudsen

number defined by Kn : l/2r where l is the mean free path

of the surrounding gas and r is the radius of a particle.

Equation (2) shows that DB decreases with increasing r.

Equation (1) therefore predicts that the mass flux of par-

ticles decreases continuously with increasing particle size.
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Experiments, on the other hand, predict a much more

complicated variation, as shown in Fig. 1.

Usually the results of deposition experiments or calcu-

lations are presented as curves of non-dimensional

deposition velocity versus non-dimensional particle relax-

ation time. The deposition velocity, Vdep, is the particle

mass transfer rate on the wall, Jwall, normalized by the

mean or bulk density of particles (mass of particles per unit

volume) qpm in the flow

Vdep ¼ Jwall=qpm ð3Þ

The particle relaxation time, s, is a measure of particle

inertia and denotes the time scale with which any slip

velocity between the particles and the fluid is equilibrated.

The physical significance of relaxation time has been

explained by Ref. [2, 20, 21]. In the Stokes drag regime s is

given by,

s ¼ 2qo
pr2=9l ð4aÞ

where qp
o is the density of pure particulate material.

We have plotted the results with this definition of

relaxation time to be consistent with other works in the

field. However, in the numerical calculations we have

corrected the relaxation time to account for the slip

velocity for large particles and rarefied gas effects for very

small particles. The rarefied gas effects can be modelled by

Cunningham correction factor used in Eq. (2), while the

effects of large slip Reynolds number is modelled

according to Ref. [36]. The general expression for the

inertial relaxation time s1 is then given by

sI ¼ s
24

ReCD

CC ð4bÞ

where Re is the slip Reynolds number defined as (Re = 2

r|DV|/m), where DV is the slip velocity between the two

phases and m is the kinematic viscosity of the fluid. CD is

the particle drag coefficient and is a function of Re,

empirical values of CD are given by Morsi and Alexander

in several piecewise ranges of slip Reynolds number. The

method of analysis is not dependent on the form of Eq.

(4b), however, and, if desired, any other suitable expres-

sions can easily be incorporated [9, 25] for alternative

expressions, and also for values of CD for non-spherical

particles].

Vdep and s are made dimensionless with the aid of the

fluid friction velocity u*

Vþdep � Vdep=u�

sþ � su2
�

m
¼ 2

9

qo
p

qf

� �
r2u2
�

m2

ð5Þ

where qf is the fluid density.

Figure 1 shows a typical, schematic plot of Vdep
+ versus

s+ as obtained by experiments in fully-developed vertical

pipe flow. There are many references giving experimental

measurements of the deposition velocity. The experi-

mental data of [18, 32, 56], and the compilation of

McCoy and Hanratty [34] show considerable scatter, but

all data show the basic characteristics shown in Fig. 1.

Three distinct regimes can be identified on the S-shaped

curves. The borders between the three regimes are not

sharp, as one effect gradually merges into another, and

depend on flow conditions. In regime 1, as s+ increases,

the deposition velocity decreases. This is the so-called

‘‘turbulent diffusion regime’’. It is only for small particles

in regime 1 that the experimentally measured mass

transfer rates can be explained on the basis of Eq. (1),

the turbulent version of the Fick’s law of diffusion. The

next zone is the so-called ‘‘turbulent diffusion—eddy

impaction regime’’. The striking feature of this regime is

that the deposition velocity increases by three to four

orders of magnitude. Separate models representing addi-

tional mechanisms of deposition had to be developed in

order to explain this behaviour of deposition velocity.

One of the most used calculation methods is called the

‘‘free flight’’ or ‘‘stop distance’’ model (e.g., [1, 13, 18,

39, 57]. Friedlander and Johnstone’s work is a landmark

paper in the field of deposition calculations because it

was the first to offer a theoretical calculation method for

the observed large increase in deposition velocity in

regime 2 of Fig. 1.

In all of the various ‘‘free flight’’ models it is assumed

that particles diffuse to within one ‘‘stop distance’’, s, from

the wall, at which point they make a ‘‘free flight’’ to the
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Fig. 1 A typical variation in measured deposition rate with particle

relaxation time. Regime 1: Turbulent diffusion, Regime 2: Turbulent

diffusion—eddy impaction, Regime 3: Particle inertia moderated
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wall. The main difference between different models of this

type lies in prescribing the free flight velocity, vff. Fried-

lander and Johnstone [18] assumed vff = 0.9u*, a value

close to the fluid r.m.s. velocity in the outer layer of a

turbulent boundary layer. Their model agrees well with

experiments in pipe flows. Davies [13] made an apparently

more plausible assumption that the free flight velocity is

the same as the local r.m.s. velocity of the fluid, but his

computed deposition velocities were lower by some two

orders of magnitude than the experimentally observed

values. Liu and Ilori [33] improved the prediction of this

model by prescribing, rather arbitrarily, a particle diffu-

sivity which was different from the commonly used eddy

momentum diffusivity). Beal [1] gave another variation of

the stop distance model.

It may be seen that these models, while significantly

contributing to the development of our current under-

standing of the deposition process, are physically not very

satisfactory. The ‘‘stop distance’’ models predict a mono-

tonic rise in stop distance (which may exceed the buffer

layer thickness of a turbulent boundary layer for larger

particles, since s+ * s+), and consequently predict a

monotonic increase in deposition velocity with increasing

s+. Experiments, however, show a third regime of deposi-

tion, usually termed ‘‘particle inertia moderated regime’’,

in which the deposition velocity decreases with further

increase in s+ (see Fig. 1). Stop distance models cannot be

used here, and new theories (e.g., [46]) need to be applied.

Thus, even for the apparently simple case of turbulent

deposition in a fully developed pipe flow, separate theories

had to be applied for each of the deposition regimes.

Although it is possible, with proper tuning of the models

(e.g., by prescribing the free flight velocity), to partially

reproduce the experimental results for fully developed

pipe flow, the theories cannot be extrapolated to two or

three dimensional flow situations with any great confi-

dence because of their piecemeal nature and of the

required empirical tuning. Additionally, when other effects

such as thermophoresis or electrostatic interaction are

present, the stop distance models would need postulations

such as that the deposition velocities due to various

mechanisms calculated separately can be simply added

(linear superposition).

Whereas the genre of ‘‘free flight’’ models tried to

capture the physics of deposition by solving the particle

continuity equation alone, in the past 15 or so years,

Eulerian computational methods of deposition have been

developed that solve both particle continuity and

momentum equations [22, 26]. These models show that

the interaction of particle inertia and the inhomogeneity

of fluid turbulent flow field (in the boundary layer close to

a solid surface) gives rise to a new mechanism of particle

transport called turbophoresis [6, 43]. Turbophoresis

(where particle transport is caused by gradients in fluc-

tuating velocities) is a separate effect and must be treated

as such, it cannot be properly reproduced by any tuning of

the theoretical model for diffusion (that is driven by the

gradient of concentration). Turbophoresis is not a small

correction to the Fick’s law of diffusion, indeed it is

shown by Ref. [22] that it is the primary mechanism

operative in regimes 2 and 3 of Fig. 1). It is further

shown that, for large particles, the momentum equation

alone can provide nearly accurate estimates of the depo-

sition velocity; the absence of the use of the particle

momentum equation in the ‘‘stop distance’’ models is

therefore their major weakness. Theoretical treatments on

motion of particles in turbulent flow, including kinetic

approaches, are given by Refs. [40, 42, 44, 45, 47, 51, 58]

among others. Other aspects of particle dynamics are

given by Ref. [13, 52]. Crowe [10] has given a review of

various computational fluid dynamics (CFD) techniques

used for two-phase flows.

A large number of studies have adopted the alternative

approach of particle tracking in a Lagrangian framework

(again assuming dilute mixtures). In these methods, the

momentum equation for the particle is written and then

integrated with respect to time along the particle path line.

For example, Ref. [27] calculated the deposition of parti-

cles in a simulated turbulent fluid field; Refs. [5, 38]

computed the motion of particles where the fluid motion

was determined by direct numerical simulation (DNS) of

the Navier–Stokes equations; Ref. [55] solved the fluid

velocity field by large eddy simulation (LES); and the

calculations of Ref. [15, 16] were based on the sublayer

approach originally proposed by Ref. [8]. The paper by

Kallio and Reeks [27] is important in terms of deposition

calculations, because (despite its inability to capture

regime 1 in Fig. 1 as a result of ignoring Brownian

movement) it showed that a simple stochastic theory could

predict the general behaviour of particle deposition in

regimes 2 and 3 of Fig. 1.

There are several attractions of Lagrangian methods: the

form of the particle momentum equation is simple and

direct, the method can be applied to complex flow geom-

etries, surface–particle interactions such as rebound can be

modelled easily, and the numerical coding requirement is

relatively modest. The stochastic trajectory calculations are

illustrative and important for physical understanding.

However, Lagrangian computations typically involve the

determination of trajectories of a very large number of

particles (to establish statistically meaningful ensemble

average quantities) and may be too time-consuming to be
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effective as a practical calculation method or as a design

tool, especially for small particles. It is also difficult to

calculate concentration profile in this method. Moreover,

all practical CFD computations for a single-phase fluid in

complex geometries are performed in the Eulerian frame-

work. Hence, it is profitable to solve the particle equations

in the same way for easy integration with the established

CFD codes for the primary fluid.

Guha [22] has derived, from the fundamental conser-

vation equations of mass and momentum for the particles,

a unified Eulerian advection–diffusion theory in which

turbophoresis and all other particle transport mechanisms

arise naturally. It has been shown that the prediction of

deposition velocity from this Eulerian theory is at least as

accurate as those from the state-of-the-art Lagrangian

calculations, including DNS studies, but the Eulerian

computation is much faster (and the inclusion of

Brownian diffusion is simple). Submitted in 1995 and

published in 1997, forty years after the landmark paper by

Ref. [18], the paper of Guha [22] thus represents con-

siderable progress in the physical understanding of the

deposition process.

2 Formulation of the unified advection—diffusion

theory

2.1 Mathematical foundation

The proper way of deriving the equations for particle

transport is to write the particle continuity and the

momentum conservation equations, split the different flow

quantities into their respective mean and fluctuating com-

ponents, and then perform Reynolds averaging. If the fluid

flow field is known, the Reynolds averaged particle con-

servation equations would specify the motion of the

particles.

One of the major reasons why the Fick’s law of diffu-

sion does not work for larger particles is that it neglects a

mechanism, operative in inhomogeneous turbulent flow

that assumes dominance for large particle relaxation times.

Just like particles move against the concentration gradient,

particles also move against a gradient in turbulence

intensity. The latter phenomenon is called turbophoresis

which may be qualitatively understood by analogy with

concentration-gradient-driven diffusion.

Suppose, there is a non-uniform distribution of parti-

cles in homogenous turbulence. Small particles almost

faithfully follow the fluid eddies. At any particular loca-

tion, the probability of a particular particle being

transported by a fluid eddy to the left is the same as

that to the right. However, because of the non-uniform

concentration of particles, the number of particles that

arrive at a particular cross-sectional plane from regions of

higher concentration is greater than the number of parti-

cles that arrive at the same cross-sectional plane from

regions of lower concentration travelling in the opposite

direction (just because there are more particles in the

former region than the latter). Consequently there is a net

flux of particles from regions of higher concentration to

lower concentration. This process is modelled by the

Fick’s law of diffusion.

Now consider a uniform concentration of particles in an

inhomogenous turbulent flow in which there is a gradient

of turbulence intensity in the carrier fluid. The particles are

assumed large to have considerable inertia so that they may

slip through the containing eddy. (Later, in Sect. 5.2, the

corresponding quantitative argument is given as to why

turbophoresis is not important for very small particles even

in the presence of a gradient in fluid turbulence intensity.)

At a particular location, the probability of a fluid eddy

throwing a particle towards the left is the same as that of a

fluid eddy throwing a particle towards the right. Consider

an imaginary cross-sectional plane between a region of

high turbulence intensity and that of low intensity. The

probability of a particle being thrown from a region of low

turbulence intensity and reaching the particular cross-sec-

tional plane is lower than the probability of a particle being

thrown from a region of high turbulence intensity and

reaching the plane. There would thus be a net flux of

particles through the plane in a direction of high to low

turbulence intensity. This constitutes the physical picture of

turbophoresis.

In order to formulate a unified theory of turbulent

deposition one, therefore, has to combine concentration-

gradient-driven deposition (Fick’s law) with turbophoresis.

It turns out that such a uniform description automatically

arises from the basic conservation equations of the fluid-

particle system. We follow the approach of Ramshaw [41]

to describe the motion of a particle cloud in a flowing fluid.

The particles are assumed to constitute a hypothetical ideal

gas whose partial pressure pp is given by

pp ¼ ðk=mÞqpT ð6Þ

where m is the mass of an individual particle and qp is the

partial density. It is assumed, while writing Eq. (6), that the

particles are in local thermal equilibrium with the

surrounding fluid. This equilibrium is brought about by

their collisions with the fluid molecules, the particles

themselves rarely collide with each other. If n is the

number of particles per unit volume of the mixture, then qp

is given by

qp ¼ nm ð7Þ
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qp is the same as particle concentration, c, used in Eq. (1).

The motion of the hypothetical ideal gas consisting of the

particles is governed by the continuity and the momentum

equations of fluid dynamics. For simplicity, we assume that

the radius of the pipe is large so that the effects of the

curvature can be neglected and the governing equations can

be profitably written in the Cartesian coordinate. In the

steady state, the equations of motion are

r � ðqpVpÞ ¼ 0 ð8Þ

qpðVp � rÞVp ¼ �rpp þ qpFþ qpG ð9Þ

where the vector Vp represents the mean velocity of the

particles, on which is superposed a random thermal

velocity that gives rise to the partial pressure pp. As a

result of the equipartition of energy, the rms thermal

velocity of the particles is much less than that of the fluid

molecules. F is the mean force per unit mass on the

particles due to the fluid and G is the total external force

per unit mass (e.g., gravitational, electromagnetic) on the

particles. F is given by,

F ¼ ðVf � VpÞ=sI � ðg=mÞr ln T � 1=qo
p

� �
rpþ FV

þ FB þ FS ð10Þ

where, Vf is the fluid velocity, qp
o is the mass density of

the pure particulate material, p is the true pressure of the

fluid-particle system, g is the thermophoretic force

coefficient. Fv, FB and Fs are the virtual mass force,

the Basset-Boussinesq force and the shear-induced lift

force, respectively. The term containing rp is the source

of the buoyant force on a particle in a stationary fluid in

a gravitational field. This term and Fv and FB are usually

small (because of the high material density, qp
o, of the

particles) compared with the first term on the RHS of

Eq. (10) which represents the steady state drag force. In

the present study they are not included. The

thermophoretic force may become appreciable for small

particles if the temperature gradient is high (as is the

case for internally cooled gas turbine blades) and is

retained in the present analysis. An equation for the

thermophoretic force coefficient, g, is given by Talbot

et al. [53],

g ¼ 2:34ð6plmrÞðkr þ 4:36KnÞ
ð1þ 6:84KnÞð1þ 8:72Knþ 2krÞ

ð11Þ

where, kr is the ratio of the thermal conductivity of the

fluid, kf, and that of the particles, kp (kr = kf/kp).

Consider a two-dimensional flow field and decompose

the instantaneous flow parameters into their mean and

fluctuating parts

Vfx ¼ �V fx þ V 0fx
Vfy ¼ �V fy þ V 0fy

Vpx ¼ �Vpx þ V 0px

Vpy ¼ �Vpy þ V 0py

qp ¼ �qp þ q0p

ð12Þ

where the suffix x represents the respective components

along the x-coordinate which is along the flow direction

and the suffix y represents the respective components in the

direction perpendicular to the wall. The suffices f and p

refer to the fluid and the particles, respectively. We now

substitute Eq. (12) into Eqs. (8) and (9), and take time-

mean of the resulting equations. The details of the proce-

dure are given in Appendix 1.

2.2 Physical description

If the flux of particles in the y direction (which is per-

pendicular to the solid wall) is denoted by J, then the

Reynolds averaging of the continuity equation (Eq. 8) for

fully developed flow gives (see Appendix 1)

oJ=oy ¼ 0

where,

(13)

The coefficient of temperature-gradient-dependent dif-

fusion, DT, in Eq. (13) is given by

DT ¼ DBð1þ g=kTÞ: ð14Þ

Equation (14) shows that the thermal drift has a ‘‘stress-

phoretic’’ component and a thermophoretic component.

Usually most references include the thermophoretic com-

ponent only in their calculations. The ‘‘stressphoretic’’

component arises from the evaluation of rpp in Eq. (9)

with the help of Eq. (6).

Equation (13) is the generalized equation for particle

flux. The particle convective velocity in the y-direction,

V
c

py; appearing in Eq. (13), has to be calculated from the

particle momentum equation. The Reynolds-averaged

particle momentum equations (Eq. 9) in the y and x

directions, slightly simplified and specialized for fully

developed vertical flow are (Appendix 1):
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y-momentum:
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∂
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∂

(15a) 

Accelera-
tion term

Viscous
drag

Shear-
induced lift

Electrical 
force 

Turbo-
phoresis

x�momentum :

V
c

py

oVpx

oy
¼ 1

sI

�V fx � �Vpx

� �
þ 1� qf

q0
p

 !
g

ð15bÞ

The second term in the LHS of Eq. (15a) is the steady state

drag term simplified with the assumption �V fy ¼ 0; the full

form is �ð �V fy � �V
c
pyÞ=sI: For vertically upwards flow,

replace g by -g. Note that the x-momentum Eq. (15b)

involves both Vpx and V
c

py: The y-momentum Eq. (15a), on

the other hand, is almost decoupled and depends on Vpx

only through the shear-induced lift force, FSy. A study of

Eqs. (15a) and (15b) also shows nicely how gravity affects

the y-momentum equation through the lift force. The LHS

of equation (15b) involves V
c

py: As a result of this convec-

tive velocity in the y-direction, the direction of the lift

force may remain unaltered [22] whether the flow is ver-

tically downwards or upwards, and the influence of gravity

on the deposition velocity is likely not to be serious in

vertical flow. The turbulent fluctuations may alter the

magnitudes of the time-mean values of the forces (such as

the lift force); it is usually assumed in deposition calcu-

lations that such effects are small and the values of the

forces as they would occur in the time-mean flow field are

usually used.

In the general case, both Eqs. (15a) and (15b) must be

solved simultaneously. Calculations show that the shear-

induced lift force increases the deposition rate, particularly

in the ‘‘eddy diffusion–impaction’’ regime. In this con-

nection it should be noted that, in the literature, the

Saffman lift force is usually used in deposition calcula-

tions. Saffman [48, 49] originally derived this expression of

lift force for unbounded shear flow. Hence for deposition

calculations the equation for shear-induced lift should

include modifications due to the proximity of a solid wall

and finite Reynolds number. The effect of the lift force, FSy,

is not considered in the remainder of this paper. With these

provisos, the particle convective velocity in the y-direction,

V
c

py; can be calculated from

V
c

py

d

dy
ðVc

pyÞ+
�V

c
py

sI

¼ � d

dy
V 02py

� �
þ GEy: ð15cÞ

A charged aerosol will be subjected to electrical forces. If

there is an externally applied electric field of strength E and

the total charge carried by a particle is q, then the Coulomb

force due to the imposed field is qE. A charged aerosol near

a solid wall also experiences an electrostatic force due to

induced charges on the wall (mirror charging). The easiest

way to find the force is the method of images [37]. If the

wall is conducting then it is an equipotential line and the

electrostatic force on a particle at distance y from the wall

can be found by placing an opposite charge (image) at -y.

The electrostatic force due to mirror charging is, in this

case, of an attractive nature (i.e., acts towards the wall

assisting deposition) and its magnitude per unit mass of the

particle can be calculated by the Coulomb’s law. The total

electrical force (per unit mass of a particle) in the

y-direction is then given by

GEy ¼
qE

m
� 3q2

64p2e0q0
pr3y2

: ð16Þ

where, eo is the electric permittivity of vacuum (or air). An

expression for the maximum charging of a particle qmax is

given by Hesketh [24], qmax = 2000 9 (1.6 9 10-19)(r/

10-6)2Coulomb. In order to make a parametric investiga-

tion of the effects of mirror charging on the particle motion

we have expressed q = nqmax. There are other terms such

as dielectrophoretic force, dipole–dipole interaction,

interaction due to neighbouring particles, which are usually

small and are not considered in this paper. In numerical

illustrations it is assumed that there is no external field, i.e.,

E = 0; it is straight-forward to include this term.

The equation set (13)–(15) is almost exact and should

work well if one could find an accurate expression for the

particle rms velocity as a function of the wall coordinate.

The variation of fluid rms velocity as a function of wall

coordinate has been measured and is documented (Sect. 3).

We, therefore, relate the particle mean square velocity to

the fluid mean square velocity through a parameter <
which is defined as the ratio of the two

< ¼ V 02py=V 02fy: ð17Þ

It is difficult to devise a simple but accurate mathematical

model for <, particularly in an inhomogeneous turbulence

field. In reality there should be a ‘‘memory effect’’ by

which the migrating particles tend to retain the turbulence

levels of earlier instants. A theoretical constitutive relation

for the particle Reynolds normal stress in the presence of

‘memory effect’ is given by Shin and Lee [50].

In a practical Eulerian-type calculation, estimates of <
might have to be made from local turbulence properties.

This may not be very accurate, especially since the gradient

of fluid turbulence near the wall is very high. In defence of

a simple calculation scheme it may be noted however that

(the not unsuccessful) mixing length theories of fluid tur-

bulence employ similar assumptions. Simple theories of
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homogeneous, isotropic turbulence [42] predict that for the

particles to be in local equilibrium with the fluid turbulence

< = TL/(s + TL), where TL is the Lagrangian time scale of

fluid turbulence. Some measurements in this area are

reported by Binder and Hanratty [3, 54]. Binder and

Hanratty provide the following experimental correlation

for < [their Eq. (18)],

< ¼ 1

1þ 0:7ðsI=TLÞ
ð18Þ

< varies with the wall co-ordinate as TL varies. For very

small particles sI ? 0, and consequently < ? 1. In other

words, very small particles essentially follow fluid turbu-

lence. For large particles, sI ? ?, < ? 0. Although

< ? 0, the product s+<, however, remains finite in this

limit and becomes independent of s+. This is why neglect

of the acceleration term in Eq. (15) would predict a con-

stant deposition velocity when s+ is very large.

3 Simulation of fluid turbulence

For the purposes of illustration, a simple method is used

here to generate the fluid turbulence field as described in

Appendix 2. The mean fluid velocity, fluid rms velocity,

Lagrangian time scale, diffusivity and the mean tempera-

ture profile are all expressed as functions of the wall co-

ordinate y+. The present theory is not limited on this

account. Any other suitable turbulence model for describ-

ing the fluid flow field could be used in conjunction with

the present theory of particle transport.

Accurate prediction of fluid rms velocity is important.

The variation of fluid rms velocity as a function of wall

coordinate can be determined from measurements [4, 17,

30, 31], near-wall modeling work [7] and direct numerical

simulation [29]. The particular empirical curve-fit for fluid

rms velocity given in Appendix 2 is compatible to these

cited works. Other equations with piecewise continuous

(and differentiable) curve-fits can be used, if deemed

appropriate. It is instructive to plot and study the detailed

variations of V 02fy and V 02py with y+ for various values of sI/

TL, because of the importance of such variations in

understanding the nature of turbophoresis.

4 Non-dimensionalization, boundary conditions

and solution methods

In Eqs. (13)–(15) all velocities are non-dimensionalized by

the fluid friction velocity u*, diffusivities are non-dimen-

sionalized by kinematic viscosity m, distances by (m/u*), and

the particle partial density by its value outside the boundary

layer or at the channel centreline.

The details of how to account for the roughness of the

surface has been given in Appendix 2. It is assumed that,

on a rough surface, the virtual origin of the velocity profile

is shifted by a distance e away from the wall [19], where

e = f(ks), ks being the effective roughness height. The

particles are assumed to be captured when they reach the

level of effective roughness height, i.e., at a distance b

above the origin of the velocity profile, where b = ks -

e = ks - f(ks). The data given by Grass is sparse, and more

measurements (or DNS results) are needed to accurately

determine the exact form of f(ks); when such an expression

is available, it can easily be used with the unified advec-

tion-diffusion deposition theory. For numerical

illustrations, a simple linear relation, e = 0.55 ks, proposed

by Wood [57] is therefore used.

Finally, the effect of ‘interception’ is accounted for by

assuming that a particle is captured when its centre is at a

distance r away from the effective roughness height, where

r is the radius of the particle. The lower limit of integration

domain is taken as y+ = y0
+ = y0u*/m, where y0 is given by

y0 ¼ bþ r: ð19Þ

If shear-induced lift is included, then Eqs. (13), (15a) and

(15b) are to be solved simultaneously to determine

�qp; �Vpx and �Vpy: In this paper, we have used the simplified

momentum Eq. (15c) for numerical illustrations, thus only

Eqs. (13) and (15c) need to be solved. For numerical

solutions, an array of discrete grid points in the y-direction

is created and the equations are discretized. Since Eq. (15c)

is non-linear, it is robustly solved by a ‘‘time-marching

technique’’ (e.g., see [14, 23, 35]) by artificially adding a

pseudo time-derivative term in the equation and then

marching forward in time until convergence is obtained, at

which point the pseudo time-derivative term vanishes and

thus the solution obtained is that of the original equation.

This gives numerical values of V
c

py at each grid point. Any

other suitable numerical technique can be used to solve Eq.

(15c), if so desired. The numerical solution procedure for

Eq. (13), d
dy �ðDB þ DtÞ

d�qp

dy � DT�qp
d ln T

dy þ �qp
�V

c
py

n o
¼ 0; is

straight-forward; one writes the equation in discretized

finite-difference form at each grid point and then Gaussian

or Gauss-Jordan elimination may be used to solve values of

�qp at each grid point.

Equation (15c) is a first order, non-linear differential

equation. It can be written in finite difference form and

integrated with one boundary condition. [V
c

py ¼ 0 at the

channel centreline, or, at a sufficient distance away from

the wall where the gradient in turbulence intensity is neg-

ligibly small. In a boundary layer type calculation, one

could specify the ’laminar slip velocity’ at the edge of the

boundary layer.] Since Eq. (15c) does not depend on par-

ticle concentration it can be solved first on its own and the
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solved values of V
c

pyðyÞ can then be used to solve the

particle continuity equation. Equation (13) shows that �qp

needs two boundary conditions. These are provided by

specifying values of �qp at the channel centreline (or at a

sufficient distance away from the wall) and at the lower

boundary y0 (given by Eq. 19). In most references on

calculations of mass transfer or deposition, the lower

boundary is taken on the solid boundary itself. Equation

(19) presents a method of accounting for the effects of

roughness elements in modifying the velocity profile and

the capture of particles.

It is usually assumed in mass transfer calculations that

the concentration at the lower boundary is zero [�qp ¼ 0; at

y = yo]. Rigorous derivations based on kinetic theory show

that this boundary condition is strictly not true even in the

pure diffusion limit of very small particles. In the pure

inertial limit of large particles, a more appropriate condi-

tion at the lower boundary is qqp/qy = 0. It was found,

however, that, in the inertial limit, the effects of such

boundary conditions on the magnitude of the calculated

deposition velocity are negligible. This is because the

convective velocity �V
c
py can be calculated from Eq. (15c)

without any reference to the concentration profile, and, in

the inertial limit, the deposition velocity is almost entirely

controlled by �V
c
py: Although the deposition velocity

remains unaffected, the concentration profile close to the

wall does depend on the particular boundary condition

employed. For a proper formulation of the boundary con-

dition for the particle concentration at the wall one would

have to resort to kinetic theory.

The particle concentration changes rapidly with distance

close to the surface. One therefore needs a non-uniform

computational grid for solving the particle continuity

equation. The first two grids perpendicular to the solid

surface should be taken very close to each other, the grid

spacings towards the free stream can then vary according to

a suitable geometric progression.

Once the values of �qp and �Vpy are determined numeri-

cally at all grid points, including at the wall, Eq. (13) is

used to calculate the particle mass transfer rate on the wall

Jwall. The non-dimensional deposition velocity Vdep
+ can

then be calculated from Jwall by the application of the Eqs.

(3) and (5). It is to be remembered that, with interception,

the effective wall boundary is situated at y+ = y0
+ = y0u*/m,

where y0 is given by Eq. (19).

5 Results and discussion

5.1 Results

Most experiments and theoretical treatments on particle

deposition explore the fully developed vertical flow. There

is no streamline curvature in time-mean motion of the fluid,

thus inertial impaction (by which inertial particles deviate

from the fluid streamlines and may hit solid boundaries) is

eliminated. Gravitational settling also plays a minor role.

Hence the effects of molecular and turbulent processes on

deposition can be studied more effectively in this config-

uration. However, the particle equations given in Guha [22]

automatically describe inertial impaction and gravitational

settling when they are present. The experimental data

compiled by McCoy and Hanratty [34] shows considerable

scatter, here only Liu and Agarwal [32] data are plotted as

this is generally accepted as one of the most dependable

data set and to keep the discussion focused. The experi-

ments were conducted in a glass pipe of internal diameter

(D) 1.27 cm; monodispersed, spherical droplets of uranine-

tagged olive oil were used (thus the deposition can be

modelled without rebound), pipe Reynolds number (ReD)

was 10,000, and qp
0/qf = 770. By combining u* calculated

from the Blasius’s formula, [22] has shown that (DB/m)2/

3s+1/3 = f(ReD, D, qp
0/q, fluid properties) = w. Thus for

different values of w, different curves of Vdep
+ versus s+

would be obtained.

Figure 2 shows the relative importance of pure diffusion

and pure inertial effects in the equation for mass flux (Eq.

13). In order to isolate the effects of fluid turbulence, the

flow considered is isothermal (no thermal diffusion) and all

body forces (such as electrical forces) are absent. The pure

diffusion case is calculated by assuming that the turbulence

is homogeneous. The source term in the RHS of Eq. (15c)

is zero and, consequently, the convective velocity, �V
c
py; is

zero. Under these circumstances, Eq. (13) becomes iden-

tical with Eq. (1)—the Fick’s law of diffusion. The

deposition velocity monotonically decreases with increas-

ing relaxation time. This case was calculated by taking the

lower boundary at y+ = 0. The behaviour of the deposition

velocity, however, changes if one includes the effects of

interception. The lower boundary is now given by Eq. (19).

As the lower boundary is shifted, the effective resistance

against mass transfer decreases. For large relaxation times,

this effect can more than offset the effect of lower

Brownian diffusion coefficient, DB. For large relaxation

times, the calculated deposition velocity, therefore,

increases substantially with increasing relaxation time due

to interception, even when the convective velocity, �V
c
py; is

neglected [the interception effect shown in Fig. 2 is the

minimum because it is shown for ks = 0, i.e., b = 0 in Eq.

(19)].

For calculating pure inertial effects, only the third term

in the RHS of Eq. (13) is retained. Figure 2 shows that the

convective velocity goes to zero for very small particles. Its

effect on the deposition velocity has become comparable to

that of pure diffusion around s+*0.2. It then rises steeply

by several order of magnitude as s+ increases. The total
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deposition is calculated by retaining all terms in Eq. (13). It

merges with the pure diffusion case for very small particles

and merges with the pure inertial case for large particles.

The relative importance of diffusion, inertia and intercep-

tion can clearly be appreciated from Fig. 2.

Figure 3 shows the variation in deposition velocity with

relaxation time for five different roughness parameters:

ks
+ = 0, ks

+ = 0.5, ks
+ = 1, ks

+ = 2 and ks
+ = 4. Equations

(15c) and (13) are solved for isothermal flow (no diffusion

due to temperature gradient). The calculations show that

the presence of small surface roughness even in the

hydraulically smooth regime significantly enhances depo-

sition especially of small particles. Given that the

deposition velocity varies by more than four orders of

magnitude in the range of investigation, it is remarkable

that a simple, universal equation (Eq. 13) agrees so well

with measurements.

Figure 4 shows the effects of temperature gradient on

the deposition velocity. [Eq. (14) shows that the thermal

drift has a ‘stressphoretic’ component and a thermophoretic

component.] Equations (15c) and (13) are solved for five

cases: DT = 0, DT = 5 K, DT = 20 K, DT = 35 K,

DT = 50 K where DT is the temperature difference

between the upper boundary of the calculation domain

(y+ = 200) and the pipe wall (the wall is cooled). Even a

small temperature difference (e.g., DT = 5 K) has a very

significant effect on the deposition velocity, particularly for

small particles. Considering that a modern gas turbine

blade may be cooled by 300–400 K compared to the gas

temperature, it is expected that thermophoresis would play

an important role there. For 1 \ s+ \ 10, there is an

interaction between thermophoresis and turbophoresis.
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Fig. 2 Computed deposition rate versus relaxation time: Effects of

pure diffusion, pure inertia and interception. Solution of Eq. (13)

retaining all terms (broken straight line); pure diffusion: solution of

Fick’s law, Eq. (1), with lower boundary at wall (y0
+ = 0) (straight

line); pure diffusion: solution of Fick’s law, Eq. (1), with interception

(y0
+ = r+) (dashes); pure inertial deposition: solution of Eq. (13)

retaining only the third term in the RHS (double dash straight line).

For all computed curves, ks
+ = 0, DT = 0, n = 0. Experiments [32]

(filled circle)
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force. Experiments [32] (filled circle)
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Figure 5 shows that the electrical force due to mirror

charging also has significant effect on the deposition

velocity. A parametric study on the amount of charge on

each particle is conducted by specifying various values n
[see discussion following Eq. (16)]. It is interesting to note

that the most significant enhancement in deposition

velocity takes place approximately around s+*0.3 where

the unassisted deposition curve began to rise in Fig. 2. Of

course, the effects of the electrostatic forces will be more

prominent in the presence of an external electric field, the

calculation of which is straightforward Eq. (16).

5.2 Discussion

The first term in the RHS of Eq. (13) is the diffusion due to

a gradient in the particle concentration [same as Fick’s law

given by Eq. (1)], the second term represents the diffusion

due to a gradient in the temperature and the third term

represents a convective contribution. Equation (15) relates

the particle convective velocity with the gradient in tur-

bulence intensity (turbophoresis) and other external forces.

From Eqs. (15c) and (17), we can write the convective

turbophoretic velocity (Vp,turbo) as

Vp;turbo ¼ sI �
o

oy
<V 02fy

� �� �
: ð20Þ

It is important to note that the turbophoretic term depends

on the particle rms velocity, which may be different from

the fluid rms velocity if the particle inertia is large. When

the particles are very small, they effectively follow the

fluid eddies and the two rms velocities are essentially the

same. In this limit, sI ? 0, Eq. (20) shows that

Vp,turbo ? 0. Turbophoresis is thus negligible for small

particles even if there exists a gradient in turbulence

intensity. Fick’s law is, therefore, an adequate description

for the deposition of small particles, in the absence of

external forces. As sI increases, the turbophoretic term

assumes dominance, thereby increasing the deposition rate

by a few order of magnitude. However, as sI increases, the

particles are less able to follow fluid fluctuations and the

particle rms velocity becomes progressively smaller as

compared to the fluid rms velocity. This is one of the

factors responsible for the eventual decrease in deposition

velocity with increasing particle size when sI is very large.

Equation (20) shows that the turbophoretic velocity also

vanishes (Vp,turbo = 0), for all particles irrespective of the

particle inertia, when the flow is not turbulent or when the

turbulence is homogenous ½o=oyðV 02fyÞ ¼ 0�: However, even

in laminar flow, Eqs. (13) and (15) apply, and can predict

all such effects like Brownian diffusion, thermophoresis,

and convective slip velocity due of streamline curvature

and external body forces such as gravity or electrical

interactions.

It is crucial to incorporate the particle momentum

equation (Eq. 15) in the analysis. Absence of this equation

in many previous analyses which solve only the particle

continuity equation necessitated postulations such as the

stop distance models. It is shown here (Fig. 2) that, on the

other hand, deposition velocity for particles bigger than a

critical size could almost be determined from the momen-

tum equation alone. [The critical size is about s+ & 1

when ks
+ = 0 and DT = 0 as shown in Fig. 2, but increases

when thermal diffusion or roughness elements are present

as shown in Figs. 3 and 4.] The first term in Eq. (15c)

represents particle acceleration, the second term is the

viscous drag and the third term arises from the turbulent

fluctuations. When s+ ? ?, the viscous drag term is

negligible, and the acceleration term is balanced by the

turbulence term. However, in this limit, the turbulence term

also tends to zero as < ? 0. As s+ is decreased from this

limit, the turbulence term grows and so does the convective

slip velocity �V
cþ
py : The deposition velocity therefore

increases with decreasing particle size in this range (Fig. 1,

regime 3). This trend in deposition velocity, however, does

not continue all the way to very small particles because the

viscous drag term assumes importance. The viscous drag

term increases with decreasing particle relaxation time,

and, tries to reduce the slip velocity. The turn over point

occurs around s+ = 30. For s+ \ 30, the deposition

velocity starts decreasing with decreasing relaxation time

(Fig. 1, regime 2). In this regime, the acceleration term

- 2. - 1. 0. 1. 2. 3.

- 6.

- 5.

- 4.

- 3.

- 2.

- 1.

0.

Increasing
Electrical Charge

lo
g 

10
 (V

+ de
p)

log 10 (τ +)

Small particles Large particles

1,5.0
,1.0,50.0,0=ξ

Fig. 5 Effects of electrostatic charges (mirror charging) on the

predicted deposition rate. n = 0 (straight line), n = 0.05 (dashes),

n = 0.1 (double dash straight line), n = 0.5 (broken straight line),

n = 1 (single dash straight line). For all computed curves, ks
+ = 0,

DT = 0, no lift force. Experiments [32] (filled circle)
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loses importance, and the viscous term usually balances the

turbulence term. However, for small particles the Brownian

and turbulent diffusion of particles begin to dominate and

the deposition velocity rises again with decreasing s+

(Fig. 1, regime 1).

It is to be noted that it is because of the acceleration

term in Eq. (15c) that the deposition velocity decreases

with increasing relaxation time in regime 3 of Fig. 1. If the

acceleration term was not included, Eq. (15c) would have

predicted a constant deposition velocity for very large

relaxation times [this is a characteristic of some previous

calculation schemes, even the Lagrangian calculation by

Fan and Ahmadi [15] show this feature of constant depo-

sition velocity in regime 3]. This is so because, as s+ ? ?
although < ? 0, the product s+<, however, remains finite

in this limit. Equation (17) shows that, as s+ ? ?,

s+< ? 1.43TL
+.

The particle transport given by Eq. (13) has a diffusive

and a convective part. The particles are transported by

these two mechanisms. (The old ‘‘free flight’’ is effectively

calculated by the present model of turbophoresis.) Very

small particles complete the last part of their journey to the

wall mainly by Brownian diffusion and very large particles

reach the wall mainly by the convective velocity imparted

by turbophoresis. For intermediate sized particles, a com-

bination of both mechanisms is responsible.

Turbophoresis is the main mechanism which injects

particles from the buffer region of a turbulent boundary

layer into the region close to the wall (say, y+ \ 20). In this

region close to the wall, qJ/qy = 0 for fully developed flow;

the total particle flux, convective plus diffusive, remains

constant (i.e., whatever particle flux enters into this region

must reach the wall surface to satisfy continuity and to

attain a steady state). Large particles may acquire sufficient
�V

c
py to enable them to coast to the surface—in this case �qp

would remain approximately constant close to the wall. The

convective velocity may not be sufficient for small particles

to coast all the way to the surface; in order to keep the total

particle flux constant to satisfy continuity, the convective

flux in this case may need to be supplemented by a large

diffusive flux which is achieved by the appropriate devel-

opment of particle density profile close to the wall. If the

predicted value of �V
c
py close to wall is inaccurate or the wall

boundary condition for �qp is improper, then in order to keep

J invariant close to the wall, the predicted concentration

profile close to the wall would not be accurate. The inclu-

sion of the shear-induced lift force in the particle

momentum equation affects the convective velocity and

particle concentration close to the wall.

For numerical illustrations here the turbulent Schmidt

number is taken as unity (Dt = e). Any other appropriate

value may be used with the present framework. Theories

show that the Schmidt number in homogenous isotropic

turbulence is close to 1 [40, 42]. Direct numerical simu-

lation by Brooke et al. [5] showed that the Schmidt number

varied across a pipe within the limits 0.6 and 1.4. The issue

of determining Dt in inhomogeneous turbulent flow is

complex. In the past, sometimes efforts have been made to

stick to the Fick’s law and (non-physically) alter the value

of particle diffusivity (for example, [33]) to obtain agree-

ment between theoretical and experimental deposition

rates. In contrast, it is assumed here (only for numerical

illustrations) that the term q0pV 0py in equation (A2) of

Appendix 1 retains the same value as in homogeneous

isotropic turbulence, but that a convective particle drift

arises in an inhomogenous field by quite a different phys-

ical effect - turbophoresis. The unified advection–diffusion

theory presented here thus shows that it is the Fick’s law

itself that needs to be augmented in inhomogenous turbu-

lent flow and when other effects such as body forces are

present (Eq. 13).

The effects of different particle transport mechanisms

come out naturally from the present analysis in a physically

satisfying manner and there is scope to add other effects in

a straightforward, logical way. The present theory is also

logical in finding the combined effects of different trans-

port mechanisms, as the appropriate forces are added in the

momentum equation and the combined ‘‘velocity’’ or flux

is calculated by solving the continuity and momentum

equations. This should be superior to the often-used linear

addition of respective ‘velocities’ in order to determine the

combined mass flux.

Example calculations are included here to show how

particular models for various transport mechanisms can be

incorporated in this general framework. For example, Eq.

(11) has been used to quantify the thermophoretic force,

Eq. (18) has been used for quantifying <, and the equations

of Appendix 2 have been used to calculate the fluid tur-

bulence field. The users can easily replace these example

models with more accurate versions, if desired. Similarly

any suitable boundary condition for �qp at the wall can be

implemented. For all numerical illustrations and for com-

parisons with experiments and other theoretical

predictions, we have considered the most explored flow

configuration: vertical, fully-developed channel flow.

However, the method is general and the analysis presented

in Appendix 1 is also applicable for the boundary layer

type flow.

The present theory offers a simple, fast and reliable

computational tool of practical use to engineers. It is pos-

sible to combine the present scheme for calculating particle

motion with well-established Eulerian flow solvers for

calculating the flow field of the primary fluid in complex

geometries (e.g., deposition of particles on internally

cooled, highly curved, gas turbine blades or that of water

droplets on steam turbine blades).
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6 Conclusion

A unified theory of mass transfer for particles (or droplets)

suspended in a fluid is presented, which can be applied to

turbulent or laminar flow. The procedure consists of writ-

ing the particle continuity and momentum conservation

equations and then conducting Reynolds averaging, which,

for fully-developed vertical flow in channels, results in the

equation set (13), (15a) and (15b). The equations are

simple, and a clear physical interpretation is possible for

each term.

It is crucial to incorporate the particle momentum

equation (Eq. 15a–15c) in the analysis, since it computes

the particle convective velocity from fundamental princi-

ples. The unified advection–diffusion theory can compute

the effects of molecular and turbulent diffusion, inertial

impaction, thermophoresis, turbophoresis, electrostatic

forces, gravitational settling, shear-induced lift force, sur-

face roughness and particle interception. Other transport

mechanisms, if needed, can be incorporated by including

the appropriate forces in the particle momentum equation

(Eq. 9). The theory applies to particles of all sizes. (The

particle relaxation time, Eq. (4b), includes correction for

the departure from Stokesian drag regime for large parti-

cles and rarefied gas effects for very small particles.)

Calculations (Fig. 3) show that the presence of small

surface roughness even in the hydraulically smooth regime

significantly enhances deposition of small particles. Fig-

ure 4 shows that thermophoresis can be equally important

(and should be considered, for example, in deposition

calculations for internally-cooled gas turbine blades). For

intermediate-size particles, there can be a strong interaction

between thermophoresis and turbophoresis. Hence, in this

range, how the turbophoretic term is modelled would

influence the computation of enhancement of deposition

due to thermophoresis. Figure 5 shows a parametric study

of the effects of electrostatic forces due to mirror charging

on deposition. The effects can be very significant

depending on the amount of charge on each particle, and

there is a strong interaction between this electrostatic effect

and turbophoresis for intermediate-sized particles.

Equation (13) is a generalized mass transfer law which

reduces to the Fick’s law of diffusion in the limit of very

small particles. Thus the study shows how the well-known

and much-used Fick’s law of diffusion fits into the broader

context of particle transport. The paper provides a unified

framework to treat various particle transport mechanisms

in the form of equations such as Eqs. (13) and (15a, 15b,

15c); the framework is flexible for the user to adopt any

suitable boundary conditions or any appropriate models

(for the calculation of fluid turbulence, lift force, electro-

static force, thermophoretic force etc) than what has been

used in this paper for illustration purposes. Equation (19)

shows a method of including the effects of surface

roughness elements on the mass transfer rate, and the effect

of interception alone on the rate of deposition can be

appreciated from Fig. 2.

Appendix 1 Reynolds averaging of the particle

continuity and momentum equations

Figure 6 shows the Cartesian co-ordinate system used.

Substitute Eq. (12) in Eqs. (8) and (9) and then take time-

mean of the resulting equations. We neglect the x-variation

of any Reynolds stress terms and triple correlations of

primed quantities. The continuity equation (Eq. 8) then

becomes,

o

ox
qpVpx

� �
þ o

oy
qpVpy þ q0pV 0py

� �
¼ 0 ðA1Þ

Equation (A1) shows that the particle mass flux in the y-

direction, J, is given by

J ¼ �qp
�Vpy þ q0pV 0py: ðA2Þ

Similarly, the Reynolds-averaged momentum equations

can be derived. For example, the Reynolds-averaged y-

momentum equation (Eq. 9) can be written as

o

ox
qpVpxVpy

� �
þ o

oy
qpVpyVpy

� �

þ o

oy
qpV 02py

� �
þ 2

o

oy
Vpyq0pV 0py

� �

¼ 1

sI

�DB

oqp

oy
� DTqp

olnT

oy
þ qpsIðFSy þ GEyÞ

�

þqp V fy � Vpy

� �
þ q0pV 0fy � q0pV 0py

�
þ �qpgy ðA3Þ

where GEy is the y-component of electrostatic force per unit

mass on the particles and gy is the component of the

gravitational acceleration in the y-direction. The coefficient

of diffusion due to temperature gradient, DT, is given by

DT = DB (1 + g/kT).

x

y

Fig. 6 Co-ordinate system used for calculation on a solid surface
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The convective velocity of the particles, Vp
c, is defined

by

Vp ¼ Vc
p � DBrðln qpÞ þ DTrðln TÞ

� �
ðA4Þ

Consider the special case of vertical flow, i.e., the co-

ordinate x is in the vertical direction. g then acts wholly in

the x-direction and gy is zero. For the special case of fully-

developed, vertical channel flow (see Fig. 7, flow may be

either in the upward or downward direction), the Reynolds-

averaged continuity and momentum equations can be

simplified (details given in Guha [22]) to Eqs. (13)–(15a,

15b, 15c) given in the main text.

Appendix 2 Modelling fluid turbulence

The mean motion of the fluid in the axial direction Vfx and

the r.m.s. fluctuation in the y-direction

ffiffiffiffiffiffiffiffiffi
V 0þ2

fy

q
are expres-

sed as functions of the wall-coordinate (y+) as given by

Kallio and Reeks [27] (with corrections of the errors in

their paper).

Mean motion of the fluid in the axial direction

ðVþfx � V fx=u�Þ :

Vþfx ¼ yþ for yþ � 5

Vþfx ¼ a0 þ a1yþ þ a2yþ2 þ a3yþ3 for 5\yþ\30

Vþfx ¼ 2:5 ln yþ þ 5:5 for yþ � 30

where, a0 = -1.076, a1 = 1.445, a2 = -0.04885, a3 =

0.0005813

Fluid r.m.s. velocity in the y-directionffiffiffiffiffiffiffiffiffi
V
0þ2
fy

q
¼

ffiffiffiffiffiffiffi
V
02
fy

q
=u�

� �
:

ffiffiffiffiffiffiffi
V
02
fy

q
¼ 0:005yþ2

1þ 0:002923yþ2:128
for 0\yþ\200

Lagrangian time scale (TL
+ = TL u*

2 /m):

TþL ¼
e
m

1=V
0þ2
fy

� �

Eddy viscosity (e): In the present work we use the

universal expression of eddy viscosity valid for all y+, as

given by Davies [13]

e
m
¼ yþ

4�yþ0:08ð Þ 2:5� 107

ReD

� � �yþ
400þyþ

�10�3

where ReD is the Reynolds number based on the average

velocity in the pipe. For numerical illustrations here the

turbulent Schmidt number is taken as unity (Dt = e).
Temperature profile in the pipe [28]:

T�TW

DT ¼
Pryþ

DTþ
200

for yþ\5

T�TW

DT ¼
5Prþ5 lnð0:2Pryþþ1�PrÞ

DTþ
200

for 5� yþ � 30

T�TW

DT ¼
5Prþ5 lnð1þ5PrÞþ2:5 lnðyþ=30Þ

DTþ
200

for 30\yþ\200

where, DT200
+ = 5Pr + 5ln(1 + 5Pr) + 2.5ln (200/30), T

is the local temperature of the fluid, TW is the wall tem-

perature, Pr is the Prandtl number of the fluid and DT is the

temperature difference between y+ = 200 and the wall.

Roughness elements: It is assumed that, on a rough

surface, the virtual origin of the velocity profile is shifted

by a distance e away from the wall. It is further assumed

that the particles are captured when they reach the level of

effective roughness height, i.e. at a distance b above the

origin of the velocity profile. Figure 8 schematically shows

the different parameters, e.g. ks, b and e.
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