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Closed-Form Analytical
Solutions for Laminar Natural
Convection on Horizontal Plates
A boundary layer based integral analysis has been performed to investigate laminar nat-
ural convection heat transfer characteristics for fluids with arbitrary Prandtl number
over a semi-infinite horizontal plate subjected either to a variable wall temperature or
variable heat flux. The wall temperature is assumed to vary in the form
�Twð�xÞ � �T1 ¼ a�xn whereas the heat flux is assumed to vary according to qwð�xÞ ¼ b�xm.
Analytical closed-form solutions for local and average Nusselt number valid for arbitrary
values of Prandtl number and nonuniform heating conditions are mathematically derived
here. The effects of various values of Prandtl number and the index n or m on the heat
transfer coefficients are presented. The results of the integral analysis compare well with
that of previously published similarity theory, numerical computations and experiments.
A study is presented on how the choice for velocity and temperature profiles affects the
results of the integral theory. The theory has been generalized for arbitrary orders of the
polynomials representing the velocity and temperature profiles. The subtle role of Prandtl
number in determining the relative thicknesses of the velocity and temperature boundary
layers for natural convection is elucidated and contrasted with that in forced convection.
It is found that, in natural convection, the two boundary layers are of comparable thick-
ness if Pr� 1 or Pr� 1. It is only when the Prandtl number is large (Pr> 1) that the ve-
locity boundary layer is thicker than the thermal boundary layer.
[DOI: 10.1115/1.4024430]
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1 Introduction

Natural convection flows are driven by buoyancy force caused
by density differences in a fluid. The density difference can be
caused by temperature gradients in the fluid. Natural convection
may arise in many real situations, such as in the cooling of elec-
tronic equipments, solar energy devices, nuclear reactors, heat-
recovery systems, room ventilation, crystal growth in liquids, etc.
Thus, the phenomenon of natural convection has been studied
extensively.

For a vertical semi-infinite plate, analytical study of laminar
natural convection for both constant wall temperature and con-
stant heat flux is standard and can be found in Refs. [1–3]. Experi-
mental investigations on both laminar and turbulent natural
convection from vertical plates can be found in Refs. [4,5]; these
either use constant wall temperature or constant heat flux bound-
ary condition. Correlation equations for Nusselt number variation
for natural convection on a vertical plate have been determined
analytically [1–3], experimentally [4,5] and on dimensional
grounds [6].

Experimental and numerical studies of laminar natural convec-
tion from a finite, isothermal horizontal plate have been presented
by Fujii and Imura [7], Goldstein and Lau [8] and Clifton and
Chapman [9]. Numerical study of laminar free convection heat
transfer above an upward facing semi-infinite horizontal heated
plate was provided by Yu and Lin [10], Lin et al. [11] and Pretot
et al. [12]. Mahajan and Gebhart [13], Pera and Gebhart [14] and
Afzal [15] have considered higher order boundary layer effects of
natural convection flow over horizontal surfaces. According to
Schlichting and Gersten [16], Stewartson [17] was one of the

pioneers to show the existence of this type of boundary layer flow.
Stewartson [17] considered an isothermal semi-infinite flat plate
and derived the self-similar velocity and temperature profiles for
the case of both hot and cold surface facing upward. Later on, Gill
et al. [18] interpreted the inconsistency of this solution and
showed the existence of similarity solution with either hot surface
facing upward or cold surface facing downward. Dayan et al. [19]
also showed the nonexistence of self-similar solutions for natural
convection underneath a heated horizontal plate and developed an
integral analysis for this flow configuration. A similarity analysis
has been performed by Rotem and Claassen [20] for free convec-
tion over a heated semi-infinite horizontal plate; the reference also
includes experimental data and colored visualization pictures. The
natural convection boundary layer above a horizontal plate is
formed indirectly because of an induced pressure gradient and
thus it is termed as “indirect natural convection” [16].

Many engineering heat transfer applications involve cases of
laminar natural convection where the surface heating conditions
are nonuniform [21]. Solutions for vertical plates with nonuniform
surface temperature are given in Refs. [3,21]. For horizontal
plates, Chen et al. [22] solved integro-differential equations by fi-
nite difference method for two values of the Prandtl number–0.7
and 7. In a recent study [23], similarity theories have been devel-
oped for natural convection in fluids with arbitrary Prandtl number
on horizontal surfaces for generic power-law variations in wall
temperature or wall heat flux.

The aim of the present work is to develop analytical, closed-
form solutions for boundary layer based models of natural convec-
tion flow on horizontal plates. Integral methods constitute a stand-
ard solution procedure in boundary layer analysis and are
described in textbooks (e.g., Refs. [1–3,16,21]). Integral solutions
for natural convection on a vertical plate are easily available in
the literature (including the five textbooks mentioned previously).
Natural convection on a horizontal plate involves additional
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physical mechanisms not present in the flow on a vertical plate (as
explained above). Unlike the boundary layer that forms due to
forced convection, the boundary layer on a horizontal plate due to
natural convection is such that @p=@y 6¼ 0 and @p=@x cannot be
neglected inside the boundary layer (even when @p1=@x is zero).
Many of such subtle physics of natural convection above a hori-
zontal plate have been included in the theory formulated in this
paper. The theory applies to fluids with arbitrary Prandtl number
and to nonuniform surface heating conditions. The theory has
been generalized for arbitrary orders of the polynomials represent-
ing the velocity and temperature profiles. Correlation equations
for the local and average Nusselt numbers are also theoretically
derived here (Table 1 given later in Section 2.5 summarizes com-
parative features of the present and previous correlations on Nus-
selt number variation). In the course of the present formulation
the consequences of certain mathematical steps which are com-
mon to integral methods for natural convection (including the
widely available literature on vertical plates) are examined and
the role of Prandtl number in determining the relative extent of
the velocity and thermal boundary layers has been established.

2 Mathematical Modeling

2.1 Description of the Physical Problem and Governing
Equations. A semi-infinite horizontal flat plate is subjected to a
variable wall temperature �Twð�xÞ or surface heat flux qwð�xÞ. The
heated plate faces upward. The wall temperature or wall heat flux
varies as the power of the horizontal coordinate in the form
�Twð�xÞ � �T1 ¼ a�xn or qwð�xÞ ¼ b�xm. The common mathematical
approach for both cases is described below in this section, the part
where the mathematical analysis is different for the two boundary
conditions is then presented separately in Secs. 2.2 and 2.3.

For mathematical modeling of the physical problem, the flow
of fluid is assumed to be incompressible, steady, laminar and two
dimensional. The viscous dissipation term in the energy equation
is neglected. The Boussinesq approximation for the density varia-
tion is applied. The boundary layer equations in dimensional form
then become [23]
Continuity equation

@ �u

@ �x
þ @ �v

@ �y
¼ 0 (1)

�x-momentum equation

�u
@ �u

@ �x
þ �v

@ �u

@ �y
¼ � 1

q
@ �p

@ �x
þ � @

2 �u

@ �y2
(2)

�y-momentum equation

� 1

q
@ �p

@ �y
þ �gbð �T � �T1Þ ¼ 0 (3)

Energy equation

�u
@ �T

@ �x
þ �v

@ �T

@ �y
¼ a

@2 �T

@ �y2
(4)

The boundary conditions are

At �y ¼ 0; �u ¼ 0 no slipð Þ; �v ¼ 0 impermeable wallð Þ
�Twð�xÞ � �T1 ¼ a�xn or qwð�xÞ ¼ b�xm

As �y!1; �u ¼ 0; �T ¼ �T1; �p ¼ �p1

9=
; (5)

In order to eliminate pressure �p from Eqs. (2) and (3), Eq. (3) is
partially differentiated with respect to �x, and the resulting equation
is then integrated with respect to �y (noting that @�p=@�x ¼ 0 at
�y!1). This results in the following combined form of �x and �y-

momentum equations for natural convection over a horizontal
plate:

�u
@ �u

@ �x
þ �v

@ �u

@ �y
¼ �gb

ð1
�y

@

@�x
ð �T � �T1Þd�yþ � @

2 �u

@ �y2
(6)

The set of Eqs. (1), (6), and (4) needs to be solved, subject to the
boundary condition given in Eq. (5).

In an integral boundary layer analysis, the integration with
respect to �y is carried not up to �y!1 but up to the edge of the
boundary layer at �y ¼ d. All existing integral analyses [1–3,16,21]
for natural convection on a vertical plate assume the same thick-
ness (d) for the velocity and thermal boundary layers. This is to
reflect the coupled nature of the velocity and temperature bound-
ary layers in a natural convection problem. This equality is also
assumed in the present analysis for horizontal plates; its effects on
the results have been discussed later in Sec. 3.1.

To solve the boundary layer equations, the temperature profile
is approximated by a parabolic equation of the form

�T ¼ C1 þ C2�yþ C3�y2 (7)

The boundary conditions for Eq. (7) are

At �y ¼ 0; ð �T � �T1Þ ¼ a�xn; or; qwð�xÞ ¼ b�xm

At �y ¼ d; �T ¼ �T1;
@ �T

@�y
¼ 0

9=
; (8)

The three conditions given in Eq. (8) are used for determining the
three coefficients C1, C2, and C3 in Eq. (7). C1, C2, C3, and d are
all functions of �x only. The temperature distribution can therefore
be obtained as

h
hw

¼
�T � �T1
�Tw � �T1

¼ 1� �y

d

� �2

(9)

where; hw ¼ ð �Tw � �T1Þ ¼ a�xn for variable wall temperature

¼ 1

2
b�xm d

k
for variable surface heat flux

)

(10)

The profile for velocity �u may be assumed to be a third-order
polynomial given by

�u ¼ C4 þ C5�yþ C6�y2 þ C7�y3 (11)

C4, C5, C6, and C7 are all functions of �x only. One needs four bound-
ary conditions to determine the four coefficients in Eq. (11). Three
of these conditions can be determined in a straightforward manner

at �y ¼ 0; �u ¼ 0

at �y ¼ d; �u ¼ 0

at �y ¼ d;
@�u

@�y
¼ 0

9>=
>; (12)

An additional condition is obtained from Eq. (6)

at �y ¼ 0; �
@2 �u

@�y2
¼ ��gb

d

d�x
ð �Tw � �T1Þ

d
3

� �
(13)

In deriving Eq. (13) (and also a few other equations given

below), Leibnitz’s rule (d=dx
Ð lðxÞ

kðxÞ f ðx; yÞdy ¼
Ð lðxÞ

kðxÞ @f ðx; yÞ=@x dy

þ f ðx; lðxÞÞdl=dx� f ðx; kðxÞÞdk=dx) has been used.
Applying the four conditions listed in Eqs. (12) and (13) to the

velocity profile given by Eq. (11), one obtains
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�u

�u�x
¼ �y

d
1� �y

d

� �2

(14)

where; �u�x ¼
�gbd2

12�

d

d �x
hwd½ � (15)

Integrating momentum Eq. (6) in the boundary layer within
limits �y ¼ 0 and �y ¼ d, the momentum integral equation becomes

d

d�x

ðd

0

�u2d�y ¼ �gb
ðd

0

ðd

�y

@

@�x
ð �T � �T1Þd�y

� �
d�y� � @�u

@�y

� �
y ¼ 0

(16)

By following a similar procedure, the integral energy equation
can be obtained from Eq. (4) as follows:

d

d�x

ðd

0

ð �T � �T1Þ�u d�y ¼ �a
@ �T

@�y

� �
�y¼0

(17)

Substituting the velocity and temperature profiles from Eqs.
(14) and (9) into the integral form of the momentum Eq. (16) and
energy Eq. (17) yields

1

105

d

d�x
ð�u2

�xdÞ ¼ �gb
d

d�x

d2

12
hw

� �
� ��u�x

d
(18)

1

30

d

d�x
ðhw �u�xdÞ ¼ 2

hw

d
a (19)

Equations (18) and (19) are generic equations applicable when ei-
ther the wall temperature or the wall heat flux is prescribed.

2.2 Power-Law Variation of Wall Temperature. It is
assumed that �u�x and d vary according to the following functions:

�u�x ¼ C8�x c and d ¼ C9�x d (20)

where C8, C9, c, and d do not depend on �x.
The expressions for �ux and d from Eq. (20) are substituted in

Eqs. (18) and (19), and the first relation of Eq. (10) is used. This
results in two simultaneous equations for C8 and C9. It is then
argued that for a self-similar solution to exist, both sides of
the two equations must be independent of �x. On equating the
exponents of �x, one obtains c ¼ ð2nþ 1Þ=5 and d ¼ ð2� nÞ=5.
The two simultaneous equations can then be solved to give

C9 ¼
6000

�gbað2nþ1Þ
a2

ð3nþ4Þ Prþ 4ð3nþ4Þ
21ð2nþ 1Þ

� �� �1
5

C8 ¼ 100a=C2
9ð2nþ 1Þ

Equation (20) for boundary layer thickness may be written as
d=�x ¼ C9�xd�1 which, on substitution of the just-determined
expressions for d and C9, yields

d
�x
¼ 5:6968

fð2nþ 1Þð4þ 3nÞg
1
5

Prþ 4

21

ð3nþ 4Þ
ð2nþ 1Þ

Pr2Gr�x

2
664

3
775

1
5

(21)

The local heat transfer coefficient from the surface of the plate
may be evaluated from qwð �x Þ ¼ �k @ �T=@�yð Þ�y¼0¼ h�x ð �Tw � �T1Þ.
Evaluating @ �T=@�yð Þ�y¼0 from Eq. (9) and using the expression for
temperature difference ð �Tw � �T1Þ from Eq. (10), one obtains

h�x �x

k
¼ 2

�x

d
(22)

On substitution of the value of d=�x from Eq. (21) in Eq. (22), one
obtains the local Nusselt number

Nu�x ¼ 0:3511fð2nþ 1Þð4þ 3nÞg
1
5

Pr2Gr�x

Prþ 4

21

ð3nþ 4Þ
ð2nþ 1Þ

2
664

3
775

1
5

(23)

The average heat transfer coefficient is given by ĥ ¼ 1=L
Ð L

0
hd�x.

Using the expression for local heat transfer coefficient (h�x) from
Eq. (22), d from Eq. (20), and substituting the value of d and C9,
the average Nusselt number (Nu

^
) over a plate length of L can be

written as

Nu
^
¼ 1:7555

ð3þ nÞ fð2nþ 1Þð4þ 3nÞg
1
5

Pr2GrL

Prþ 4

21

ð3nþ 4Þ
ð2nþ 1Þ

2
664

3
775

1
5

(24)

2.3 Power-Law Variation of Wall Heat Flux. For a plate
subjected to variable heat flux of the form qwð �x Þ ¼ b�xm, we
assume �u�x and d to vary according to the following functions:

�u�x ¼ C10�x e and d ¼ C11�x f (25)

A similar mathematical procedure as in Sec. 2.2 is now followed,
the only difference is that the second relation of Eq. (10) is now
used for determining hw (the first relation was used in Sec. 2.2).
This gives e ¼ mþ 1=3, f ¼ 2� m=6,

C11 ¼
2880

�gbbðmþ 2Þ
ka2

ðmþ 1Þ Prþ 2ðmþ 2Þ
7ðmþ 1Þ

� �� �1
6

C10 ¼ 60a=C2
11ðmþ 1Þ

The expression for boundary layer thickness becomes

d
�x
¼ 3:7719

fðmþ 1Þðmþ 2Þg
1
6

Prþ 2

7

ðmþ 2Þ
ðmþ 1Þ

Pr2Gr��x

2
664

3
775

1
6

(26)

The local heat transfer coefficient is evaluated from
h�x ¼ qwð�xÞ=ð �Tw � �T1Þ. Substituting the value of ð �Tw � �T1Þ from
Eq. (10), one obtains

Nu�x ¼
h�x�x

k
¼ 2

�x

d
(27)

With the help of Eq. (26), Eq. (27) becomes

Nu�x ¼ 0:5302fðmþ 1Þðmþ 2Þg
1
6

Pr2Gr��x

Prþ 2

7

ðmþ 2Þ
ðmþ 1Þ

2
664

3
775

1
6

(28)

Following the same mathematical steps given in Sec. 2.2, the av-
erage Nusselt number (Nu

^
) over a plate length of L is determined

to be

Nu
^
¼ 3:1812

ð4þ mÞ fðmþ 1Þðmþ 2Þg
1
6

Pr2Gr�L

Prþ 2

7

ðmþ 2Þ
ðmþ 1Þ

2
664

3
775

1
6

(29)

2.4 Summary Results of a Similarity Theory. In a recent
work [23], a similarity theory has been developed for steady, lam-
inar natural convection in fluids of arbitrary Prandtl number over
a semi-infinite horizontal flat plate for power-law variation in both
the wall temperature ( �Twð�xÞ � �T1 ¼ a�xn) and the wall heat flux
(qwð�xÞ ¼ b�xm). The theory automatically captures the thicknesses
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of the velocity and temperature boundary layers in natural convec-
tion flow for fluids with arbitrary Prandtl number. The details of
the derivation and many physical reflections are given in the cited
paper; only the final Nusselt number correlations from Ref. [23]
are quoted below so that the predictions of the present integral
analysis can be assessed.

When the wall temperature is prescribed as �Twð�xÞ � �T1 ¼ a�xn,
the similarity theory of Ref. [23] shows that the local Nusselt

number (Nu�x) and the average Nusselt number (Nu
^

) are, respec-
tively, given by

Nu�x ¼ �g0 ð0ÞðGr�xÞ
1
5 (30)

Nu
^
¼ � 5

nþ 3
ðGrLÞ

1
5g0ð0Þ (31)

g0(0) in Eqs. (30) and (31) specifies the surface heat flux and is
defined as g0 ¼ dg=dgwt, where gwt is the similarity variable given
by gwt ¼ �yðGr�xÞ1=5=�x. g0(0) depends on the Prandtl number Pr and
the exponent n. The function g specifies the self-similar tempera-
ture profile in the similarity theory and is determined (together
with two other functions giving velocity and pressure) by numeri-
cally solving a system of three nonlinear coupled ordinary differ-
ential equations with variable coefficients.

When the wall heat flux is prescribed as qwð�xÞ ¼ b�xm, the simi-
larity theory of Ref. [23] shows that the local Nusselt number (Nu�x)
and the average Nusselt number (Nu

^
) are, respectively, given by

Nu�x ¼
1

ð18Þ
1
6Gð0Þ

ðGr��xÞ
1=6

(32)

Nu
^
¼ 6

mþ 4

1

ð18Þ
1
6Gð0Þ

ðGr�LÞ
1=6

(33)

G(0) in Eqs. (32) and (33) represents the wall temperature for the
case of specified wall heat flux; it depends on the Prandtl number
Pr and the exponent m. The function G specifies the self-similar
temperature profile in the similarity theory and is determined (to-
gether with two other functions giving velocity and pressure) by
numerically solving a system of three nonlinear coupled ordinary
differential equations with variable coefficients. Details are avail-
able in Ref. [23].

2.5 Comparison of the Present Integral Analysis and the
Similarity Theory of Ref. [23]. For the case of specified wall
temperature, the present integral analysis gives Eq. (23) for the
variation of Nusselt number and the similarity theory of Ref. [23]
gives Eq. (30). A comparison of Eqs. (23) and (30) show that they
can be combined through a common functional form

Nu�x ¼ f1ðn;PrÞðGr�xÞ
1
5 (34)

Similarly, for the case of specified wall heat flux, a comparison
of Eqs. (28) and (32) show that they can be combined through a
common functional form

Nu�x ¼ g1ðm; PrÞðGr��xÞ
1
6 (35)

The functions f1(n, Pr) and g1(m, Pr) in Eqs. (34) and (35) are
summarized in Table 1 for ready reference.

It is interesting to consider Eqs. (23), (24), (30), and (31) to
note that the integral analysis and the similarity theory give the
same ratio for Nu

^
=Nu�x

Nu
^
=Nu�x ¼

5

nþ 3

GrL

Gr�x

� �1
5

(36)
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Similarly, for the prescribed wall heat flux, it is noted through a
consideration of Eqs. (28), (29), (32), and (33) that the integral
analysis and the similarity theory give the same ratio for Nu

^
=Nu�x

Nu
^
=Nu�x ¼

6

mþ 4

Gr�L
Gr��x

� �1
6

(37)

It is to be noted that the correct functional dependence of the Nus-
selt number on Grashof number, i.e., the index 1/5 for wall tem-
perature case and the index 1/6 for the wall heat flux case, that
comes out of the present mathematical analysis is also borne out
by the similarity theory [23] and the numerical solution of
integro-differential equations [22].

2.6 Special Features of the Present Solution. The distinc-
tive features of the present analytical solutions in the context of
available literature can be appreciated from a study of Table 1.
The heat transfer correlation equations (Eqs. (23), (24), (28), and
(29)) have five important characteristics all of which are not
simultaneously present in the previous work on natural convection
over a horizontal plate: (i) the correlation equations are mathe-
matically derived from the equations for conservation of mass,
momentum and energy, (ii) they are explicit analytical relations,
(iii) they produce the correct functional dependence of the Nusselt
number on Grashof number (the index 1/5 for wall temperature
case and the index 1/6 for the wall heat flux case), (iv) they can be
applied with reasonable accuracy over a wide range of Prandtl
number, (v) they are valid for nonuniform wall temperature or
wall heat flux. The features of previously available correlations
[10,11,14,22] are summarized in Table 1. All of these correlations
were found by curve-fitting through numerical solutions, they

apply either to constant surface temperature or to constant heat
flux case, some apply only over a restricted range of Prandtl num-
ber. The similarity solutions of Ref. [23] are valid for arbitrary
Prandtl number and nonuniform surface heating conditions but
explicit correlations showing algebraic dependence of the Nusselt
number on Prandtl number are not available from the similarity
theory whereas such algebraic dependence is available in the pres-
ent work.

3 Results and Discussion

Table 2 presents a comparative study of the characteristic nu-
merical values of the function f1(n, Pr)appearing in Eq. (34) for an
isothermal plate (i.e., n¼ 0) for various values of Prandtl number.
Table 3 shows the numerical values of f1(n, Pr) for various values
of n when Pr¼ 1. Table 4 presents a comparative study of the
characteristic numerical values of the function g1(m, Pr) appearing
in Eq. (35) for a constant-heat-flux plate (i.e., m¼ 0) for various
values of Prandtl number. Table 5 shows the numerical values of
g1(m, Pr) for various values of m when Pr¼ 1. From Tables 2 and
4, it is seen that, as the Prandtl number increases, the value of
f1(n, Pr) or g1(m, Pr) and hence that of Nu�x increases. From Tables
3 and 5, it is seen that Nu�x increases with increasing value of n or
m. The difference between the results of the integral analysis and
the similarity analysis increases as the value of n or m increases.

A careful observation of Tables 2 and 4 reveals that the ratio
NuUHF/NuUWT is always greater than 1, where the subscripts UHF
and UWT, respectively, denote “uniform heat flux” and “uniform
wall temperature.” The ratio decreases with increase in Prandtl
number. These behaviors of the ratio NuUHF/NuUWT, and the role
played by the values of the exponents n or m, may be understood
quantitatively from a study of the explicit, closed-form correla-
tions that have been derived in this paper, viz., Eqs. (23) and (28).

Table 2 Values of f1(n, Pr) in Eq. (34) for an isothermal plate for various values of Pr

Pr
Integral analysis

(present study) v¼ 2, k¼ 3
Numerical solution by

Yu and Lin [10]
Numerical solution by
Pera and Gebhart [14]

Integro-differential
analysis by Chen et al. [22]

Similarity analysis by
Samanta and Guha [23]

0.01 0.0773 0.0708 n/a n/a 0.0876
0.1 0.1900 0.1748 n/a n/a 0.1961
0.7 0.3723 0.3491 n/a 0.3554 0.3543
1 0.4137 0.3897 0.3940 n/a 0.3895
10 0.7235 0.6962 n/a n/a 0.6770
100 1.1619 1.1224 n/a n/a 1.0896

Table 3 Values of f1(n, Pr) in Eq. (34) for various values of n
when Pr 5 1

n
Integral analysis

(present study) v¼ 2, k¼ 3
Similarity

analysis [23]

0 0.4137 0.3895
1 0.5997 0.6466
3 0.8146 0.9327
5 0.9655 1.1220

Table 4 Values of g1(m, Pr) in Eq. (35) for a constant heat flux plate for various values of Pr

Pr
Integral analysis

(present study) v¼ 2, k¼ 3
Numerical solution
by Lin et al. [11]

Integro-differential
analysis by Chen et al. [22]

Similarity analysis by
Samanta and Guha [23]

0.01 0.1403 0.1326 n/a 0.1689
0.1 0.2952 0.2816 n/a 0.3276
0.7 0.5077 0.5011 0.5203 0.5216
1 0.5519 0.5492 n/a 0.5626
10 0.8655 0.8907 n/a 0.8788
100 1.2810 1.3261 n/a 1.3200

Table 5 Values of g1(m, Pr) in Eq. (35) for various values of m
when Pr 5 1

m
Integral analysis

(present study) v¼ 2, k¼ 3
Similarity

analysis [23]

0 0.5519 0.5626
1 0.6735 0.7285
3 0.8302 0.9301
5 0.9422 1.0680
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Figure 1 depicts the variation in local Nusselt number (Nu�x)
with local Grashof number (Gr�x) for an isothermal plate when
Pr¼ 0.7. The prediction of the present integral method is com-
pared with other theoretical and experimental results available in
the literature [10,14,22–25]. The integral analysis agrees well
with more complex theoretical models. The experimental results
show higher values for the Nusselt number and, Fishenden and
Saunders [24] had proposed 1/4th power-law variation with Gra-
shof number (instead of the 1/5th power predicted by all theories
including Eq. (34)); this aspect has been noted by Goldstein and
Lau [8]. The equivalent Nu�x versus Gr�x relation that may be con-
structed from the experiments of Ref. [8] based on naphthalene
sublimation would follow the same trend of experimental results
shown in Fig. 1 in the approximate range of Grashof number
102 < Gr�x < 104. The experiments, however, confirm the exis-
tence of this type of boundary layer flow above a heated plate. It

Fig. 2 Local Nusselt number versus modified local Grashof
number for a horizontal plate with constant heat flux for
Pr 5 0.7: assessment of the present integral analysis (—— Pres-
ent integral analysis (k 5 3, v 5 2 ), + Numerical solution [11],
~ Integro-Differential analysis [22], � Similarity solution [23])

Fig. 3 Nondimensional velocity and temperature profiles for
an isothermal horizontal plate for Pr 5 0.01 (—— similarity solu-
tion [23]; – – – – third order velocity profile k = 3 , second order
temperature profile v = 2 ; – 	 – 	 – eighth order velocity profile k
= 8, second order temperature profile v = 2)

Fig. 1 Local Nusselt number versus local Grashof number for
an isothermal horizontal plate for Pr 5 0.7: assessment of the
present integral analysis (—— Present integral analysis (k 5 3, v
5 2), + Numerical solution [10], ^ Numerical solution [14], ~ Inte-
gro-Differential analysis [22], � Similarity solution [23],
3 Experimental correlation [24], h Experimental correlation [25])

Fig. 4 Nondimensional velocity and temperature profiles for
an isothermal horizontal plate for Pr 5 0.7 (—— similarity solu-
tion [23]; – – – – third order velocity profile k = 3 , second order
temperature profile v = 2 ; – 	 – 	 – eighth order velocity profile k
= 8 , second order temperature profile v = 2)

Fig. 5 Nondimensional velocity and temperature profiles for
an isothermal horizontal plate for Pr 5 100 (—— similarity solu-
tion [23]; – – – – third order velocity profile k = 3 , second order
temperature profile v = 2 ; – 	 – 	 – eighth order velocity profile k
= 8 , second order temperature profile v = 2)
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is possible to carry out stability analysis of the laminar flow solu-
tion and find out the magnitudes of critical Grashof number; such
aspects are not within the scope of this study. While this paper
was in press, we traced an early attempt of applying integral anal-
ysis to isothermal horizontal plates [26], but the solution under-
predicts values of the Nusselt number (as compared to the present
isothermal results) by a factor 31/5. Details of the derivation are
not given in Ref. [26], but one possibility is that the �x-derivative
of the temperature term was inappropriately taken outside the in-
tegral sign while evaluating Eq. (16), which would result in the
same error.

Figure 2 presents the variation of local Nusselt number (Nu�x)
with modified local Grashof number (Gr��x) for a constant heat flux
plate when Pr¼ 0.7. A comparison with the existing correlations
available in the literature [11,22,23] shows that the present inte-
gral analysis gives good prediction of Nu�x.

3.1 Comments on the Relative Thicknesses of the Velocity
and Thermal Boundary Layers. Three major approximations in
an integral analysis are: the assumed velocity profile, temperature
profile, and the relative thicknesses of the two boundary layers.
The last aspect is discussed here briefly while the choice of profiles
has been analyzed in Sec. 3.2. All published integral analyses of
natural convection flow on a vertical surface [e.g.,
Refs. 1–3,16,21] assume that the thicknesses of the two boundary
layers are equal (dV¼ dT¼ d). This assumption has also been used
in developing the present integral analysis for horizontal plates.
The advantage of this assumption is that closed-form analytical
solutions with reasonable accuracy can be formulated; however,
one disadvantage is that, with one less variable, one of the equa-
tions has to be discarded (i.e., not used in the final solutions): usu-
ally the original equation defining �u�x is discarded. In the present
formulation, Eq. (15) is not used in the subsequent analysis, and �u�x

is calculated by Eq. (20) giving �u�x ¼ C9�x c: it is found that, in
replacing Eq. (15) by Eq. (20), the value of the exponent c remains
unaltered but the value of the coefficient C9 gets changed.

The role of Prandtl number is also subtle. In the case of forced
convection heat transfer [1,16,27], it is found that dV / dT
 Pr1/2

for fluids with low Prandtl number and dV / dT
 Pr1/3 for fluids
with medium or high Prandtl number. Therefore, for forced con-
vection, dV< dT when Pr< 1, dV
 dT when Pr
 1, dV> dT when
Pr> 1. This behavior is consistent with the definition of Prandtl
number which is defined as the ratio of the momentum and thermal
diffusivities. It may be construed that this role of Prandtl number
remains the same for the case of natural convection also. A com-
ment made by one of the reviewers, which is similar to the state-
ment made in Ref. [1, p. 525] (“dV� dT only if Pr� 1”), has drawn
our attention to this possible implication. Ghiaasiaan [28, p. 278)
has also commented that the relative thickness of the two boundary
layers follows the same trend in forced and natural convection. An
opposite qualitative argument could also be formed that, since the
two boundary layers are coupled in natural convection, they would
be of similar thickness at all Prandtl numbers (as may be implied in
Fig. 10.16 in Schlichting and Gersten [16, p. 281]).

In order to settle this issue qualitatively and quantitatively,
detailed calculations have been performed with the help of the
recently developed similarity theory for natural convection on
horizontal plates [23]. For the sake of brevity we only report the
main results in Figs. 3–5. The similarity variable is plotted in the

abscissa; it is shown in [23] that, for an isothermal horizontal
plate, the similarity variable is given by gwt ¼ �y ðGr�xÞ1=5=�x. It is
found that, in natural convection, the two boundary layers are of
comparable thickness if Pr� 1 or Pr� 1. It is only when the
Prandtl number is large (Pr> 1) that the velocity boundary layer
is thicker than the thermal boundary layer. In natural convection,
the velocity boundary layer is never less thick than the thermal
boundary layer since the fluid is set into motion due to thermal
effects (buoyancy). The velocity boundary layer can, however,
become thicker than the thermal boundary layer, when the Prandtl
number is very large, because natural convection velocity may
persist away from the wall due to shear force and inertia (even
when buoyancy is absent).

From the above discussion it can be concluded that the assump-
tion dV / dT� 1 made in the integral analysis of natural convection
is reasonable, inaccuracy in the results due to this assumption is
expected only at high Prandtl numbers. Comparison with the pre-
dictions of the similarity theory or other data given in the tables
and figures of this paper, however, shows that the percentage error
of the Nusselt number predicted by the integral theory is lower at
high Prandtl number than that at low Prandtl number.

3.2 Effects of Various Choices for Velocity and Tempera-
ture Profiles. In this paper, the algebraic details of the mathemat-
ical theory are given only for the case of cubic velocity profile
(Eq. (14)) and a quadratic temperature profile (Eq. (9)). Other
choices for the profiles are also possible. In fact, the boundary
condition @�p=@�x ¼ 0 at �y!1 was used in deriving the com-
bined momentum Eq. (6). This boundary condition implies,
according to Eq. (2), that @2 �u=@ �y2 ! 0 at �y!1. Similarly, Eq.
(4) implies that @2 �T=@ �y2 ! 0 at �y!1 (since �u! 0 and
@ �T=@ �y! 0). Thus, it seems that a cubic profile for the tempera-
ture and a fourth-order polynomial for the velocity should be the
natural choice for an integral analysis of free convection on hori-
zontal plates. Even higher order polynomials can be used by set-
ting higher order derivatives of velocity (@l �u=@ �yl) and
temperature (@l �T=@ �yl) to zero at �y!1, where l¼ 3, 4,…, etc.

By systematically applying the various boundary conditions at
�y ¼ 0 and �y!1, it is found that the various velocity and temper-
ature profiles can be generically written as

�u

�u�x
¼ �y

d
1� �y

d

� �k�1

(38)

h
hw

¼
�T � �T1
�Tw � �T1

¼ 1� �y

d

� �v

(39)

where k and v are integers, and denote the order of the polynomial
used, respectively, for the velocity and temperature profile.

By repeating the integral analysis for various velocity and
temperature profiles, for prescribed wall temperature
�Twð�xÞ � �T1 ¼ a�xn, we found that the Nusselt number can be
expressed by the generic expression

Nu�x ¼ a1fð2nþ 1Þð4þ 3nÞg
1
5

Pr2Gr�x

Prþ a2

ð3nþ 4Þ
ð2nþ 1Þ

2
664

3
775

1
5

(40)

Table 6 Values of f1 (n, Pr) for various velocity profiles for isothermal plate (n 5 0 in Eq. (40)) for quadratic temperature profile
(v 5 2 in Eq. (39))

Pr
Similarity

solution [23]
Third order

k¼ 3, a1¼ 0.3511, a2¼ 4/21
Fourth order

k¼ 4, a1¼ 0.3282, a2¼ 1/9
Sixth order

k¼ 6, a1¼ 0.2946, a2¼ 8/143
Eighth order

k¼ 8, a1¼ 0.2707, a2¼ 11/306

0.01 0.0876 0.0773 0.0803 0.0824 0.0823
0.7 0.3543 0.3723 0.3655 0.3425 0.3204
100 1.0896 1.1619 1.0869 0.9762 0.8970
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The values of a1 and a2 in Eq. (40) for various profiles are given
in Tables 6 and 7.

For prescribed surface heat flux qwð�xÞ ¼ b�xm, we found that the
Nusselt number can be expressed by the generic expression

Nu�x ¼ a3fðmþ 1Þðmþ 2Þg
1
6

Pr2Gr��x

Prþ a4

ðmþ 2Þ
ðmþ 1Þ

2
664

3
775

1
6

(41)

For quadratic temperature profile (v¼ 2), the values of a3 and a4

in Eq. (41) for third, fourth, sixth, and eighth order velocity pro-
files are, respectively, given by (a3¼ 0.5302, a4¼ 2/7),
(a3¼ 0.5013, a4¼ 1/6), (a3¼ 0.4582, a4¼ 12/143), and
(a3¼ 0.4269, a4¼ 11/204).

A study of Figs. 3–5 and Tables 6 and 7 shows that, with poly-
nomials of higher order k, the velocity profile close to the wall
becomes steeper and the velocity approaches more gradually to
zero at �y ¼ d. At low values of Prandtl number (Pr< 1), higher
order velocity profiles thus improve the prediction of Nusselt
number (and skin friction coefficient). At Pr� 1, and at Pr> 1,
very high orders of the velocity profile may, however, make the
velocity gradient at wall greater than the correct value; this results
in underprediction in Nusselt number (and overprediction in skin
friction coefficient). For the prediction of Nusselt number for iso-
thermal horizontal plate, the best compromise for all Prandtl num-
bers is to use the second-order temperature profile (v¼ 2) and
fourth-order velocity profile (k¼ 4).

Figure 6 depicts the variations in local Nusselt number (Nu�x)
with Prandtl number (Pr) both for an isothermal and an iso-heat-
flux plate. The composite variables Nu�xðGr�xÞ�1=5

and
Nu�xðGr��xÞ

�1=6
are plotted as the ordinates so that data generated

by comprehensive computations can be presented in a concise

manner. It is found that present closed-form Nusselt number cor-
relations agree well with results of similarity theory [23] and other
previous work at all Prandtl numbers (for both constant tempera-
ture and constant heat flux cases).

4 Conclusion

In this paper, a boundary layer based integral analysis of steady,
laminar natural convection over a semi-infinite horizontal flat
plate for power-law variation in both the wall temperature
( �Twð�xÞ � �T1 ¼ a�xn) and the surface heat flux (qwð�xÞ ¼ b�xm) has
been made. The present theory results in explicit, closed-form
algebraic solutions for the boundary layer thickness d=�x and the
local Nusselt number Nu�x: Eqs. (21) and (40) for prescribed wall
temperature show that d=�x 
 1=ðGr�xÞ

1=5
, Nu�x 
 ðGr�xÞ

1=5
, and

Eqs. (26) and (41) for prescribed wall heat flux show that
d=�x 
 1=ðGr

�
�xÞ

1=6
, Nu�x 
 ðGr

�
�xÞ

1=6
. The value of Nu

^
=Nu�x is speci-

fied by Eqs. (36) and (37). The present theory shows that Nu�x

increases with increasing values of exponent n or m, and with
increasing Prandtl number. The explicit relations derived here are
valid for a wide range of values of Pr and n or m, and compare
well with the results of previous works [10,11,14,22,23]. Table 1
summarizes comparative features of present as well as previous
works. The particular cases of constant wall temperature and con-
stant heat flux can be obtained by, respectively, substituting n¼ 0
or m¼ 0 in the present solutions. It can be shown that the constant
heat flux case results in a variation of surface temperature such
that n¼ 1/3. Similarly in order to maintain constant surface tem-
perature, the surface heat flux must vary such that m¼� 2/5.

It is shown that, in natural convection, the velocity and thermal
boundary layers are of comparable thickness if Pr� 1 or Pr� 1. It
is only when the Prandtl number is large (Pr> 1) that the velocity
boundary layer is thicker than the thermal boundary layer. Thus,
the role of Prandtl number in natural convection is quite different
from that in forced convection.

For the prediction of Nusselt number for isothermal horizontal
plate (n¼ 0), the best compromise for all Prandtl numbers is to
use the second-order temperature profile (v¼ 2) and fourth-order
velocity profile (k¼ 4), i.e., a1¼ 0.3282, a2¼ 1/9 should be used
in Eq. (40). For constant heat flux case (m¼ 0), the second-order
temperature profile (v¼ 2) and third-order velocity profile (k¼ 3)
give good agreement at all Prandtl numbers, i.e., a3¼ 0.5302,
a4¼ 2/7 should be used in Eq. (41).

Nomenclature

a ¼ dimensional constant in the power-law variation of
wall temperature

b ¼ dimensional constant in the power-law variation of
wall heat flux

f1(n, Pr) ¼ a function defined in Eq. (34)
�g ¼ gravitational acceleration

g1(m, Pr) ¼ a function defined in Eq. (35)
Gr�x ¼ Grashof number defined as �gb ½ �Twð�xÞ � �T1��x3=�2

Gr��x ¼ modified Grashof number defined as �gbqwð�xÞ�x4=k�2

h�x ¼ local heat transfer coefficient, qwð�xÞ=½ �Twð�xÞ � �T1�
ĥ ¼ average heat transfer coefficient given by

ĥ ¼ 1=L
Ð L

0
hd�x

k ¼ thermal conductivity of the fluid
L ¼ reference length of the plate in �x direction

Table 7 Values of f1 (n, Pr) for various velocity profiles for isothermal plate (n 5 0 in Eq. (40)) for cubic temperature profile (v 5 3 in
Eq. (39))

Pr
Similarity

solution [23]
Third order

k¼ 3, a1¼ 0.4099, a2¼ 2/5
Fourth order

k¼ 4, a1¼ 0.3869, a2¼ 2/9
Sixth order

k¼ 6, a1¼ 0.3519, a2¼ 15/143
Eighth order

k¼ 8, a1¼ 0.3259, a2¼ 11/170

0.01 0.0876 0.0779 0.0826 0.0871 0.0886
0.7 0.3543 0.3969 0.4034 0.3936 0.3759
100 1.0896 1.3542 1.2800 1.1655 1.0796

Fig. 6 Variation in nondimensional heat transfer coefficient
with Prandtl number: assessment of the present integral analy-
sis (——— Present integral analysis (k = 3 , v = 2 ), ~ Numerical
solution (isothermal plate) [10], ~ Numerical solution (constant
heat flux plate) [11], � Similarity solution (isothermal plate) [23],
* Similarity solution (constant heat flux plate) [23])
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m ¼ exponent in the power-law variation of wall heat flux
n ¼ exponent in the power-law variation of wall

temperature
Nu�x ¼ local Nusselt number, h�x=k
Nu
^
¼ average Nusselt number, ĥL=k

�p1 ¼ static pressure in the undisturbed fluid
Pr ¼ Prandtl number, �=a
�T ¼ fluid temperature

�T1 ¼ temperature of the quiescent fluid
�u ¼ velocity component in the �x direction

�u�x ¼ velocity scale derived in Eq. (15)
�u0;s ¼ velocity scale obtained from similarity theory [23],

�u0;s ¼ �Gr
2=5
�x =�x

�v ¼ normal velocity component
�x ¼ horizontal coordinate
�y ¼ vertical coordinate

Greek Symbols

a ¼ thermal diffusivity
b ¼ coefficient of thermal expansion at the reference

temperature
v ¼ order of polynomial for temperature (Eq. (39))
d ¼ boundary layer thickness derived in Eqs. (21) and

(26), respectively
gwt ¼ similarity variable defined as gwt ¼ �yðGr�xÞ1=5=�x

k ¼ order of polynomial for velocity (Eq. (38))
� ¼ kinematic viscosity
q ¼ density of fluid
h ¼ temperature difference given by ( �T � �T1)

hw ¼ temperature difference defined in Eq. (10)

Subscripts

w ¼ condition at the wall
1¼ condition in undisturbed fluid
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