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a b s t r a c t

The flow induced by rotating discs has attracted some of the greatest minds in fluid dynamics like von
Kármán and Batchelor, and still is a vigorously active research area. In comparison, the available analysis
of the rotating flow in the narrow gaps among closely-spaced co-axial multiple discs of a Tesla turbine,
which produces power, is limited. In this paper a simple theory has been presented that describes the
three-dimensional fields of velocity and pressure in the Tesla disc turbine. The theory gives the torque and
power output which have been verified by comparing the theoretical predictions with recently published
experimental results. The governing conservation equations have been cast in a form that makes it
possible to formulate analytical solutions and to develop clear physical interpretation for each term in
the equations. Thus the roles of each of the centrifugal, Coriolis, inertial and viscous forces in generating
torque and power, and in establishing the pressure field have been comprehensively investigated and
explained here. This physical exposition of the rotating flow in a Tesla disc turbine has been achieved for
the first time in the present paper. Several subtle flow physics and fluid dynamic behaviors have been
elucidated. As an example, it is shown here that a Tesla disc turbine may generate net torque and power
even when the tangential fluid speed at the disc periphery is less than the local tangential speed of the
disc. The subtle role of the Coriolis acceleration in establishing such flow conditions, which involve flow
reversal and complex pathlines, has been explained.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

The Tesla disc turbine is a kind of turbo-machinery in which the
rotor is constructed by a series of co-axial, parallel flat discs rather
than blades. This bladeless turbine was invented by the famous
scientist Nikola Tesla [1]. The discs are arranged such that a small
gap is maintained between any two successive discs, and they are
attached to a central shaft. The combination of discs and shaft
is placed inside a cylindrical casing with a small radial and axial
clearance. One or more nozzles are used to guide the working fluid
to enter nearly tangentially from the periphery of the discs. There
are exit ports near the shaft at the center of each disc. As the fluid
passes through the narrow gaps between the discs it approaches in
a spiral path (usually, but see the new findings regarding complex
non-spiral relative pathlines in Section 4). Theworking fluid travels
from the inlet up to the central exit due the difference of pressure
between the periphery and the central exit, and the component
of inward radial velocity. The radial velocity gradually increases
towards the central exit due to the gradual decrease of flow area.
On the other hand, from inlet to exit, the tangential velocity may
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increase or decrease, depending on the local balance of various
components of forces (see Section 3).

Initially the Tesla turbine did not have much commercial suc-
cess and eventually succumbed to other emerging types of tur-
bines. Research into Tesla turbines has however been conducted
since the 1950s [2,3] and recently there has been a resurgence of
interest [4]. Themain disadvantage of the Tesla disc turbines is that
the present values of their efficiency are lower than that of conven-
tional turbines. Tesla turbines, however, have several advantages
(mentioned below) and may find niche applications in the future.
Moreover, it is hoped that the current surge of research would im-
prove the efficiency of the disc turbines – reference [5], for ex-
ample, has developed an improved design of the nozzle, greatly
improving the efficiency and achieving uniformity in the velocity
profile of the jet. (The loss in the nozzle is generally recognized
[3,6] as a major source of loss in a conventional Tesla turbine.)

The Tesla disc turbine is simple to manufacture and is less
expensive. It is capable of generating power for a variety ofworking
media like Newtonian fluids, non-Newtonian fluids, mixed fluids
and particle-laden two-phase flows (many aspects of two-phase
flow may be found in Refs. [7–11]). The turbine has a self-cleaning
nature due the centrifugal force field. This makes it possible to
operate the turbine in case of non-conventional fuels like biomass
which produce solid particles. It also suggests that this bladeless
turbinemay bewell suited to generate power in geothermal power
stations [12].

0997-7546/$ – see front matter© 2012 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.euromechflu.2012.08.001
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Nomenclature

aC,θ θ-component of Coriolis acceleration
aC,r r-component of Coriolis acceleration
aCF ,r r-component of centrifugal acceleration
aF ,θ θ-component of viscous acceleration
aF ,r r-component of viscous acceleration
aH ≡

VrVθ

r
aI,r r-component of inertial acceleration
b Gap between the two discs
k Isentropic coefficient of fluid
p Pressure
P Modified pressure = p − ρgzz
p′ Non dimensional pressure =

p−p2
ρΩ2r22

r Radial coordinate
R Radius ratio =

r
r2

U Absolute velocity of fluid
V Relative velocity of fluid
•

W th Theoretical ideal power output
•

W loss Overall loss in Tesla turbine
•

W act Theoretical power output with loss
z Axial coordinate
γ Tangential speed ratio =

Uθ2
Ωr2

∆

∼

V̄ θ ≡
(V̄θ −V̄θ2)

Ωr2
∆pic Pressure drop between inlet and central exit of the

rotor
ζ Non dimensional average relative tangential veloc-

ity =
V θ (r)
V θ2

ζm Modified ζ
θ Azimuthal direction in cylindrical coordinate sys-

tem
µ Viscosity of the working fluid
ν Kinematic viscosity of working fluid (here the fluid

is air)
ξ Non dimensional average relative radial velocity =

V r (r)
V r2

ρ Density of the working fluid
τw Wall shear stress on one side of a single disc
φ2 ≡

V r2
Ωr2

Ω Rotational speed of the disc
Ωsteady Steady state rotational speed of the disc
ℑ Torque on one side of a single disc
ℑtot Total torque

Subscripts

r Component along the r direction
z Component along the z direction
θ Component along the θ direction
1 Central exit of the rotor
2 At rotor inlet

Overbar

( ) z-averaged (z varies from 0 to b) flow variables

In this paper a theory is described that gives the three-
dimensional fields of velocity andpressure in the Tesla disc turbine.
The presented theory also gives the torque and power output
which have been verified by comparing the theoretical predictions
with recent experimental measurements [13]. (All experimental

results and numerical illustrations of the theory given in this paper
are for air as theworking fluid.) By a systematic order ofmagnitude
analysis, the dominant terms have been retained in the governing
conservation equations. This has made it possible to formulate
analytical solutions and to develop clear physical interpretation for
each term in the equations. Thus the roles of each of the centrifugal,
Coriolis, inertial and viscous forces in generating torque and power
and in establishing the pressure field have been comprehensively
investigated and explained here. This physical exposition of the
rotating flow in a Tesla disc turbine has been achieved for the first
time in the present paper.

1.1. Previous work on Tesla disc turbines and related issues

Rice [6] in his article ‘‘Tesla turbomachinery’’ had described the
advances of research (up to 1991) in the field of the Tesla turbine.
There are two old approaches which are worth mentioning:
the truncated series substitution methodology [14] and the bulk
parameter analysis [15,16,3]. The problem of using truncated
series substitution methodology is its lower accuracy; the bulk
parameter approach is not useful because of the inadequacy of
the friction factor concept [6]. A simple but very effective method
for measuring the net power output and overall loss (the bearing
and other losses), called the ‘‘angular acceleration method’’, has
been developed and fully described by Hoya and Guha [4]. This
proved to be a successful method for overcomingmany difficulties
associated with the determination of very low torque at very high
angular speed. The reference gives detailed measurements and
operational experience for Tesla disc turbines. It has previously
been recognized that the performance of the nozzle and the inlet is
a limiting factor for the overall efficiency of such turbines. Rice [6]
wrote: ‘‘In general, it has been found that the efficiency of the rotor
can be very high, at least equal to that achieved by conventional
rotors. But it has proved very difficult to achieve efficient nozzles
in the case of turbines. [. . . ] As a result, only modest machine
efficiencies have been demonstrated’’. Through a systematic study
of the major sources of loss, Guha and Smiley [5] developed a new
design of nozzle-inlet assembly that reduces the loss tremendously
and substantially improves the uniformity of the velocity profile in
the jet. The analysis and design [5] therefore addresses and solves
amajor issue in the design of Tesla disc turbines that seems to have
seriously affected their development for over 50 years.

Several studies have been conducted in the past two decades on
various aspects of Tesla disc turbines.1 Couto et al. [17] presented
a simple calculation procedure for estimating the number of discs
required inside the Tesla turbine to accomplish a prescribed job.
Their calculation is based on the estimation of boundary layer
thickness of the rotating fluid on the rotating disc. They assumed
that for laminar flow δ ≈ 5

√
ν(r2 − r1)/Uθ (δ is the boundary

layer thickness) though using the absolute tangential velocity
for calculation of the boundary layer thickness for a relative
rotational reference frame may not be appropriate. Furthermore
their calculation had no experimental or numerical verification.
Valente [18] claimed that a Tesla turbine can be used successfully
in gas liquefaction plants for pressure reduction of hydrocarbon
gases. According to them gas liquefaction can be done nearly
isothermally by the use of a Tesla turbine. Deam et al. [19]

1 One of the reviewers has drawn our attention to some performance curves
of Tesla disc turbines that are available on the Web: numerical results of
Tahil are available at http://www.stanford.edu/~hydrobay/lookat/tt.html#ref1b,
and experimental results of Lezsovits on a Tesla turbineworking on biomass fuel are
available at http://mycite.omikk.bme.hu/doc/40405.pdf. Details of the numerical or
experimental procedure are however not given and these results have not been
formally published.
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attempted to develop a simple analytical model of a Tesla turbine
considering incompressible and one dimensional flow. A limitation
of their theory is the absence of the radial flow feature. Moreover
their theory aims to predict only the no-loss maximum efficiency
of the turbine which is attainable when the rotor velocity is equal
to the velocity of theworking fluid. This, however, does not happen
in reality because, if there is no relative velocity between the
disc–rotor and the working fluid, the viscous drag force will be
zero and in consequence, therewill be no power output. Carey [20]
explored the fact that a Tesla turbine can be used as an expander
(cheap, durable and robust) for solar Rankine cycle combined heat
and power systems. He found the efficiency of the turbine by a
one-dimensional idealized momentum transfer model. According
to him, under optimal design conditions, 75% isentropic efficiency
of this turbine canbe achieved. Lampart et al. [21] discussed the use
of a Tesla turbine in a co-generatingmicro-powerplant. Choon et al.
[22] developed a Tesla turbine for generation of power utilizing the
potential energy from the householdwater supply. Moreover, they
have conducted an optimization study by using the CFD software
package and observed that their design yields a torque of .033 Nm
with an overall efficiency of 10.7%.

The theoretical treatments for the flow between the discs of a
Tesla turbine usually assume that the flow is laminar. However,
this assumption is doubtful when the pressure drop across the
rotor is high. A detailed stability study is necessary to find out
the applicability of a laminar theory. A number of situations for
the transition of rotating flow between two discs are described
in the literature. Gregory et al. [23] and Faller and Kaylor [24]
described two types of instabilities of the boundary layer over an
infinite rotating disc. The first type, denoted as class A (or type
II) is because of viscous instability and the second type denoted
as class B (or type I) is because of inflectional instability. Both
of the instabilities appear inside the boundary layer in the form
of regular systems of spiral rolls although they are different in
orientation, phase velocity and wavelength. Savas [25,26] had
observed two types of instabilities in the form of circular and
spiral rolls (which correspond to type 2 and type 1 instabilities
[27]) in the Bödewadt layer. Instability of flow between a rotating
disc and a stationary disc with separated boundary layers appears
in the form of inward propagating circular waves [28]. With the
increase of Reynolds number instability of spiral pattern coexists
with circular waves [28,29]. Instability of flow between a rotating
disc and a stationary disc with merged boundary layer appears
in the form of localized spots or of solitary waves [30]. With
the increase of Reynolds number a number of these turbulent
structures are superimposed on a short-wavelength spiral pattern.
Gauthier et al. [31] observed two types of instability patterns
(axisymmetric propagating vortices, positive spirals) in co and
weak counter-rotating flows, while for the case of highly counter-
rotating flows they found a third type (which appears as negative
spirals). According to them, the instability patterns for the case
of co and weak counter-rotating flows are qualitatively the same
as compared to the rotor-stator systems, but negative spirals are
specific to highly counter-rotating flows.

The above stability studies may not be directly applicable to
Tesla turbines because the basic flow is different. Murata et al.
[32] observed in their experiment that the flow inside the disc gap
of a Tesla disc pump is always laminar except for a small region
near the inner and outer periphery. According to Rice [6], laminar
flow, laminar flow with regions of recirculation, fully turbulent
flow, transition flow, and reverse transition flow can be observed
for flow between the discs of a Tesla turbine. Rice [6] cited the
conclusion of Wu [33] that viscogeometric number (proposed by
Nendl) most adequately characterizes the flow regimes; Wu had
concluded this by considering all available experimental and
analytical evidences. According to Nendl [34,35], the flow remains

laminar if the viscogeometric number is less than 10, where
viscogeometric number = [(Vrb2)/(νr)]. The stability analysis for
flow between the discs of a Tesla turbine has not been performed
thoroughly yet. A quantitative analysis however is required for
establishing the regime where the flow between the narrow disc-
space of the Tesla turbine remains laminar.

1.2. Previous work on rotating fluid flow in contact with discs

The fluid flow in contact with a rotating disc has been the
subject-matter of many previous studies, both theoretical and
experimental. The problem has attracted some of the greatest
minds in fluid dynamics such as von Kármán and Batchelor, new
investigations are still being reported (see below). Several of these
contributions have been described below for their relatedness, but
the flow within the small gap between two co-rotating discs is
quite different from the flow in an infinite or large expanse of
fluid. Additionally, the much explored subject usually concerns
the development of fluid flow as a result of externally-driven disc
rotation, whereas in a Tesla turbine the disc rotates (and delivers
shaft power output) as a result of the action of fluid flow (usually
in the form of a nearly-tangential jet at the periphery).

The study of rotating flow is important in order to understand
scientific fields like oceanography, geophysics, astrophysics, fluid
machinery etc. The pioneer in this field was Ekman [36] who
had studied the influence of the earth rotation on ocean currents.
Using similarity analysis, von Kármán [37] deduced the steady-
state solution for the effect of rotation of a single disc of infinite
radius in a quiescent fluid. The effect of rotation of the disc on the
fluid is that the fluid just next to the disc moves radially outward
due to the centrifugal force, and to fill the gap the fluid from above
moves axially towards the disc. Bödewadt [38] had studied a case
which was just opposite to that of von Kármán [37]. The aim of his
analysiswas to find the effect of the presence of a static disc (which
will not rotate) in a fluidwhich is rotating initially like a rigid body.
In this case, the rotating flow just next to the static disc encounters
the effect of friction of the disc and therefore this region turns into
a slow velocity zone, because of the centripetal force an inward
fluid flow sets up, which ultimately has to move axially upwards
(opposite to the direction of the disc).

Batchelor [39] had studied a case where instead of one disc,
there were two discs (with infinite radius) separated by a distance.
One of the discs rotated at a constant angular speedwhile the other
disc was static. The motion to the initially static fluid is imparted
by the rotating disc. The solutions given by Batchelor [39] show the
existence of boundary layers on both the rotor and the stator, and
between these two layers there is a core of fluid which rotates at
an angular velocity less than that of the rotating disc. Furthermore,
Batchelor’s solution shows that a radial inflow near the stator
surface supplies fluid to the core while the core has to supply fluid
axially towards the rotating disc which continuously pumps the
fluid radially outward. Investigating the same problem by series
expansion for flow with small Reynolds number, Stewartson [40]
arrived at a different solution and conclusion as compared to those
of Batchelor [39]. According to Stewartson [40], the flow structure
in between the two discs does not contain a Batchelor-type core
region at all, the flow rather resembles more the von Kármán-type
solution of a rotating disc in an infinite expanse of fluid, and the
Stewartson solution gives a continuous reduction of the angular
speed of the fluid from the rotating to the static disc.

Picha and Eckert [41] sought to resolve the dichotomy of the
Batchelor–Stewartson theoretical solutions through conducting
experiments. The discs used in the experiment were necessarily of
a finite size and two configurations were used – in one of them the
spacing between the two discs at the outer radiuswas kept open to
the atmosphere, in the other the aforementioned space was sealed



Author's personal copy

A. Guha, S. Sengupta / European Journal of Mechanics B/Fluids 37 (2013) 112–123 115

from the atmosphere with the help of a shroud. Most interestingly,
they found in their experiment that the solution of Stewartson [40]
is valid when the wheel space is open to the atmosphere and the
solution of Batchelor [39] is validwhen there is a stationary shroud
at the outer radius.

However, the experiment by Picha and Eckert [41] did not settle
the Batchelor–Stewartson controversy conclusively and a very
large number of investigators have examined the problem from
various angles and by several means - experimental, theoretical
and computational. A summary of this evolution in the thought
process is presented in the next two paragraphs before explaining
the current knowledge about the multiplicity of the solutions (of
which the Batchelor and the Stewartson solutions are just two
particular cases).

Numerical solutions given by Lance and Rogers [42] indicate
that the Batchelor [39] flow with separated boundary layers
evolves towards a purely viscous flow with merged boundary
layers, when the Reynolds number (i.e. Ωh2/ν) is decreased (h is
the gap between the two discs) – this would suggest a transition
towards the Stewartson-type flow when the Reynolds number
is low. Pearson [43], on the other hand, also on the basis of
numerical solutions, pointed out that the small Reynolds number
trend proposed by Stewartson [40] is misleading and the Batchelor
[39] solution is qualitatively correct. Sirivat [44] showed that as the
Reynolds number decreases and the disc radius becomes infinite,
the flow becomes a viscous torsional Couette flow.

The experimental studies of Gauthier et al. [45] and the
numerical studies of Dijkstra and van Heijst [46] add another level
of complexity in that their results show that for large values of
Reynolds number and finite geometry of the discs (enclosed by a
side wall) the angular velocity of the core is a function of the radial
coordinate and hence, it deviates from the self-similar solution
given by Batchelor [39]. Zandbergen and Dijkstra [47], Poncet et al.
[48,49] pointed out that the flow structure in a rotor–stator system
is also dependent on the superposed flow into the cavity. According
to Poncet et al. [49], with an increase of superposed outflow the
Batchelor [39]modelwith a rotating core turns into the Stewartson
[40] model with no or very little core rotations.

This brings one to the existence of multiple solutions. Dijkstra
and van Heijst [46] showed numerically and experimentally the
coexistence of a Stewartson type flow and a Batchelor type flow
for counter-rotating discs. They observed the Stewartson type flow
near the center and the Batchelor type flow near the periphery of
the discs. Mellor et al. [50] had shown that at a fixed Reynolds
number many solutions are possible for the flow between two
discs, and that when the Reynolds number becomes very large
the von Kármán solution (obtained originally for a single disc
in an infinite expanse of fluid) is obtained as the limiting case
of a certain branch of two disc solutions. Rogers and Lance [51]
and many others later (e.g. Zandbergen and Dijkstra [47]) have
shown that the Batchelor and the Stewartson flows are the two of
many solutions that progressively appear as the Reynolds number
is increased. The multiplicity of steady state solutions for the
flow between two rotating discs has been extensively studied by
Holodniok et al. [52,53]. They had considered three distinct cases:
two discs rotating in the same direction, two discs rotating in the
opposite direction, and, one disc rotating while the other one is
kept stationary.

It is thus clear from the above discussion that the various
flow structures resulting from the interaction of a fluid and solid
discs have been studied extensively. We therefore now explain
why the rotating flow within the Tesla disc turbines is novel and
not covered by the previously discussed studies of solid–fluid
interaction. Like the Batchelor [39] or the Stewartson [40] flows,
the flow in the Tesla disc turbine also takes place within the
gap between two discs. However, unlike the cases considered

by Batchelor or Stewartson, the flow in Tesla turbine is not
generated due to the rotation of the discs. The working fluid
with both tangential and radial velocity enters through the small
gap between the discs of finite size. This rotating flow generates
torque on the discs’ surfaces which leads to the rotation of the
rotor. This study is also different from that of Bödewadt [38],
because Bödewadt [38] had dealt with the case where there was
a single static disc of infinite radius, the rotating fluid was of
infinite expanse along the axis of rotation, and moreover there
was no superposed inflow. The cases considered by some of the
modern researchers like Poncet et al. [49]with superposed outflow
is not applicable for Tesla turbine because they had considered
a stator–rotor system but all discs in a Tesla turbine are rotors
and the superposed flow is inward. None of the solutions given by
Holodniok et al. [52,53], are applicable for a Tesla turbine because
in all of their cases the discs are imparting rotation to the fluid.
Another distinguishing feature of the Tesla turbine configuration
is the small gap between two adjacent discs, which may be small
enough in certain cases to be considered as a micro-channel.
Usually the two boundary layers on the two discs would merge
together, so that a core flow of the Batchelor-type does not occur.
The boundary layers near the discs cannot also be described like
the Ekman layer in which only Coriolis component of the inertial
terms is retained.

Most of the previous researchers working in the field of the
Tesla turbine have concentrated their attention on the engineering
issues like control of operating parameters or design details;
some of them have also given semi-empirical solutions. We have
provided fundamental equations that govern the flow within
the narrow gaps in a Tesla disc turbine and have explored the
underlying science of various fluid dynamic behaviors. Thus the
purpose of the present study is three-fold:

(1) To provide a theoretical quantification of the three-dimen-
sional fluid flow field that exists inside the small gap between
two adjacent discs of the Tesla turbine. This is of scientific
value since this new solution of rotating flow (with at least
four distinguishing features, viz. that the fluid drives the solid
surface, all solid surfaces rotate in the samedirection, the inter-
rotor gap is small and that there is a superposed inward flow)
complements the previous scientific investigations on rotating
flow discussed above.

(2) Secondly, since this configuration of the rotating flow in a Tesla
disc turbine has not been extensively studied previously, it is
important to establish the scientific mechanisms and effects
that each of the terms of the tangential and radial momentum
equations gives rise to when they operate individually or
together. The present study clarifies the role of inertial,
centrifugal, Coriolis and viscous forces, identifying subtle
mechanisms (e.g. the role of Coriolis force explained in
Section 3.1 or the fact that the contribution of the r-component
of viscous force to the overall radial pressure drop is extremely
small (for air as working fluid) as explained in Section 3.4).
To the best our knowledge, such a complete assessment of
the flow equations has not been previously performed in
relation to the rotating flow within a Tesla disc turbine.
This study has not only provided the relative importance of
various terms under various operating conditions but also
has elucidated the existence of subtle flow physics such as
flow reversal (Section 3.2), the shape of the relative pathlines
(Section 4) or the insensitivity of the quantity V θ1 at the
flow outlet even when there is a large change in V θ2 varying
from negative to positive values (Section 3.3). The detailed
physical understanding is the scientific merit of the analysis
and discussion given in Sections 3 and 4, which could not have
been appreciated simply from a global, overall solution of all
the equations in one go.



Author's personal copy

116 A. Guha, S. Sengupta / European Journal of Mechanics B/Fluids 37 (2013) 112–123

r1 r2

b

Fig. 1. Schematic diagram of the domain for the mathematical solution. (The gap
within the two discs, in relation to the radius, is exaggerated in the sketch for
clarity.)

(3) Thirdly, an analytical theory is presented for the calculation
of the power output of the Tesla disc turbine, which has been
validated against recent experimental measurements. From an
engineering viewpoint, such amathematical formulation gives
one the rapid predictive power that a practicing engineer may
need to design, optimize and analyze the machine. However,
even if a Tesla turbine does not ultimately emerge as a valid
engineering product, the mathematical solution has scientific
value since it would characterize a type of turbomachinery,
viz. the viscous flow turbine or Tesla disc turbine, for which
an analogous theory did not exist before.

2. Outline of a theory for tesla disc turbines

The domain for the mathematical solution is the three-
dimensional space (Fig. 1) between two circular rotor discs
separated axially (i.e. in the z-direction) by a distance b. The rotor
inlet is situated along the periphery of the discs (i.e. at radius r2).
The rotor outlet is at the center of the discs (at radius r1).

The flow between the discs has been assumed to be steady,
laminar and axisymmetric. In order to make the complex flow
amenable to an analytical theory, a few more assumptions are
made, which have been fully described by Sengupta and Guha [54].
The reference also includes a detailed order of magnitude analysis
of the various terms of the three-dimensional conservation
equations in the cylindrical coordinate system and based on these
the appropriate important terms for the present problem are
included in the governing equations given below.

Boyd and Rice [55] had shown that the ratio of axial component
of velocity to the tangential or radial component of velocity is
roughly of the order of b/r2. It is well-known that for a Tesla
disc turbine the above ratio is very small. Therefore, the axial
component is smaller than the other two components of velocities.
Moreover, from the numerical solutions of Boyd andRice [55] it can
be found that above a certain value of the R (Radius ratio = r/r2),
that is R > 0.5, the axial component of velocity is almost zero.
This estimate for the dimension of the inner radius (to avoid large
outflow vortices [21]) is very often comparable to many of the
practical design (for example in the configuration of Lemma et al.
[13]R1 = 0.528) of an efficient Tesla disc turbine. For this reasonVz
has been neglected in the theory presented in the present article,
this assumption makes the analysis simpler.

2.1. Governing differential equations and boundary conditions

The continuity equation, the momentum equations and bound-
ary conditions are written in terms of relative velocities. For this

purpose the following relations between the absolute and rela-
tive velocities are used. Ur = Vr;Uz = Vz;Uθ = (Vθ + Ω ∗ r).
Depending on the assumptions mentioned above and an order of
magnitude analysis, the simplified conservation equations take the
following form.

Continuity equation

∂Vr

∂r
+

Vr

r
= 0 (1)

θ- Momentum equation

Vr
∂Vθ

∂r
+

VrVθ

r
+ 2ΩVr = ν

∂2Vθ

∂z2
(2)

r-Momentum equation

Vr
∂Vr

∂r
− Ω2r − 2ΩVθ −

V 2
θ

r
= −

1
ρ

dp
dr

+ ν
∂2Vr

∂z2
(3)

z-Momentum equation

∂P
∂z

= 0. (4)

Boundary conditions

at r = r2 V r = V r2 V θ = V θ2 (5)
at z = 0, b Vr = 0 Vθ = 0 (6)

at z = b/2
∂Vr

∂z
=

∂Vθ

∂z
= 0. (7)

Within the boundary layer developed on the flat solid discs, the
relative tangential and radial velocities at any radius between r1
and r2 can be modeled as

Vθ (r, z) = V θ2ζ (R)G(z) (8)

Vr(r, z) = V r2ξ(R)H(z). (9)

Where, R =
r
r2

, ζ (R) =
V θ (r)
V θ2

, ξ(R) =
V r (r)
V r2

,G(z) =
Vθ (r,z)
V θ (r)

,

H(z) =
Vr (r,z)
V r (r)

. G and H are respectively the z-variation of tan-
gential and radial velocities within the boundary layers. Here we
assume that the velocity profile of the fully developed flow is
parabolic in nature. Accordingly, G and H are expressed as,

G = 6
z
b


1 −

z
b


(10)

H = 6
z
b


1 −

z
b


, (11)

where b is the gap between the two discs. For a throughflow situa-
tion (i.e. when the inlet velocity is in the radial direction), Matveev
and Pustovalov [56], Boyd and Rice [55], had assumed the same
relation as Eq. (11) for the variation of the radial velocity. The re-
sults of a complete computational fluid dynamics (CFD) study [54]
show that Eq. (10) adequately represents the velocity profile, par-
ticularly close to the disc wall (where the gradient of the velocity
profile determines the wall shear stress).

2.2. Integration of the continuity equation

Eqs. (8) and (9) show that in order to determine Vr and Vθ

completely, one needs to find out ξ(R) and ζ (R). Integrating the
differential form of the continuity Eq. (1), we can get ξ(R). h

0

 r

r2

∂(rVr)

∂r
δrδz = 0. (12)
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Eq. (12) leads to,

ξ(R) =
V r(r)

V r2
=

r2
r

. (13)

Lemma et al. [13] measured this variation in V r2 and found that,
for a particular pressure drop between the rotor inlet and the
central exit, V r2 is maximum when the rotor is stationary and its
magnitude decreases linearly (up to 0.7 bar pressure drop) with Ω

as given by:

− V r2 = A − BΩ. (14)

In Eq. (14), A is the maximum inlet radial velocity for stationary
rotor, and B is the slope to be determined by the ratio of the max-
imum inlet radial velocity for stationary rotor (A) to the rotational
speed of rotor for which no flow condition is arrived at (Ω0).

2.3. Integration of the r and θ momentum equations

We introduce the following threenon-dimensional variables for
further theoretical development:

p′
=

p − p2
ρΩ2r22

, φ2 =
V r2

Ωr2
, γ =

Uθ2

Ωr2
. (15)

The θ-momentum Eq. (2) is integrated partially with respect to
z over the domain (0, b/2), giving:

dζ
dR

= −


1
R

+ 10
 ν

Ωb2

 R
φ2


ζ −

10
6(γ − 1)

. (16)

To avoid singularity of the solution of ζ at γ = 1 a new variable
ζm is introduced, where ζm = ζ (γ − 1)

dζm
dR

= −


1
R

+ 10
 ν

Ωb2

 R
φ2


ζm −

10
6

. (17)

The r-momentum Eq. (3) is integrated partially with respect to
z over the domain (0, b/2), resulting in:

dp′

dR
= R + 2ζm +

6
5

ζ 2
m

R
+

6
5

φ2
2

R3
− 12

 ν

Ωb2

 φ2

R
. (18)

Eq. (14) is substituted in the Eqs. (17) and (18) and these two
ODEs are solved for the initial conditions given below

At R = 1 : ζm = γ − 1 (19)

At R = 1 : p′
= 0. (20)

The solutions of the above two Eqs. (17) & (18) will give ζm and
p′. Analytical solutions are possible and indeed have been derived.
However, in this work, one objective is to find out the separate
roles of various forces (Section 3.1), this is best done through
numerical integration. Hence, the numerical integration procedure
is elaborated in the next paragraph. The analytical solution of
Eq. (17) gives the variation of Vθ :

ζ =

C2
C1

+ C3 exp

−

C1R2

2


R

, (21)

where,

C1 =
10ν

φ2Ωb2
, C2 =

−10
6(γ − 1)

,

C3 =


1 −

C2

C1


exp


C1

2


.

Analytical integration of Eq. (18), specifying p′, is found as a
series solution and is lengthy. It is available in Ref. [54] and is not
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Fig. 2. Variation of steady rotational speed of the rotor (Ωsteady) versus tangential
speed ratio γ : prediction of the presented theory. (For all calculations∆pic = 0.113
bar and air is used as the working fluid.)

reproduced here for the sake of brevity. It is instructive to note
here that at the central exit, p = p2, therefore p′

= 0; at inlet,
p′

= ∆pic/(ρΩ2r22 ). It is to be remembered that Lemma et al.
[13] kept ∆pic fixed for a given set of experiments; this is how
the numerical predictions have been presented in various figures
in order to be compatible with the experiments.

Eqs. (17) and (18) can also be integrated simultaneously by
numerical means. A simple iterative scheme may be adopted as
follows. Assume a value of γ for which the steady state solution
is sought. Start with a trial value of Ω . Eqs. (17) and (18) are then
numerically integrated from the rotor inlet to the central exit. The
computed value of thepressure dropwill not, in general, agreewith
the imposed value of ∆pic . The value of Ω is then systematically
varied until the iteration converges to the given value of ∆pic . This
converged value of Ω is the steady state value of the disc rotation
for the given γ and ∆pic : this value is denoted by Ωsteady. The
same procedure is repeated for various values of γ . Fig. 2 gives the
computed variation ofΩsteady withγ for a given∆pic (∆pic = 0.113
bar is chosen for the example calculation here because this value
is used in the experiments of Lemma et al. [13]).

2.4. Calculation of torque and power output

From the known distribution in tangential velocity, the total
torque and power output of the rotor can be calculated by the
following steps.

Wall shear stress on one side of a single disc is given by,

τw(r) =


µ

∂Vθ (r, z)
∂z


at z=0

=
6µΩr2ζm

b
. (22)

Consider an elemental circular strip of thickness dr at a radius r .
The torque about the rotor axis of the shear force acting on this
elemental area is equal to τw(2π rdr)(r). The torque on one side of
a single disc can be calculated by integrating the elemental torque,
and is given by,

ℑ =

 r2

r1
τw(2πr)rdr

=


12πµV θ2r32

b


C2

C1
(R2

2 − R2
1)

−
C3

C1


exp


−

C1R2
2

2


− exp


−

C1R2
1

2


. (23)

The net (integrated) effect of the jet on the disc becomes zero
when

 R2
R1

R2ζ (R)dR = 0; at this condition the jet produces no
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Fig. 3. Variation of the power output of Tesla turbine with rotational speed:
comparison of the presented theory with experiment. (Keys: Theoretical
ideal power output, Theoretical power output with loss, N Experimental
power output Lemma et al. [13]. Each bullet represents a steady state. For all
calculations and experiments∆pic = 0.113 bar and air is used as theworking fluid.)

torque, and hence no power. By substituting the expression for ζ
given by Eq. (21) into this condition and performing the integration
one can show that the no torque condition arises at a particular
value of γ given by:

[γ ]no torque

= 1 −
10
6

C1(R2
2 − R2

1) + exp


C1
2

 
exp


−

C1R22
2


− exp


−

C1R21
2


C1 exp


C1
2

 
exp


−

C1R22
2


− exp


−

C1R21
2


 .

(24)

The total torque produced by the complete rotor consisting of nd
discs is then calculated by,

ℑtot = 2(nd − 1)ℑ. (25)

The theoretical ideal power output is then given by,

•

W th = ℑtot ∗ Ω. (26)

Theoretical power output with loss can be calculated by
subtracting the overall loss from

•

W th given by Eq. (26):

•

W act =
•

W th −
•

W loss, (27)

where, the loss is a function of Ω . An experimentally determined
correlation for computing the overall loss is given [13]. A
simple but very effective method for measuring the bearing and
other losses, called the ‘‘angular acceleration method’’, has been
developed in [4].

The prediction of theoretical power output is shown in Fig. 3
for ∆pic = 0.113 bar, where both the theoretical power outputs
with and without loss are included. Each computed point in
Fig. 3 represents a steady state solution. In the same figure the
experimental results of Lemma et al. [13] are also shown so that
a direct comparison is possible. An outer radius of 25mm, an inner
radius of 13.2 mm, and nd = 9 were used in the experiments
as well as in the calculations. Considering the facts that there is
considerable experimental uncertainty and that the magnitude of
the bearing and other losses is a very substantial fraction of the
power output (see Fig. 3), it can be said that the simple theory
developed here has worked well.

Fromsimple theoretical considerations, Hoya andGuha [4] have
shown that ℑ ≈ ℑ0 − cΩ , where ℑ0 and c are constants, and

therefore the theoretical power output is
•

W th = ℑΩ = ℑ0Ω −

cΩ2. This explains why the power versus rotational speed curves
in Fig. 3 show the general shape of inverted buckets and the power
output produces a maxima. It can be seen that the rotational speed
at which the maxima occurs is different for the two theoretical
power output curves — the one which includes the loss and the
other which does not. The experimental results of Lemma et al.
[13] show that loss is proportional to the rotational speed. Eq. (27)
therefore shows that

•

W act = ℑ0Ω −cΩ2
−dΩ , where d is another

constant. Hence the maxima for Wact occurs at a lower rotational
speed as compared to the maxima for

•

W th. It is to be noted that
measurements by ‘‘angular acceleration method’’ [4] showed that
frictional torque, and hence the loss in power, can be a non-linear
function of rotational speed; this aspect has been fully described
in [54].

Fig. 3 shows that (for ∆pic = 0.113 bar), the theoretical power
output

•

W th is zero at 5592 rad/s. This occurswhen γ = 0.631, (this
corresponds to the condition when there is no torque because of
the action of the fluid jet on the disc). Ωno torque = 5592 rad/s thus
corresponds to the steady state condition under no load. When
the bearing and other parasitic losses are absent, the no torque
condition, the no load condition and the no power condition all
occur at the same steady rotational speed of the rotor. However,
when bearing and other parasitic losses are present, an external
agency will actually have to supply the power (that is equal to the
losses) for the disc to rotate at the steady rotational speed of 5592
rad/s. This is shown as the negative power output in Fig. 3. The
power output with losses becomes zero at 4950 rad/s, but at this
point the torque produced by the jet is non-zero.

3. Role of various forces

3.1. The θ-momentum equation and the variation of Vθ

The θ-momentum Eq. (2) gives a balance of inertia force
(L.H.S.) with friction force (R.H.S.) in the θ direction. In the
inertial acceleration term


Vr

∂Vθ

∂r +
VrVθ

r + 2ΩVr


, 2ΩVr is the θ-

component of Coriolis acceleration (henceforth denoted by aC,θ for
brevity). The term VrVθ

r takes an important part to conserve the
angular momentum of the working fluid (henceforth denoted by
aH for brevity). The term ν

∂2Vθ

∂z2
represents the viscous (frictional)

acceleration (henceforth denoted by aF ,θ for brevity), a negative
value would show that it is in fact a deceleration. Eq. (2) may be
interpreted as a relation that specifies the value of ∂Vθ

∂r , i.e. how Vθ

changes with r . Depending on the relative magnitudes of aC,θ , aH
and aF ,θ ,

∂Vθ

∂r may be positive, zero or negative. Thus, as one moves
from the outer radius to the inner radius of a Tesla disc turbine, Vθ

may show complex variation with the radius. We will attempt to
analyze various scenarios in the following description.

It is easier to determine quantitatively the change in the value
of Vθ with radius when the partial differential equation (2) is
transformed into an ordinary differential equation (17). In Eq. (17),
the four terms dζm

dR , −ζm
R , −

10
6 and −10ζm( ν

Ωb2
) R

φ2
are derived

respectively from Vr
∂Vθ

∂r , VrVθ

r , 2ΩVr and ν
∂2Vθ

∂z2
of Eq. (2).

In Eq. (17), dζm
dR gives the change in the value of ζm with non-

dimensional radius R. Eq. (17) can be solved by a suitable numerical
integration scheme (such as the finite difference method, FDM),
if the value of ζm is known at a point. Eq. (19) shows that the
initial value of ζm at rotor inlet (radius r2) is γ − 1. It is recalled
that the non-dimensional parameter γ , which is the ratio of the
absolute tangential velocity of the fluid at rotor periphery and the
peripheral speed of the rotor (γ ≡ Uθ2/(Ωr2), has been introduced
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Fig. 4. Variation of ∆ ˜V θ from inlet (R = 1) to central exit (R = 0.528) for γ = 10:
prediction of the presented theory. (Curve 1: Contribution of the term VrVθ/r in the

variation of ∆
˜V θ , Curve 2: Contribution of the term 2ΩVr in the variation of ∆

˜V θ ,
Curve 3: Contribution of the term ν

∂2Vθ

∂z2
in the variation of ∆ ˜V θ , Curve 4: Variation

of ∆
˜V θ considering all the forces. For all calculations ∆pic = 0.113 bar and air is

used as the working fluid.)

to incorporate different inlet flow conditions. The range from R2 to
R1 is discretized into several grid points and ζm at each grid point
can be calculated. The advantage of using FDM for solving Eq. (17)
is that the contribution of each of the three terms in the RHS of
Eq. (17) in determining the value of dζm

dR at each grid point can be
separately calculated.

There is a subtle point to be noted here. In the present FDM
solution, the separate contributions of each of the three terms are
calculated when all the three terms are present together, as in the
actual case, in determining the variation of ζm from R2 to R1. This
is quite different from determining the effect of each term by first
switching off the other two terms altogether in Eq. (17). A special
example will clarify this subtlety. Suppose, the latter approach is
taken and the value of γ is equal to 1. Therefore, V θ2 = 0. Then, if
one considered the effect of aH alone, while neglecting the effects of
aC,θ and aF ,θ , the value of V θ would remain zero at all radii (since
r2V θ2 = rV θ in this case). But in reality, due to the presence of
a small radial velocity, a fluid particle moves towards the inner
radius, V θ would change due to the Coriolis component aC,θ , and
once the value of V θ becomes non-zero, it changes also due to
the angular momentum conservation term aH . The first calculation
approach, the present finite differencemethod, would capture this
subtle flow physics. Similarly, suppose V θ2 < 0. Then, if one
considered the effect of aH alone, while neglecting the effects of
aC,θ and aF ,θ , the value of V θ would remain negative at all radius
(since r2V θ2 = rV θ in this case). It is the effect of aC,θ that makes
the change over from negative to positive value of V θ possible (see
‘flow reversal’ discussed in Section 3.2). Fundamentally, the local
value of overall V θ is important to find out the separate effects of
each term because ζm also appears on the RHS of Eq. (17).

The value of V θ can be reconstructed from ζm by the
transformation (using Eqs. (8) and (15)): V θ (r) = ΩRζm(R).
Figs. 4–6 show the contribution of each force in the non

dimensional variation of ∆V̄θ (or, the variation of ∆

∼

V̄ θ ) with R for
three different values of γ . The same figures also contain the net

change of∆
∼

V̄ θ withR considering all forces acting along θ direction
so that a comparative study can be performed.

At this point, a few general observations can bemade regarding
the influence of aC,θ , aF ,θ and aH from Eq. (2). The rate of change of
V θ with r due to the Coriolis component alone is−2Ω; so dV θ/dr is

Fig. 5. Variation of ∆
˜V θ from inlet (R = 1) to central exit (R = 0.528) for γ = 1:

prediction of the presented theory. (Curve 1: Contribution of the term VrVθ/r in the

variation of ∆
˜V θ , Curve 2: Contribution of the term 2ΩVr in the variation of ∆

˜V θ ,
Curve 3: Contribution of the term ν

∂2Vθ

∂z2
in the variation of ∆ ˜V θ , Curve 4: Variation

of ∆
˜V θ considering all the forces. For all calculations ∆pic = 0.113 bar and air is

used as the working fluid.)

Fig. 6. Variation of∆ ˜V θ from inlet (R = 1) to central exit (R = 0.528) for γ = 0.8:
prediction of the presented theory. (Curve 1: Contribution of the term VrVθ/r in the

variation of ∆
˜V θ , Curve 2: Contribution of the term 2ΩVr in the variation of ∆

˜V θ ,
Curve 3: Contribution of the term ν

∂2Vθ

∂z2
in the variation of ∆ ˜V θ , Curve 4: Variation

of ∆ ˜V θ considering all the forces. Curve 5: Variation of ζm

≡ V̄θ/Ωr2


considering

all the forces. For all calculations ∆pic = 0.113 bar and air is used as the working
fluid.)

negative and constant at all radii. Therefore, as onemoves from the
rotor inlet to outlet (i.e. as r decreases), V θ increases along a straight
line- this feature can be seen in each of the Figs. 4–6. The viscous
force always acts against the relative speed V θ trying to diminish
itsmagnitude – this feature can also be seen in each of the Figs. 4–6.
When V θ is positive, the effect of the viscous force is simply to
decrease the relative speed in the positive θ direction. Where V θ

is negative (for example, in the region close to the rotor inlet when
γ < 1), viscous force still tries to decrease the magnitude of V θ (in
the negative θ direction) but this appears as an increase in V θ in
the positive θ direction (see Fig. 6). The influence of aH on dV θ/dr
is complex and the nature of influence depends also on the value
of γ . This has been explained below in the separate discussions on
Figs. 4–6 (computed for γ = 10, 1 and 0.8 respectively).

Fig. 4 shows thatwhile the θ-component of Coriolis acceleration

(aC,θ ) and
VrVθ

r (i.e. aH ) tries to increase∆

∼

V̄ θ , the viscous force tries

to decrease∆
∼

V̄ θ . As the value of V θ is high at γ = 10, the effect
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of viscous force is also large. Fig. 2 shows that the steady value
of the disc rotational speed Ωsteady is small at γ = 10; hence the
magnitude of the Coriolis acceleration aC,θ is small in comparison
with the other two accelerations aF ,θ and aH . For high values of γ ,
the present computations show that aF ,θ and aH are comparable
in magnitude but acts in opposite directions. Close to the rotor
inlet, the effect of aF ,θ is greater, but as one moves to the rotor
outlet (r1) the combined effect of inertia terms (aH+aC,θ ) overtakes

that of aF ,θ . Hence, with decreasing r ,∆
∼

V̄ θ initially decreases, then
increases, as can be seen in Fig. 4.

Fig. 5 shows the effects of the three accelerations on the

variation of ∆

∼

V̄ θ , when γ = 1. Like the case of γ = 10 shown
in Fig. 4, Fig. 5 also shows that while the θ-component of Coriolis

acceleration (aC,θ ) and VrVθ

r (i.e. aH ) tries to increase ∆

∼

V̄ θ , the

viscous force tries to decrease ∆

∼

V̄ θ , but there are very important
differences. It is seen from Fig. 2 that at γ = 1, the value of Ωsteady
is large, and hence the Coriolis acceleration, in this case (in contrast
to the previously discussed case of γ = 10), becomes the dominant
term. This dominance of the Coriolis term is evident in Fig. 5. There
is also a difference in the nature of the curve 3 (i.e. the effect of the
viscous acceleration aF ,θ ) between Figs. 4 and 5. It is observed that
at γ = 1 the rate of decrease of V θ with r (i.e. dV θ/dr) due to aF ,θ

increases from R2 to R1, whereas at γ = 10, the rate decreases from
R2 to R1. For γ = 1, the friction is zero at inlet (since the relative
tangential velocity is zero at the rotor inlet), it increases rapidly
from R2 to R1. On the contrary, for a high value of γ , for example
γ = 10, the friction at inlet is high and it changes slowly from R2 to
R1 (the viscous force is proportional to the relative velocity of the
fluid, and for γ = 10 the change of V θ from R2 to R1 is small).

3.2. A novel case involving flow reversal

From a study of all previous references it would be a common
expectation that, for the Tesla turbine to work, the absolute
tangential speed of the fluid jet (situated at the rotor periphery)
must be higher than the tangential speed of the rotor itself. This
is synonymous to saying that the relative fluid tangential speed
at rotor periphery V θ2 must be positive, or equivalently γ > 1.
During the present course of research it is discovered that, a Tesla
turbine would also work even when γ is less than 1 (up to a
point). It is found that the Coriolis acceleration is responsible for
this subtle effect. It is recalled aC,θ increases V θ at a constant rate
from R2 to R1. Thus the action of the Coriolis acceleration has the
capability to change V θ from a negative value at R2 to a positive
value at R1, passing through the value of zero. This flow transition
in the relative frame is possible only due to the effect of the Coriolis
acceleration. (It can be shown that, starting from an initial negative
value, V θ would always remain negative due the individual effect
of either aH or aF ,θ .). It was shown previously that, when the value
of γ is near 1, the magnitude of aC,θ dominates over the other
two acceleration terms. Thus flow reversal in the relative frame
becomes possible due to the Coriolis acceleration. In the region
between the rotor inlet (R2) and the point of flow reversal, the
rotor disc would absorb power, instead of delivering. However, the
disc would develop positive power in the region between the point
of flow reversal and the rotor outlet (R1). If the positive power is
more than the negative power, then the rotor disc would produce
a net power output and the Tesla turbine would remain functional.
Obviously, from the present theory of produced net torque given
in Section 2, one can determine the limiting value of γ (which is
less than 1) for which the net torque of the Tesla turbine would
just become zero. As per the knowledge of the present authors,
this functionality of the Tesla turbine even when γ < 1 and the

Fig. 7. Variation of z-averaged relative tangential velocity V θ from inlet (R = 1)
to central exit (R = 0.528): prediction of the presented theory. (Keys:
γ = 10(Ωsteady = 450), γ = 5(Ωsteady = 906), γ = 2(Ωsteady =

2273), γ = 1(Ωsteady = 4249), γ = 0.8(Ωsteady = 4950),
γ = 0.64(Ωsteady = 5560). For all calculations and experiments ∆pic = 0.113 bar
and air is used as the working fluid.)

specific role of the Coriolis acceleration in achieving this have not
been reported previously.

An example calculation for the functioning of a Tesla turbine
with flow reversal is depicted in Fig. 6 for γ = 0.8. In this figure,
an additional curve for the overall variation in non-dimensional
V θ (i.e.ζm(≡ V̄θ/Ωr2)) is also included so that the point of flow
reversal can easily be identified.

It can be observed that the curve 1 (change in ∆

∼

V̄ θ due to aH )
in Fig. 6 is completely different from the corresponding curves in
Figs. 4 and 5. Moving from R2 to R1, the curves 1 of Figs. 4 and 5
always move upward but the same curve in Fig. 6 goes downward
from the rotor inlet to just before the point of flow reversal and
it goes upward just after the point of flow reversal. This occurs
because from the inlet to just before the point of flow reversal the
value of ζm is negative and after that it becomes positive (angular
momentum conservation tries to increase the modulus value of
velocity).

Similarly, moving from R2 to R1, the curves 3 (change in ∆

∼

V̄ θ

due to aF ,θ ) of Figs. 4 and 5 always move downward but the same
curve of Fig. 6 first goes upward and then goes downward. This
can also be explained by the flow reversal phenomenon. It is the
nature of friction that it always acts against the direction of fluid
flow; so from inlet to just before the point of flow reversal while
V θ is negative, friction tries to make V θ positive and just after the
point of flow reversal friction tries to make V θ negative. At the
point of flow reversal, the nature of curves 1 and 3 in Fig. 6 changes
but the nature of curve 2 remains the same. It is so because the
direction of the Coriolis acceleration remains unchanged. For the
configuration of a Tesla turbine, Vr is always radially inward and
the disc always rotates in the same direction (in the direction of
the absolute velocity of the fluid jet). Hence, the vector generated
from the cross product between Ω and Vr always acts in the same
direction.

3.3. The net change in V θ between the inlet and exit of the rotor

Fig. 7 shows the variation in V θ with radius ratio, for various
values of γ (10, 5, 2, 1.5, 1, 0.8, 0.64). γ = 0.64 corresponds to the
near-no-torque condition. The complex features of the variation
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in V θ and the reasons for such variations have been explained in
Sections 3.1 and 3.2. It is found fromFig. 7 that the net change inV θ ,
i.e. ∆V θ = V θ1 − V θ2, increases as the value of γ decreases. Thus,
even when the value of V θ is quite small at rotor inlet (point 2), it
increases to a large value at the rotor outlet (point 1). An example
will clarify this important aspect. When γ = 5, V θ2 ≈ 91 m/s and
V θ1 ≈ 108m/s. When γ = 1, the relative tangential speed at rotor
inlet is exactly zero, i.e. V θ2 = 0. But the relative speed increases
greatly within the rotor to assume a value of V θ1 ≈ 75 m/s
at the rotor outlet. When γ < 1, V θ2 is negative, and yet V θ1
assumes a substantial positive value. This fluid dynamic behavior
is interesting and important. (A comparison of the frictional curves
in Figs. 4–6 shows that the magnitudes of the effect of friction at
the rotor outlet are not very different from each other, considering
that the value of γ has changed drastically from 10 to 0.8 among
the three cases. The reason for this is the occurrence of high V θ1 in
all cases.)

3.4. The r-momentum equation and the variation of pressure

Similar to the θ-momentum equation, the r-momentum
equation (3) is also important in the fluid dynamics of a Tesla
turbine. The role of various forces in the r-momentum equation is
analyzed in this section. Some rearrangement of Eq. (3), using Eqs.
(9) and (13), gives:

1
ρ

dp
dr

=


V 2
r

r
+

V 2
θ

r


+ Ω2r + 2ΩVθ + ν

∂2Vr

∂z2
. (28)

In Eq. (28), (V 2
r /r + V 2

θ /r + 2ΩVθ ) is the inertial acceleration,
Ω2r is the centrifugal acceleration, and ν ∂2Vr

∂z2
is the viscous

acceleration in the r-direction. In the following discussion, the
term 2ΩVθ , which is the r-component of Coriolis acceleration, is
separated from the total inertia term to judge its effect individually.

So, the present analysis is performed by considering the
effects of the terms (V 2

r + V 2
θ )/r , Ω2r , 2ΩVθ and ν ∂2Vr

∂z2
on the

pressure drop. For the brevity of representation, the previous four
acceleration terms are denoted respectively by the symbols aI,r
(inertial), aCF ,r (centrifugal), aC,r (Coriolis) and aF ,r (viscous). The
corresponding terms in the non-dimensional ODE (18), derived

from the PDE (3), are respectively ( 6
5

ζ 2
m
R +

6
5

φ2
2

R3
), R, 2ζm, and

−12( ν

Ωb2
)

φ2
R . By multiplying the non-dimensional pressure drop

with ρΩ2r22 (from the definition of p′ (15)) the dimensional
pressure drop due to the effect of each force can be calculated.

It has been explained in Section 2.4 that, mimicking the
experimental procedure of Lemma et al. [13], the pressure drop
∆pic between the inlet and central exit of the rotor is kept fixed
while obtaining various steady flow solutions and steady torque
output conditions (see the computed combinations of γ andΩsteady
that give rise to the same pressure drop∆pic in Fig. 2). Fig. 8 shows
an example calculation how the overall pressure occurs under
the action of various forces over a wide range of Ω (for all the
calculations the geometry of the turbine is taken to be the same as
what is used in the numerical simulation of Section 2). Each point
in Fig. 8 represents a steady state, hence although the symbol Ω is
used in the following discussion on Fig. 8 to make it less cluttered,
Ω actually refers to Ωsteady.

It can be seen from Fig. 8 that the pressure drop due to the
inertia force ρaI,r decreases with increasing disc rotational speed
Ω . This is because V θ , at every value of the radius between the inlet
and outlet, decreases as Ω increases, as shown in Fig. 7. Therefore
ρV 2

θ /r decreases with an increase of Ω . Though |V r | decreases
with Ω , the rate at which it decreases is very small because of
the small value of B. (The values of A and B, corresponding to
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Fig. 8. Role of each force to produce a net pressure drop (∆pic) over a range of
rotational speed of the rotor: prediction of the presented theory. (For all calculations
∆pic = 0.113 bar and air is used as the working fluid. Keys: Pressure
drop due to Coriolis effect, Pressure drop due to ρΩ2r , Pressure
drop due to friction, Pressure drop due to ρ


V 2
r + V 2

θ


/r , — Total pressure

drop.)

∆pic = 0.113 bar, are respectively 13.32 and 0.0014 according to
Lemma et al. [13].)

The pressure drop due to the centrifugal force, ρaCF ,r , increases
with Ω . This is exactly opposite to the behavior due to the inertial
force ρaI,r . Fig. 8 shows that, at high values of Ω the major portion
of the pressure drop originates from the centrifugal force, and, at
low values of Ω , the major portion of the pressure drop originates
from the inertial force.

With increasing Ω , the pressure drop due to the r-component
of Coriolis force, ρaC,r , first increases and then decreases. This
is because aC,r is given by the product of Ω and Vθ . But it has
been shown in the previous paragraph that V θ decreases when Ω

increases. At first, the increase in Ω dominates the change in the
value of the product, but eventually the decrease in V θ dominates.
This is why, with an increase in Ω , the pressure drop due to ρaC,r
initially increases but then decreases after a certain value ofΩ . It is
interesting to note from Fig. 8 that the maximum value of pressure
drop due to ρaC,r occurs approximately around the value of Ω

where the pressure drop curves due to ρaI,r and ρaCF ,r intersect,
indicating a change-over of relative importance of the latter two
components.

Present computations show that the radial pressure drop due
to viscous force ρaF ,r decreases continuously (nearly linearly) with
increasing Ω . (This is due to the fact that |V r | decreases with Ω .) A
striking finding of the present study is that the contribution of the
r-component of viscous force to the overall radial pressure drop is
extremely small. This feature is evident from Fig. 8.

4. Computation of path line in the relative frame

The fluid has mainly tangential and a small radial component
of velocities while it enters through the narrow gap between the
discs. As a result, the fluid follows a spiral path from the inlet up to
the central exit. If a computational fluid dynamics (CFD) software is
used to simulate the flow-field in a Tesla disc turbine, pathlines can
be obtained by Lagrangian tracking calculations. Pathlines can also
be calculated from the presented analytical theory since it gives the
three-dimensional variation ofVθ andVr through the rotor passage.
A code written by finite difference method is utilized to calculate a
single path line from inlet to central exit for twodifferent rotational
speeds of the rotor. For computation of the pathline a plane is
chosen where Vθ = V θ and Vr = V r . The time taken by the
working fluid to reach from inlet to central exit is divided into small
steps. At each instant of time, V θ and V r can be calculated from the
presented theory since the (r , θ ) coordinate of the fluid particle is
known from the numerical integration at the previous time step.
As V r is known, the radial distance traveled by the fluid during a
time step can be calculated and the change in the value of θ can be
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Fig. 9. Fluid path lines from inlet (R = 1) to central exit (R = 0.528) determined
through numerical solutions of the presented theory for air as theworking fluid and
∆pic = 0.113 bar at two representative tangential speed ratios (γ ). P1: Relative
path line calculated at γ = 10, P2: Relative path line calculated at γ = 0.8 (arrow
represents direction of rotation of the disc).

computed numerically from tan−1(V r/V θ ). Successive application
of this procedure enables one to trace the pathline (in the relative
frame) completely from the inlet to the outlet.

The results are plotted in Fig. 9. The relative path line P1 of Fig. 9
shows that at γ = 10, the fluid moves spirally in the direction
of the disc rotation (anticlockwise in the present example). The
relative path line P2 of Fig. 9 shows that at γ = 0.8, a fluid
particle first (i.e. in the inlet region) moves opposite to the disc
rotation, then (near outlet region) itmoves in the same sense as the
disc rotation. This interesting shape of the pathline in the relative
frame occurs due to the occurrence of flow reversal as detailed in
Section 3. This fluid dynamic behavior is reported for the first time
in this paper.

5. Conclusion

A theory for the rotating flow in the narrowgaps among closely-
spaced co-axial multiple discs of a Tesla turbine is presented
here. Both the θ-momentum and the r-momentum equations
are considered. By a systematic order of magnitude analysis, the
dominant terms have been retained in the governing conservation
equations (1)–(3). This hasmade it possible to formulate analytical
solutions and to develop a clear physical interpretation for each
term in the equations. Thus the roles of each of the centrifugal,
Coriolis, inertial and viscous forces in generating torque andpower,
and in establishing the pressure field have been comprehensively
investigated and explained here. These physical roles of the
individual forces have not been discussed previously in the
literature.

The presented theory is simple but predicts three-dimensional
fields of velocity and pressure. The torque and power output
predicted by the theory compare well with recently published
experimental results.

It is shown here that a Tesla disc turbine may generate net
torque and power even when the tangential fluid speed at the
disc periphery is less than the local tangential speed of the disc.
The subtle role of the Coriolis acceleration in establishing such
flow conditions, which involve flow reversal, has been explained.

Relative pathlines have been computed – it is shown that in
addition to the usually reported spiral pathlines, new types of
complex shaped path lines are formed when flow reversal occurs.
The value of γ (≡ Uθ2/Ωr2) at which the theoretical torque
becomes zero is given by an explicit relation – Eq. (24). The
actual torque would become zero at a slightly higher value of γ
than that given by Eq. (24) when the overall loss is taken into
account.

Other than the existence of the phenomenon of flow reversal
(Section 3.2), the subtle role of the Coriolis force in establishing
flow reversal (Section 3.1) and the shape of complex relative
pathlines (Section 4), the present study also reveals several other
subtle flow physics. Some examples include the insensitivity of
the quantity V θ1 at the flow outlet even when there is a large
change inV θ2 varying fromnegative to positive values (Section 3.3)
and the fact that the contribution of the r-component of viscous
force to the overall radial pressure drop is extremely small
(Section 3.4).

The net torque derived from the Tesla turbine is dependent on
the viscous drag, which is a function of the axial (z-directional)
gradient of relative tangential velocity. If one can favorably alter
the shear stress (and hence power output) and control viscous
and other losses, the Tesla turbine may emerge as a successful
engineering device. Thismay be possible by using optimized values
of overall dimensions and flow variables, and/or by intelligently
manipulating local flow features. For example, it may be possible
to exploit the effects of intelligently designed and manufactured
surface roughness elements to enhance the performance of a Tesla
disc turbine. We are not yet in a position to do so, but a thorough
understanding of the fluid dynamics is a step in the right direction.
The detailed physical understanding is the scientific merit of the
analysis and discussion given in Sections 3 and 4, which could not
have been appreciated simply from a global, overall solution of all
the equations in one go.
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